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Abstract
The neural underpinning of the biological visual system is challenging to study experi-

mentally, in particular as neuronal activity becomes increasingly nonlinear with respect to
visual input. Artificial neural networks (ANNs) can serve a variety of goals for improving
our understanding of this complex system, not only serving as predictive digital twins of
sensory cortex for novel hypothesis generation in silico, but also incorporating bio-inspired
architectural motifs to progressively bridge the gap between biological and machine vision.
The mouse has recently emerged as a popular model system to study visual information
processing, but no standardized large-scale benchmark to identify state-of-the-art mod-
els of the mouse visual system has been established. To fill this gap, we proposed the
SENSORIUM benchmark competition. We collected a large-scale dataset from mouse primary
visual cortex containing the responses of more than 28,000 neurons across seven mice stimu-
lated with thousands of natural images, together with simultaneous behavioral measurements
that include running speed, pupil dilation, and eye movements. The benchmark challenge
ranked models based on predictive performance for neuronal responses on a held-out test
set, and included two tracks for model input limited to either stimulus only (SENSORIUM) or
stimulus plus behavior (SENSORIUM+). As a part of the NeurIPS 2022 competition track,
we received 172 model submissions from 26 teams, with the winning teams improving our
previous state-of-the-art model by more than 15%. Dataset access and infrastructure for
evaluation of model predictions will remain online as an ongoing benchmark. We would like
to see this as a starting point for regular challenges and data releases, and as a standard
tool for measuring progress in large-scale neural system identification models of the mouse
visual system and beyond.
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Figure 1: A schematic illustration of the SENSORIUM competition. We provide large-
scale datasets of neuronal activity in the primary visual cortex of mice. Participants of the
competition trained models on pairs of natural image stimuli and recorded neuronal activity.

Introduction

Understanding how the visual system processes visual information is a long standing goal
in neuroscience. Neural system identification approaches this problem in a quantitative,
testable, and reproducible way by building accurate predictive models of neural population
activity in response to arbitrary input. If successful, these models can serve as functional
digital twins for the visual cortex, allowing computational neuroscientists to derive new
hypotheses about biological vision in silico, and enabling systems neuroscientists to test them
in vivo (Walker et al., 2019; Ponce et al., 2019; Bashivan et al., 2019; Franke et al., 2022). In
addition, highly predictive models are also relevant to machine learning researchers who use
them to bridge the gap between biological and machine vision (Li et al., 2019; Safarani et al.,
2021; Li et al., 2022; Sinz et al., 2019).

The work on predictive models of neural responses to visual inputs has a long history
that includes simple linear-nonlinear (LN) models (Jones and Palmer, 1987; Heeger, 1992a,b),
energy models (Adelson and Bergen, 1985), more general subunit/LN-LN models (Rust et al.,
2005; Touryan et al., 2005; Schwartz et al., 2006; Vintch et al., 2015), and multi-layer neural
network models (Zipser and Andersen, 1988; Lehky et al., 1992; Lau et al., 2002; Prenger
et al., 2004). The deep learning revolution set new standards in prediction performance
by leveraging task-optimized deep convolutional neural networks (CNNs) (Yamins et al.,
2014; Cadieu et al., 2014; Cadena et al., 2019) and CNN-based architectures incorporating a
shared encoding learned end-to-end for thousands of neurons (Antolík et al., 2016; Batty
et al., 2017; McIntosh et al., 2016; Klindt et al., 2017; Kindel et al., 2019; Cadena et al.,
2019; Burg et al., 2021; Lurz et al., 2021; Bashiri et al., 2021; Zhang et al., 2018; Cowley and
Pillow, 2020; Ecker et al., 2018; Sinz et al., 2018; Walker et al., 2019; Franke et al., 2022).

The core idea of a neural system identification approach to improve our understanding of
an underlying sensory area is that models that explain more of the stimulus-driven variability
may capture nonlinearities that previous low-parametric models have missed (Carandini
et al., 2005). Subsequent analysis of high performing models, paired with ongoing in vivo
verification, can eventually yield more complete principles of brain computation. This
motivates continually improving our models to explain as much as possible of the stimulus-
driven variability and analyze these models to decipher principles of brain computations.
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Standardized large-scale benchmarks are one approach to stimulate constructive com-
petition between models compared on equal ground, leading to numerous incremental
improvements that accumulate to substantial progress. In machine learning and computer
vision, benchmarks have been an important driver of innovation in the last ten years. For
instance, benchmarks such as the ImageNetChallenge (Russakovsky et al., 2015) helped jump
start the revolution in artificial intelligence through deep learning. Similarly, neuroscience
can benefit from more large-scale benchmarks to drive innovation and identify state-of-the-art
models. This is especially true in the mouse visual cortex, which has recently emerged as
a popular model system to study visual information processing, due to the wide range of
available genetic and light imaging techniques for interrogating large-scale neural activity.

Existing neuroscience benchmarks vary substantially in the type of data, model organism,
or goals of the contest (Schrimpf et al., 2018; Cichy et al., 2021; de Vries et al., 2019; Pei
et al., 2021). For example, the Brain-Score benchmark (Schrimpf et al., 2018) ranks
task -pretrained models that best match areas across primate visual ventral stream and
other behavioral data, but do not provide neuronal training data. Instead, participants
design objectives, learning procedures, network architectures, and input data that result in
representations that are predictive of the withheld neural data. The Algonauts challenge
(Cichy et al., 2021) competition ranks neural predictive models of human brain fMRI visual
cortex activity in response to natural images and videos. Additionally, large data releases
such as the mouse visual cortex dataset from Allen Institute for Brain Science (de Vries
et al., 2019) are often not designed for a machine learning competition (consisting of only 118
natural images in addition to parametric stimuli and natural movies), and lack benchmark
infrastructure for measuring predictive performance against a withheld test set. Lastly, the
Neural Latents benchmark (Pei et al., 2021) also targets neuronal response prediction, but
for cognitive, somatosensory, and motor areas with a focus on latent variable models.

To fill this gap, we created the SENSORIUM benchmark competition to facilitate the search
for the best predictive model for mouse visual cortex. We collected a large-scale dataset
from mouse primary visual cortex containing the responses of more than 28,000 neurons
across seven mice stimulated with thousands of natural images, together with simultaneous
behavioral measurements that include running speed, pupil dilation, and eye movements.
Benchmark metrics will rank models based on predictive performance for neuronal responses
on a held-out test set, and includes two tracks for model input limited to either stimulus
only (SENSORIUM) or stimulus plus behavior (SENSORIUM+).

Our competition was part of the NeurIPS 2022 competition track, receiving 172 model
submissions from 26 teams between May 20 and Oct 15, 2022. The winning teams substantially
improved our previous state-of-the-art model in both competition tracks (SENSORIUM: +13.6%;
SENSORIUM+: +18%). In this retrospective, we first describe the competition in detail, followed
by the results of the competition, with descriptions from the winning teams outlining their
approach. Finally, we reflect on the competition results as well as our lessons learned for
future iterations.

The SENSORIUM Competition

The goal of the SENSORIUM 2022 competition and ongoing benchmark is to identify the best
models for predicting sensory neural responses to arbitrary natural stimuli. At the start of
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Figure 2: Overview of the data and the competition structure. a, Single recording
from the SENSORIUM track. For ≈ 5000 training images, the neuronal activity of each
neuron is provided. For 100 live and 100 final test set images shown 10 times each,
neuronal responses are withheld. b, SENSORIUM+ track is the same as (a) but behavioral
variables are available. c, Overview of seven dataset recordings. Five pre-training
recordings are not part of the competition evaluation, but can be used to improve model
performance. In the public test set, 100 images are shared with the live test set (blue
frame), but neuronal responses are provided. d, Live test scores are displayed on the live
leaderboard, while final test set scores were only revealed after the submissions closed.

the competition, a training dataset for refining model performance was publicly released
(Fig. 2). For two animals, the neuronal responses to a set of competition test set images
were permanently withheld. The competition test set images are divided into two exclusive
groups: live and final test. Performance metrics computed on the live test images are used
to maintain a public leaderboard on our website, while the performance metrics on the final
test images were only used to score entries after the submission period has ended (Fig. 2d).
By separating the live test and final test set performance metrics, we were able to provide
feedback on live test set performance to participants wishing to submit updated predictions
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(up to one submission per day), while protecting the final test set from overfitting over
multiple submissions.

The competition has two tracks, SENSORIUM and SENSORIUM+ , predicting two datasets
with the same stimuli, but from two different animals and with differing model inputs.

SENSORIUM. In the first challenge, participants predict the average neuronal activity of
7,776 neurons in response to 10 repetitions of 200 unique natural images of our competition
live test and final test image sets. The data provided for the test set includes the natural
image stimuli but not the behavioral variables (Fig. 2a). Thus, this challenge focuses on
stimulus-driven responses, treating other correlates of neural variability, such as behavioral
state, as noise. This track resembles most of the current efforts in the community (Schrimpf
et al., 2018) to identify stimulus-response functions without additional information about
the brain and behavioral state.

SENSORIUM+ In the second challenge, participants predict the single-trial neuronal activity
of 7,538 neurons in response to 200 unique natural images of our competition live test and
final test image sets. In this case, both the natural image stimuli and the accompanying
behavioral variables are provided (Fig. 2b). As a significant part of response variability
correlates with the animal’s behavior and internal brain state (Niell and Stryker, 2010; Reimer
et al., 2014; Stringer et al., 2019), their inclusion can result in models that capture single
trial neural responses more accurately (Bashiri et al., 2021; Franke et al., 2022).

Data

The competition dataset was designed to compare neural predictive models that capture
neuronal responses r ∈ Rn of n neurons as a function fθ(x) of either only natural image
stimuli x ∈ Rh×w (image height,width), or as a function fθ(x,b) of both natural image
stimuli and behavioral variables b ∈ Rk. We provide k = 5 variables: locomotion speed,
pupil size, instantaneous change of pupil size (second order central difference), and horizontal
and vertical eye position. See Fig. 2 and (Willeke et al., 2022) for an overview of the dataset.

Natural images. Natural images from ImageNet (Russakovsky et al., 2015) were
cropped to fit a monitor with 16:9 aspect ratio, converted to gray scale, and presented to
mice for 500 ms, preceded by a blank screen period between 300 and 500 ms (Fig. 2a,b)

Neuronal responses. We recorded the response of excitatory neurons in layer 2/3 of
the right primary visual cortex in awake, head-fixed, behaving mice using calcium imaging.
Activity was extracted and accumulated 50 - 550 ms after each stimulus onset.

Behavioral variables. During imaging, mice were head-mounted over a cylindrical
treadmill, and an eye camera captured changes in the pupil position and dilation. Behavioral
variables were similarly extracted and accumulated 50 - 550 ms after each stimulus onset.

Dataset. Our complete data corpus comprises seven recordings in seven animals (Fig. 2c),
including the neuronal activity of over 28,000 neurons to 25,200 unique images, with 6,000–
7,000 image presentations per recording (see (Willeke et al., 2022) for details). We report a
conservative neuron count estimate, due to multiple segmented units from single neurons
appearing in multiple, densely placed calcium imaging recording planes. Fig. 2c shows the
uncorrected number of 54,569 units.

Five of the seven recordings, which we refer to as pre-training recordings (Fig. 2c, right),
are provided solely for training and model generalization, and are not included in the
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competition performance metrics. They contain 5,000 single presentations of natural images,
randomly intermixed with 10 repetitions of 100 natural images, and all corresponding neuronal
responses. The 100 repeated images and responses serve as a public test set.

In the two remaining competition recordings (Fig. 2c, left), the mice were also presented
with 5,000 single presentations of training stimuli as well as the public test images. However,
during the contest, we withheld the responses to the public test images and use them for the
live leaderboard. We thus refer to these images as live test set. Furthermore, the competition
recordings contain 10 repetitions of 100 additional natural test images that were randomly
intermixed during the experiment. These test images are only present in the two competition
recordings. The responses to these images were also withheld and used to determine the
winner of the competition after submissions are closed (Fig. 2a,b). We refer to these images
as our final test set. By providing both live and final test scoring, participants receive the
benefit of iterative feedback while avoiding overfitting on the final scoring metrics.

In our first competition track (SENSORIUM, Fig. 2a), we withhold the behavioral variables,
such that only the natural images can be used to predict the neuronal responses. For the
other competition track (SENSORIUM+, Fig. 2b), as well as the five pre-training recordings,
we are releasing all the behavioral variables. Lastly, we released the anatomical locations of
the recorded neurons for all datasets. The complete corpus of data is available to download
at https://sinzlab.org/sensorium2022.html.

Performance Metrics

Across the two benchmark tracks, three metrics of predictive accuracy are automatically and
independently computed for the 100 live test set images and 100 final test set images, for
which ground-truth neuronal responses are withheld (see (Willeke et al., 2022) for details)

Correlation to Average We calculate the correlation to average of 100 model predictions
to the withheld, observed mean neural response across 10 repeated presentations of the
same stimulus. This metric is computed for both the SENSORIUM and SENSORIUM+ tracks
to facilitate comparison. Correlation to average on the final test set served as the ultimate
ranking score in the SENSORIUM track to determine competition winners.

Fraction of Explainable Variance Explained (FEVE) While correlation to average
is a common metric, it is insensitive to affine transformations of either the neuronal response
or predictions. This metric computes the ratio between the variance explained by the model
and the explainable variance in the neural responses (Cadena et al., 2019). The explainable
variance accounts for only the stimulus-driven variance and ignores the trial-to-trial variability
in responses. This metric is computed for SENSORIUM but not SENSORIUM+ , due to the
lack of repeated trials with identical behavior fluctuations necessary to estimate explainable
variance. For numerical stability, we compute the FEVE only for neurons with an explainable
variance larger than 15% (N=4319 for SENSORIUM and N=4548 for SENSORIUM+).

Single Trial Correlation Lastly, to measure how well models account for trial-to-
trial variations we compute the single trial correlation between predictions and single trial
neuronal responses, without averaging across repeats. This metric is computed for both the
SENSORIUM and SENSORIUM+ tracks to facilitate comparison. Single trial correlation on the
final test set served as the ultimate ranking score in the SENSORIUM+ track to determine
competition winners.
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Competition results

Live test set Final test set

Single trial

Correlation

Average

Correlation
FEVE

Single trial

Correlation

Average

Correlation
FEVE

SENSORIUM

LN Baseline 0.197 0.363 0.222 0.207 0.377 (-28.6%) 0.232

CNN Baseline 0.274 0.513 0.433 0.287 0.528 (0%) 0.439

#3: Azeglio et al. 0.307 0.580 0.549 0.319 0.587 (+11.1%) 0.516

#2: Zhu et al. 0.314 0.589 0.512 0.325 0.598 (+13.2%) 0.503

#1: Deng et al. 0.316 0.594 0.576 0.325 0.600 (+13.6%) 0.559

SENSORIUM+

LN Baseline 0.257 0.373 - 0.266 (-30.7%) 0.385 -

CNN Baseline 0.374 0.571 - 0.384 (0%) 0.578 -

#3: Fedyanin et al. 0.397 0.605 - 0.410 (+6.7%) 0.618 -

#2: Deng et al. 0.428 0.643 - 0.437 (+13.8%) 0.650 -

#1: Roggenbach 0.444 0.625 - 0.453 (+18.0%) 0.632 -

Table 1: Performance of the competition winners of both tracks. For the final test
set, the improvement over the CNN baseline model is shown in percentages.

Baseline

To establish baselines, we trained a simple linear-nonlinear model (LN Baseline) as well as a
state-of-the-art convolutional neural network (CNN baseline, Lurz et al., 2021) model for
both competitions. For each baseline, we trained a single model (based on one random seed)
on only the training data from each competition track (for details, see Willeke et al. (2022)).

Results and Participation

During the four month submission period, 26 teams submitted a total of 172 models
(SENSORIUM: 124, SENSORIUM+: 78). To our delight, our state-of-the-art baseline models
were outperformed in both tracks by more than 15% (Table 1). We invited the winning
teams of each track to describe both their successful and fruitless approaches.

SENSORIUM Rank 1: Deng & Guan

Our winning submission in the SENSORIUM and the SENSORIUM+ track only had minor changes
to the SOTA model from the CNN Baseline (Lurz et al., 2021). In the core, we added a
convolutional layer whose kernel size and strides were 4 before the first layer to replace the
scaling operation in the original model. We set the channel number as 32 for the scaling
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layer and increased the filtering numbers of the following 4 layers to 128, 256, 256, and 256.
We did not change the readout and the other hyperparameters.

The key features of our winning solution were: for the SENSORIUM track, 1) we added
the positions of the objects in the images as additional channels to the inputs; 2) we trained
multiple models by using different train-validation splits and averaged the predictions of
these models; 3) for the SENSORIUM+ track, we utilize the pretraining datasets in an ensemble
way. We trained multiple models using different pretraining datasets and then averaged
the predictions. The idea of adding object positions came from the contribution of “pupil
behavior” in the SENSORIUM+ track. We hypothesized that the objects would catch the
attention and their positions would reflect the pupil’s behaviors. The object detection model
was trained on the ILSVRC 2017 dataset. We sampled 250 from each category, converted
them to gray-scale images, and fine-tuned the PyTorch YOLOv5 large model (Jocher et al.,
2022). To label the objects in the competition data, we set the NMS confidence threshold as
0.05 and the IOU threshold as 0.5. The parameter image size was 256. The bounding boxes
were merged into a larger one for each image, and the position was a vector (x, y, width,
height) in the YOLO format. We gave the vector (0.5, 0.5, 1, 1) for the images without
bounding boxes. Finally, there were 6 channels in our SENSORIUM model inputs: the image
normalized by the provided mean and standard deviation, the centered first-channel image,
and the object positions. For SENSORIUM+ , we removed the object positions. Our ablation
studies as well as a description of unsuccessful attempts can be found in the appendix.

SENSORIUM Rank 2: Zhu, Xiao, & Han

Architecture. Our model was based on the CNN Baseline (Lurz et al., 2021) and is
initialized in the same way. We used the shared core approach so that we can pre-train
our model with data from all seven mice. The feature map in first layer looked like the
gradient map of input gray image. Therefore, we use sobel operator to pre-extract the x,
y-axis gradient map of the image, and input it into the model together with the image.
Training. We only used the data provided by the competition. To make full use of them, our
model was trained in a two-stage manner. First, we update all parameters with all data until
the validation score no longer improves. Second, we fine-tuned the core and readout networks
of the target mice with smaller learning rate. We utilize self-distillation to generate more
robust model. Specifically, we utilize the training set data to train a teacher model. Then,
we use teacher model to predict neural responses for all data, and mix new image-response
pairs data with real data. The student model with better performance can be obtained
by being trained with mixed data. Our optimization object is to minimize the joint loss
Loss = Lpoisson + λLcorr, where Lpossion donate Poisson loss, Lcorr = 1− Corr(rav, oav) is
correlate loss, λ is a balance factor. We fix λ = 1000 in all experiments.
Inference. Model ensembling always works at inference time. However, directly ensembling
multiple models will have large redundancy. Therefore, we designed a greedy ensemble
strategy to achieve their best outcome. We trained more than 100 models with different
seeds and number of core convolution layers. All of them were used to form our ensemble
model. We then test each model one by one. If the validation score improves when we block
any model, then this model will be removed. We repeat this process 3 times in total.
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SENSORIUM Rank 3: Azeglio, Ferrari, Neri, & Marre

Our approach entailed building upon the baseline CNN model developed by the organiz-
ers (Lurz et al., 2021). This model comprises of a nonlinear core and a readout layer informed
by biological retinotopy. Our focus was on the front-end modules situated between the input
and the core, specifically two components. The first component was Scattering Networks, as
introduced by Bruna and Mallat (2013), which enforce geometric constraints. These networks
have two notable features: 1) their representations are both translation invariant and robust
to minor deformations, and 2) deeper models can be achieved without the need for additional
parameters as all parameters are fixed. The second component was VOneBlock, developed
by Dapello and collaborators (Dapello et al., 2020), which implements biologically grounded
constraints through a linear-nonlinear Poisson model composed of a Gabor filter bank with
fixed weights, simple and complex cell nonlinearities, and neuronal stochasticity (independent
Gaussian noise).
1, 2, 3... Ensembling! Based on the front-ends previously discussed, we decided to
implement four distinct models: 1) Scattering front-end, baseline CNN core, and Gaussian
readout; 2) VOneBlock front-end, baseline CNN core, and Gaussian readout; 3) Scattering
front-end, Squeeze and Excitation CNN core (as described by Hu et al. (2018)) and Gaussian
readout; and 4) VOneBlock front-end, Squeeze and Excitation CNN core, and Gaussian
readout. Following training and evaluation of the various models, we combined them into an
ensemble model by taking an average of their predictions. The performance of individual
cores can be found in Table 4 in the appendix, along with a discussion of unsuccessful
approaches. Code is available at https://github.com/sazio/sensorium.

SENSORIUM+ Rank 1: A. Roggenbach

In addition to the visual input, neural activity in the visual cortex also depends on the
ongoing neural activity and the behavioral state (Stringer et al., 2019; Arieli et al., 1996;
Syeda et al., 2022). The key addition of the model is to account for these non-sensory effects
based on past neural activity. This is implemented by combining the output of the provided
baseline model with a modulator network which consists of three parts.

First, a ten-dimensional network state of the activity of all neurons in the last known
timestep is extracted. This low-dimensional projection is calculated by passing the neural
activity through a reduced rank auto-regression network for the next time step (to remove
the stimulus information which is not predictive for the next time step) and calculating a
non-negative matrix factorization on this output. These features are linearly combined for
each neuron in the modulator network. Second, the activity history of each neuron is passed
through a filter bank with varying temporal kernels, resulting in five history features per
neuron which are linearly combined. Third, the output of the provided core model is added
to the previously described network state and history output, passed through a ReLU+1
non-linearity and multiplied with a scalar gain. This learned gain regressor is encouraged
to be smooth by reading out the regressor with a half-normal distribution kernel and by
applying a L2-penalty on the temporal difference.

Additionally, the pupil and running regressors for the core module are normalized between
0 and 1 and hyperparameters are slightly adjusted. Ensembling of five models with different
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seeds and train/validation splits further increased the performance. Trained models and code
are available at https://github.com/AdrianRoggenbach/adrian_sensorium.

SENSORIUM+ Rank 2: Deng & Guan

The model is identical to the rank 1 model of SENSORIUM.

SENSORIUM+ Rank 3: Fedyanin, Vishniakov, & Panov

We explored several directions to improve the CNN baseline model with varying success.
Namely, we tried improving the feature extractor (core), simplifying a readout layer, incor-
porating geometric and color data augmentations, self-supervised pretraining, and model
ensembling. In this section, we report validation set results for recording 27204-5-13.

Core Design Improvement. Initially, we discov-
ered that full-resolution images gave worse results
than images that were downscaled by the factor of
0.25. In our investigation, we found that size of the
feature map produced by the core has much more
pronounced effect on the final result than the input
image size. We used this information to design a
deeper encoder based on ResNet (He et al., 2016).
We made the following changes to baseline ResNet-18
model: changing the number of layers from 18 to 9,
changing stride of several layers from 2 to 1, replacing
ReLU with ELU, and adding Dropout layers.

Table 2: Model performance with
altered core module. Performance
reported for a single recording.

SENSORIUM SENSORIUM+

Baseline (Lurz et al., 2021) 0.296 0.378

ResNet-18 (He et al., 2016) 0.236 0.310

ResNet-18, stride=1 0.288 0.284

ResNet-9 0.286 0.379

+ELU 0.300 0.400

+Dropout 0.311 0.409

Ensembling. We trained 20 basic models on both SENSORIUM and SENSORIUM+, using the
different weight initializations, which gave improvement of +2.4% on SENSORIUM and +3.2%
on SENSORIUM+ test sets.

Reflections

Competition results

It is noteworthy that the majority of the winning teams relied heavily on our CNN baseline
model architecture, which remained mostly unchanged. Common successful strategies
included:

• using additional transformations of the input data or temporal dependencies
• pre-training the core on the extra datasets, with fine-tuning on the respective competition

dataset
• creating large model ensembles, together with improvements in model training
• adjustments of the core-architecture

These changes led to substantial gains in model performance, larger than 15% in both
competition tracks. While we consider the improvements in model accuracy with these
strategies as impressive (especially given the limited four month competition period), we look
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forward to modeling approaches that differ more substantially from our previous state-of-the-
art model. On that note, a recent publication by Li et al. (2023) utilized the benchmark
data while describing an entirely novel modeling approach based on the Vision Transformer
(Dosovitskiy et al., 2020).

Lessons learned for future iterations

We hope that this benchmark infrastructure serves as a catalyst for both computational neuro-
scientists and machine learning practitioners to advance the field of neuro-predictive modeling.
Our broader goal is to continue to populate the underlying benchmark infrastructure with
future iterations of dataset releases, new challenges, and additional metrics.

As is the case for benchmarks in general, by converging in this first iteration on a
specific dataset, task, and evaluation metric in order to facilitate constructive comparison,
SENSORIUM 2022 also becomes limited to the scope of those choices. In particular, we opted
for simplicity for the first competition hosted on our platform in order to appeal to a broader
audience across the computational neuroscience and machine learning communities. A priori,
it is not clear how well the best performing models of this competition would transfer to a
broader or more naturalistic setting where stimuli could be out of domain for the models.
Having established our benchmarking framework, possible directions to extend in future
challenges are:

• including cortical layers beyond L2/3 and areas in mouse visual cortex beyond V1
• replacing static image stimuli with dynamic movie stimuli in order to better capture the

temporal evolution of representation and/or simulation
• replacing grayscale stimuli with coverage of UV- and green-sensitive cone photoreceptors
• increasing the number of animals and recordings in the test set beyond one per track to

emphasize generalization across animals and brain states
• moving beyond passive stimulus viewing by incorporating a decision making paradigm
• including different or multiple sensory domains (e.g., auditory, olfactory, somatosensory,

etc) and motor areas
• recording neural responses with different techniques (e.g., electrophysiology) that emphasize

different population sizes and spatiotemporal resolution
• recording neural responses in different animal models, such as non-human primates.
• inverting model architecture to reconstruct visual input from neural responses.

We believe that predictive models have become an important tool for neuroscience
research. In our view, systematically benchmarking and improving these models along with
the development of accurate metrics will be of great benefit to neuroscience as a whole.
We therefore invite the research community to join the benchmarking effort by continuing
to participate in the benchmark, and by contributing new datasets and metrics to our
benchmarking system. We would like to cast the challenge of understanding information
processing in the brain as a joint endeavor in which we engage together as a whole community,
iteratively re-defining what is the state-of-the-art in predicting neural activity and leveraging
models to pursue the question of how the brain makes sense of the world.
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Appendix A. Additional material from the winning teams

SENSORIUM Rank 1: Deng & Guan

The ablation study results on the SENSORIUM model list in Table 3. They are the evaluations
of the 5 datasets for pre-training. All of our modifications contributed to the performance
improvement of the baseline model. We also found some unexpected contributions in these
methods when comparing the ensemble model and the single model. The object positions
significantly improved the performances in the single model, but only had minor effects in
the ensemble model.

Model ablation study

Method Model type Score

Best model ensemble 0.6254±0.0235

Remove object bounding boxes ensemble 0.6234±0.0239

Fewer filters ensemble 0.6068±0.0236

Replace Conv-scale ensemble 0.6007±0.0225

Remove centered image ensemble 0.5964±0.0227

Best model single 0.5895±0.0238

Remove object bounding boxes single 0.5794±0.0241

Fewer filters single 0.5745±0.0242

Replace Conv-scale single 0.5706±0.0248

Remove centered image single 0.5646±0.0225

Table 3: Ablation study for the core used in the SENSORIUM track.

We also tried several other methods to utilize the information of the objects but failed.
These methods included constructing a matrix with the same shape as the image and assigning
0 or 1, or different weights between 0 and 1, for the elements outside and inside the bounding
box. We tried adding this matrix as an additional channel and multiplying it on the original
images to clip the image, but none of these experiments could outperform the baselines. One
limitation of our current model is that it is not an end-to-end solution, but needs a separate
model or extra manual effort to provide the object information. In future work, we may
explore the model’s ability to determine the regions of interest for Gaussian readout sampling
by itself.

SENSORIUM Rank 2: Zhu, Xiao, & Han

Unsuccessful approaches We try to improve the performance via pre-training CNN core.
The first idea come to our mind is training in CLIP (Radford et al., 2021) way. CLIP improves
performance of backbone network by minimizing the similarity of two different modalities.
We consider images and neural responses in mouse visual cortex as two intrinsically related
modalities. Therefore, we feed the features extracted by the core into a fully connected
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layer to match dimensions of neural responses, thereby minimizing their similarity. This
pre-training method enables our model to converge faster, but unfortunately, it does not
bring performance improvements.

Figure 3: Ablation study for different training strategies in the SENSORIUM track.

SENSORIUM Rank 3: Azeglio, Ferrari, Neri, & Marre

Tried and Failed. Because the thin lens model does not take into account the spherical
nature of the eye, it is not applicable to certain transformations of the input image. Thin
lens approximations characterize the geometry of planar image projection, while spherical
transformations map images onto a spherical surface. We incorporated spherical projection
into our processing pipeline by sampling local power spectra across the visual field, and
applying it as a preprocessing step to input images. We relied on the human Modulation
Transfer Function (Navarro et al., 1993) estimated by Pamplona et al. (2013), which we
appropriately scaled for application to mice. Compared with the baseline model, our results
showed improvements in the third significant digit. Further attempts to extend our methods
to SENSORIUM+ were unfruitful, possibly because this dataset lacks information about pupil
position and dilation. Despite the above limitations, we remain interested in exploring the
potential of this approach in future work.

Model Single Trial Correlation Correlation to Average FEVE

Baseline CNN 0.29 0.543 0.482

Scattering CNN 0.31 0.56 0.495

Scattering SE1-CNN 0.31 0.559 0.492

VOneBlock CNN 0.30 0.557 0.487

VOneBlock SE-CNN 0.30 0.556 0.486

Ensemble 0.324 0.587 0.549

Table 4: Performance on the live test set of individual cores in the model ensemble.
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SENSORIUM+ Rank 3: Fedyanin, Vishniakov, & Panov

Simplification of Readout Layer. We investigated how changing the shape of Σ in
the Gaussian readout affects the final result. Our initial thought was that having a 2× 2
covariance matrix for each of the neurons could be redundant. In our experiments in Table
5, we found that the shape of the Σ has almost no effect on the final result, and instead of
having a 2× 2 matrix for each neuron, fixing sigma to a single number seems to be sufficient.

Σ shape n× 2× 2 n× 2× 1 n× 1× 1 2× 2 1× 2 1× 1

# params 31104 15552 7776 4 2 1

Acc 0.311 0.307 0.308 0.305 0.306 0.306

Table 5: Performance as a function of number of readout parameters. Different shapes of Σ
with ResNet-9 encoder, where n represents the number of neurons.

Data augmentation. We tried augmenting the data, but with no further benefit (see Table
6). We guess one needs to match the readout shift for the geometrical augmentation precisely,
but we didn’t validate the hypothesis.

Aug No Aug Blur ColorJitter RRC2 RRC5 HFlip

Acc 0.311 0.305 0.296 0.103 0.167 0.258

Table 6: Model performance for various data augmentations. No Aug: ResNet-9 with
no augmentations. RRC2: RandomResizedCrop with 20% crop lower bound. RRC5:
RandomResizedCrop with 50% crop lower bound. Blur: Gaussian Blur. HFlip: Horizontal
Flip. For each augmentation, the probability of application was set to 20%.

Self-supervised pre-training. For self-supervised pre-training we chose MoCo v2 (Chen
et al., 2020) as our base framework. We perform pre-training only on the Core part of the
network without Readout and Shifter. To do this, we add a pooling and linear layer, which
produces the embedding of size 128. We tried different augmentations, but the pre-trained
model didn’t improve the final results.
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