
FAM: Relative Flatness Aware Minimization

Linara Adilova 1 Amr Abourayya 2 Jianning Li 2 Amin Dada 2 Henning Petzka 3 Jan Egger 2 4 Jens Kleesiek 2

Michael Kamp 2 1 5

Abstract

Flatness of the loss curve around a model at hand
has been shown to empirically correlate with its
generalization ability. Optimizing for flatness has
been proposed as early as 1994 by Hochreiter
and Schmidthuber, and was followed by more
recent successful sharpness-aware optimization
techniques. Their widespread adoption in prac-
tice, though, is dubious because of the lack of
theoretically grounded connection between flat-
ness and generalization, in particular in light of
the reparameterization curse—certain reparame-
terizations of a neural network change most flat-
ness measures but do not change generalization.
Recent theoretical work suggests that a particu-
lar relative flatness measure can be connected to
generalization and solves the reparameterization
curse. In this paper, we derive a regularizer based
on this relative flatness that is easy to compute,
fast, efficient, and works with arbitrary loss func-
tions. It requires computing the Hessian only of a
single layer of the network, which makes it appli-
cable to large neural networks, and with it avoids
an expensive mapping of the loss surface in the
vicinity of the model. In an extensive empiri-
cal evaluation we show that this relative flatness
aware minimization (FAM) improves generaliza-
tion in a multitude of applications and models,
both in finetuning and standard training. We make
the code available at github.

1Ruhr-University Bochum, Bochum, Germany 2Institute for AI
in medicine (IKIM) at University Hospital Essen, Essen, Germany
3Lund University, Lund, Sweden 4Graz University, Graz, Austria
5Monash University, Melbourne, Australia. Correspondence to:
Linara Adilova <linara.adilova@rub.de>.

Proceedings of the 2nd Annual Workshop on Topology, Algebra,
and Geometry in Machine Learning (TAG-ML) at the 40 th In-
ternational Conference on Machine Learning, Honolulu, Hawaii,
USA. 2023. Copyright 2023 by the author(s).

1. Introduction
It has been repeatedly observed that the generalization per-
formance of a model at hand correlates with flatness of the
loss curve, i.e., how much the loss changes under pertur-
bations of the model parameters (Chaudhari et al., 2017;
Keskar et al., 2017; Foret et al., 2021; Zheng et al., 2020;
Sun et al., 2020; Wu et al., 2020a; Liang et al., 2019; Yao
et al., 2019). The large-scale study by Jiang et al. (2020)
finds that such flatness-based measures have a higher cor-
relation with generalization than alternatives like weight
norms, margin-, and optimization-based measures. The gen-
eral conclusion is that flatness-based measures show the
most consistent correlation with generalization.

Naturally, optimizing for flatness promises to obtain better
generalizing models. Hochreiter & Schmidhuber (1994)
proposed a theoretically solid approach to search for large
flat regions by maximizing a box around the model in which
the loss is low. More recently, it was shown that optimizing
a flatness-based objective together with an L2-regularization
performs remarkably well in practice on a variety of datasets
and models (Foret et al., 2021). The theoretical connection
to generalization has been questionable, though, in partic-
ular in light of negative results on reparametrizations of
ReLU neural networks (Dinh et al., 2017b): these repa-
rameterizations change traditional measures of flatness, yet
leave the model function and its generalization unchanged,
making these measures unreliable.

Recent work (Petzka et al., 2021) has shown that general-
ization can be rigorously connected to flatness of the loss
curve, resulting in a relative flatness measure that solves the
reparameterization issue. That is, the generalization gap of
a model f : X → Y depends on properties of the training
set and a measure

κ(wl) :=

d∑
s,s′=1

⟨wl
s,w

l
s′⟩ · Tr(Hs,s′(w

l)) ,

where wl ∈ Rd×m are the weights between a selected layer
l with m neurons and layer l + 1 with d neurons. Further,
⟨wl

s,w
l
s′⟩ = wl

s(w
l
s′)

T is the scalar product of two row
vectors (composed of the weights into neurons with index
s and s′ in layer l + 1), Tr denotes the trace, and Hs,s′ is
the Hessian matrix containing all partial second derivatives

1

https://github.com/kampmichael/RelativeFlatnessAndGeneralization/tree/main/RelativeFlatnessRegularizer(FAM)

FAM: Relative Flatness Aware Minimization

with respect to weights in rows wl
s and wl

s′ :

Hs,s′(w, f(S)) =

[
∂2Eemp(f, S)

∂ws,t∂ws′,t′

]
1≤t,t′≤m

.

Here, Eemp is the empirical risk

Eemp(f, S) =
1

n

n∑
i=1

ℓ(f(xi), yi)

on a dataset

S = {(x1, y1), . . . , (xn, yn)} ⊂ X × Y .

It is demonstrated that, measured on the penultimate
layer, this measure highly correlates with generalization.
Sharpness-aware minimization (SAM) (Foret et al., 2021)
also optimizes for a measure of flatness, but is not repa-
rameterization invariant—even under L2-regularization its
invariance is unclear, in particular wrt. neuronwise repa-
rameterizations. The reparamterization-invariant extension
of SAM, ASAM (Kwon et al., 2021) is not theoretically
connected to generalization.

In this paper, we implement the relative flatness measure of
Petzka et al. (2021) as a regularizer for arbitrary loss func-
tions and derive its gradient for optimization. A remarkable
feature of the relative flatness measure is that it is only ap-
plied to a single layer of a neural network, in comparison to
classical flatness (and sharpness) which takes into account
the entire network. Petzka et al. (2021) have shown that
relative flatness in this layer corresponds to robustness to
noise on the representation produced by this layer. There-
fore, FAM nudges the entire network to produce a robust
representation in the chosen layer. At the same time, it does
not require flatness wrt. the other weights, opening up the
design space for good minima. Since it suffices to compute
relative flatness wrt. a single layer, this regularizer and its
gradient can be computed much more efficiently than any
full-Hessian based flatness measure. Moreover, since the
gradient can be computed directly, no double backpropaga-
tion is required.

In an extensive empirical evaluation we show that the result-
ing relative flatness aware minimization (FAM) improves
the generalization performance of neural networks in a wide
range of applications and network architectures: We im-
prove test accuracy on image classification tasks (CIFAR10,
CIFAR100, SVHN, and FashionMNIST) on ResNET18
(outperforming reported best results for this architecture),
WideResNET28-10, and EffNet-B7 and compare it to SAM
regularizer. In a second group of experiments we reduce
DICE-loss substantially on a medical shape reconstruction
tasks using autoencoders and stabilize the language model
finetuning.

Our contributions are

(i) a novel regularizer (FAM) based on relative flatness that
is easy to implement, flexible, and compatible with any
thrice-differentiable loss function, and

(ii) an extensive empirical evaluation where we show that
FAM regularization improves the generalization perfor-
mance of a wide range of neural networks in several ap-
plications.

2. Related Work
2.0.1. FLATNESS AS GENERALIZATION MEASURE

Flatness of the loss surface around the weight parameters
is intimately connected to the amount of information that
the model with these parameters can be described with, i.e.,
if the region is flat enough and loss does not change, the
parameters can be described with less precision still allow-
ing to have a good performing model. Correspondingly, the
models in the flat region generalize better: Hochreiter &
Schmidhuber (1994) investigated a regularization that leads
to a flatter region in the aforementioned sense. Their results
have shown that indeed such optimization leads to better
performing models. Following up, flatness of a minimizer
was used to explain generalization abilities of differently
trained neural networks (Keskar et al., 2016), where it was
specifically emphasized that calculation of a Hessian for
modern models is prohibitively costly. Originating from the
minimum description length criteria for finding better gener-
alizing learning models, flatness became a pronounced con-
cept in the search for generalization criteria of large neural
networks. The PAC-Bayes generalization bound rediscov-
ers the connection of the Hessian as flatness characteristic
with the generalization gap and the large-scale empirical
evaluation (Jiang et al., 2020) shows that all the generaliza-
tion measures based on flatness (in some definition) highly
correlate with the actual performance of models.

Petzka et al. (2021) considered an analytical approach to
connect flatness with generalization, resulting in the mea-
sure of relative flatness that is used for regularization in
this work. Their approach splits the generalization gap into
two parts termed feature robustness and representativeness.
While representativeness measures how representative the
training data is for its underlying distribution, feature ro-
bustness measures the loss at small perturbations in feature
layers. Under the assumption of representative data, so that
the training data can indeed be used to learn something
about the true underlying distribution, feature robustness
governs the generalization gap. Further, at a local minimum,
feature robustness is exactly described by relative flatness if
target labels are locally constant (i.e., labels do not change
under small perturbations of features). This condition of
locally constant labels is identified as a necessary condition

2

FAM: Relative Flatness Aware Minimization

for connecting flatness to generalization. Finally, the paper
demonstrates how the measure of relative flatness solves the
reparameterization-curse discussed in Dinh et al. (2017a),
rendering itself as a good candidate for an impactful regu-
larizer.

2.0.2. REGULARIZING OPTIMIZATION

Regularization (implicit or explicit) is de facto considered
to be an answer to the good generalization abilities of an
overparametrized model. New elaborate techniques of reg-
ularization allow to beat state-of-the-art results in various
areas. Obviously, flatness can be considered as a good
candidate for a structural regularization, but since the size
of the modern models grew significantly after the work of
Hochreiter & Schmidhuber (1994), straightforward usage
of the initial flatness measures is not feasible in the opti-
mization. Analogously, approaches to flatness stimulation
from averaging over solutions (Izmailov et al., 2018) cannot
be backpropagated and directly used in the optimization
process. The closest research to the flatness optimization is
related to adversarial robustness—adversarial training aims
at keeping the loss of a model on a constant (low) level
in the surrounding of the training samples, which can be
also done in the feature space (Wu et al., 2020b). Several
recent works proposed an optimizer for neural networks
that is approximating the minimax problem of minimizing
loss in the direction of the largest loss in the surrounding
of the model. One of them, sharpness aware minimization
(SAM) (Foret et al., 2021) achieves state-of-the-art results
in multiple tasks, e.g., SVHN, and allows for simple back-
propagation through the proposed loss. However, the exact
proposed m-sharpness does not entirely correspond to the
theoretical motivation proposed by Foret et al. (2021) based
on PAC-Bayes generalization bound, which might mean
that the empirical success of SAM and its variants (Kwon
et al., 2021; Zhuang et al., 2022; Du et al., 2021; Liu et al.,
2022a;b) cannot be explained by theoretical PAC-Bayes
flatness of the solution (Andriushchenko & Flammarion,
2022; Wen et al., 2022). Thus, introducing a theoretically
grounded flatness regularizer can be of an interest for com-
munity.

3. Flatness Aware Minimization
In the following we give a detailed description of the pro-
posed regularization. For a differentiable loss function
ℓ(S,W) and a training set S, the regularized objective is

ℓ(S,W) + λκ(wl) ,

where λ is the regularization coefficient and wl ∈ Rm×d

denote the weights from layer l to l + 1. To optimize this
objective, we compute its gradient (and omit the training set

S in the notation for compactness):

∇W

(
ℓ(W) + λκ(wl)

)
= ∇Wℓ(W) + λ∇Wκ(wl) (1)

Here, ∇Wℓ(W) is the standard gradient of the loss function.
It remains to determine ∇Wκ(wl).

Lemma 1. For a neural network with L layers and weights
W = (w1, . . . ,wL) with wk ∈ ROk×Pk

and a specific
layer l ∈ [L] with weights wl ∈ Rd×m it holds that

∇Wκ(wl) = el

[
2

d∑
s=1

wl
sTr (Hs,i)

]
i∈[d]

+


 d∑
s,s′=1

〈
wl

s, w
l
s′
〉 m∑

t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t


p∈[Pk]

o∈[Ok]


k∈[L]

where el denotes the l-th standard unit vector in RL.

Proof. For this proof, we simply apply product rule on
the gradient of the regularizer, yielding two parts that we
separately simplify.

∇Wκ(wl) = ∇W

d∑
s,s′=1

〈
wl

s, w
l
s′
〉
Tr (Hs,s′)

=

d∑
s,s′=1

(
∇W

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

+

d∑
s,s′=1

〈
wl

s, w
l
s′
〉
∇WTr (Hs,s′)

=


d∑

s,s′=1

(
∂

∂wk

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)︸ ︷︷ ︸
(I)


1≤k≤L

+


d∑

s,s′=1

〈
wl

s, w
l
s′
〉 ∂

∂wk
Tr (Hs,s′)︸ ︷︷ ︸

(II)


1≤k≤L

Let us simplify both parts, starting with (I), which is = 0
for all k ̸= l. For k = l it simplifies to

d∑
s,s′=1

(
∂

∂wl

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=

 d∑
s,s′=1

(
∂

∂wl
i

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)


1≤i≤d

3

FAM: Relative Flatness Aware Minimization

Now for each i ∈ [d] we have that

d∑
s,s′=1

(
∂

∂wl
i

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=2

d∑
s=1

wl
sTr (Hs,i) ,

where we have used the symmetry of Hs,s′ and the commu-
tativity of the inner product in the last step. Therefore, it
holds that

d∑
s,s′=1

(
∂

∂wl

〈
wl

s, w
l
s′
〉)

Tr (Hs,s′)

=

[
2

d∑
s=1

〈
wl

s, w
l
i

〉
Tr (Hs,i)

]
1≤i≤d

.

For the second part (II), let wk ∈ RO×P . Then,
∂

∂wk Tr (Hs,s′) can be expressed as

∂

∂wk
Tr (Hs,s′) =

∂

∂wk
Tr

[
∂2ℓ(W)

∂wl
s,t∂w

l
s′,t′

]
1≤t,t′≤m

=
∂

∂wk

m∑
t=1

∂2ℓ(W)

∂wl
s,t∂w

l
s′,t

=

[
m∑
t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t

]
1≤p≤P
1≤o≤O

Putting (I) and (II) together finally yields

∇Wκ(wl) = el

[
2

d∑
s=1

〈
wl

s, w
l
i

〉
Tr (Hs,i)

]
1≤i≤d

+

 d∑
s,s′=1

〈
wl

s, w
l
s′
〉 m∑

t=1

∂3ℓ(W)

∂wk
o,p∂w

l
s,t∂w

l
s′,t


1≤k≤L

1≤p≤Pk

1≤o≤Ok

where el denotes the l-th standard unit vector in RL.

3.1. Computational Complexity

Computing the FAM regularizer requires computing the
Hessian wrt. the weights wl ∈ Rd×m of the feature layer,
which has computational complexity in O

(
d2m2

)
. From

this, the individual Hs,s′ can be selected. The inner product
computation has complexity O (dm), so that the overall
complexity of computing the regularizer is in O

(
d2m2

)
.

In order to train with the FAM regularizer, we have to com-
pute the gradient of the regularized loss wrt. the weights
W of the network. Computing the gradient of the loss

function in equation 1 has complexity O (|W|), where |W|
denotes the number of parameters in W. The computation
of ∇Wκ(wl) is decomposed into the sum of two parts in
Lemma 1. The first part has complexity O

(
d2m2

)
for com-

puting the Hessian and the inner product, as before. All
parts in the sum, however, have already been computed
when computing κ(wl). The second part requires comput-
ing the derivative of the Hessians Hs,s′ wrt. each parameter
in W. Since we only need to compute the derivative wrt. the
trace, i.e., the sum of diagonal elements, the complexity is
in O (W). Therefore, the overall complexity of computing
the FAM regularizer is in

O
(
|W|+ d2m2 + |W|

)
= O

(
|W|+ d2m2

)
.

That is, the additional computational costs for using the
FAM regularizer is in O

(
d2m2

)
per iteration, i.e., in the

squared number of weights of the selected feature layer.

In practice, computational time currently can exceed the
vanila and SAM training time on 20%− 40%. We also ob-
serve that GPU utilization for our implementation is still not
optimal, which possibly can lead to delays in computation.

3.2. A Simplified Relative Flatness Measure

A more computationally efficient approximation to relative
flatness, proposed by Petzka et al. (2019), does not iterate
over individual neurons, but computes the weight norm of
layer l and the trace of the Hessian wrt. layer l:

κ̂(wl) = ∥wl∥22Tr (H) .

Computing this measure not only avoids the loop over all
pairs of neurons s, s′ ∈ [d], but also allows us to approx-
imate the trace of the Hessian, e.g., with Hutchinson’s
method (Yao et al., 2020). On top of the computational
efficiency, the trace approximation reduces the memory
footprint, enabling us to employ FAM regularization to even
larger layers—including large convolutional layers.

We provide details on the implementation of Hessian com-
putation and Hessian trace approximation in Appendix A.

4. Experiments
In the following section we describe the empirical evaluation
of the proposed flatness regularization. We compare the
performance of FAM to the baseline without flatness related
optimization and to SAM. We use the SAM implementation
for pytorch 1 with the parameters of the base optimizer
recommended by the authors. It should be mentioned here
that no matter of its popularity there is no official pytorch
implementation of the SAM optimizer, which results in
multitude of different implementations for each of the paper

1https://github.com/davda54/sam

4

https://github.com/davda54/sam

FAM: Relative Flatness Aware Minimization

using the approach. Moreover, there are multiple tricks that
should be considered when using SAM, e.g., one should
take care of normalization layers and check on which of the
two optimization steps they are active or non-active. We run
SAM for the same amount of epochs that FAM and simple
optimization, no matter that in the original work the authors
doubled the amount of epochs for non-SAM approaches
due to the doubled run time, thus giving SAM an advantage
in our experiments. Reported result for one of the pytorch
implementations of SAM on CIFAR10 with ResNet20 is
93.5% test accuracy 2. This is the closest reported result to
our setup and it should be expected that ResNet18 shows
worse result than ResNet20. Unfortunately, the results for
CIFAR100, SVHN, and FashionMNIST are not reported in
the implementations of SAM for pytorch.

We use the FAM regularizer computed on the penultimate
layer (or bottleneck layer), since it was demonstrated to be
predictive of generalization in Petzka et al. (2021). Inves-
tigating the impact of the regularizer on other layers is left
for future work.

Note on other flat-minima optimizers:
There are several extensions of SAM (Kwon et al., 2021;
Zhuang et al., 2022; Du et al., 2021; Liu et al., 2022a;b) and
other flat-minima optimizers, e.g., (Chaudhari et al., 2019;
Sankar et al., 2021). We follow Kaddour et al. (2022) and
do not consider them in this work due to their computational
cost and/or lack of performance gains compared to original
SAM.

4.1. Image Classification

Standard datasets for image classification are the baseline
experiments that confirm the effectiveness of the proposed
regularization. In particular, we worked with CIFAR10 and
CIFAR100 (Krizhevsky & Hinton, 2009), SVHN (Netzer
et al., 2011), and FashionMNIST (Xiao et al., 2017). We
compare our flatness regularized training to the state-of-the-
art flatness regularizer SAM. For this group of experiments
we used the setups from the original SAM paper in order
to compare to its performance. Nevertheless, due to the
different implementation, the exact numbers reported seem
to be unachievable—while we still see the improvement
from using SAM optimizer, both no regularization baseline
and SAM baseline are lower than in the original paper. For
all experiments in this group we use the original neuronwise
flatness measure for regularization without approximations
introduced in Sec. 3.2.

4.1.1. CIFAR10

We have chosen ResNet18 as an architecture to solve CI-
FAR10. While ResNet18 is not the state of the art for

2https://github.com/moskomule/sam.pytorch

this problem, it allows to confirm the hypothesis about per-
formance of our method. The reported accuracy of this
architecture on CIFAR10 is 95.55%. In our experiments we
compare this baseline, that is not using flatness-related opti-
mizations to SAM approach and our proposed regularization.
Standard augmentation strategy is applied, including ran-
domized cropping and horizontal flipping and normalization
of the images. For baseline training we use the following
parameters of optimization: SGD with batch size 64, weight
decay of 5e−4, momentum 0.9, and cosine annealing learn-
ing rate starting at 0.03 during 250 epochs. For FAM the
optimizer parameters are kept same and λ selected to be 0.1.
Finally SAM was ran with SGD with a scheduler learning
rate 0.01 and momentum 0.9.

We report the results achieved in Table 1 in the row corre-
sponding to CIFAR10.

4.1.2. CIFAR100

For solving this dataset we follow the approach taken by
Foret et al. (2021). We use an EfficientNet (Tan & Le, 2019)
(EffNet-B7) that is pretrained on ImageNet and then fine-
tune it for CIFAR100. In order to obtain a good finetuning
result the inputs should be at least in the ImageNet format
(224×224) which significantly slows down the training. For
standard training and FAM regularized training, the Adam
optimizer had consistently the highest performance (com-
pared to SGD and rmsprop) with a batch size of B = 32.
The architecture achieves a baseline accuracy of 84.6 with-
out regularization, and SAM achieves an accuracy of 85.8.
The FAM regularizer improves the accuracy to 87.15. Note,
that different from other setups, where both SAM and FAM
were used together with the same hyperparameters as the
vanila training, here we optimized parameters separately to
avoid overfitting.

We report the results achieved in Table 1 in the row corre-
sponding to CIFAR100.

4.1.3. SVHN AND FASHIONMNIST

Both SVHN and FashionMNIST problems are reported to
reach state-of-the-art performance with SAM optimization
using WideResNet28-10 architecture (Zagoruyko & Ko-
modakis, 2016). It should be noted that SAM achieves
the reported state-of-the-art result on these datasets when
combined together with shake-shake regularization tech-
nique (Gastaldi, 2017), which we omitted.

The results reported by Foret et al. (2021) for SVHN are
obtained using the training dataset that includes extra data
(overall ∼ 600000 images). Due to the time constraints we
report results of training using only main training dataset
(∼ 70000 images). We apply AutoAugment SVHN pol-
icy (Cubuk et al., 2018), random cropping and horisontal

5

https://github.com/moskomule/sam.pytorch

FAM: Relative Flatness Aware Minimization

flip, and cutout (DeVries & Taylor, 2017) with 1 hole of
length 16. Our training parameters are 100 epochs, learning
rate of 0.1 with a multistep decay by 0.2 after 0.3, 0.6 and
0.8 of the training epochs, batch size of 128, optimizer is
Nesterov SGD with momentum of 0.9 and weight decay of
5e− 4. For FAM we use λ = 0.1.

We modify FashionMNIST to have three channels, resize to
32× 32, apply cutout with 1 hole of length 16, and normal-
ize by 0.5. The training of FashionMNIST is very unstable
and has oscillating learning curves with and without regular-
ization. The used batch size is 64, learning rate is 0.01 with
the same learning rate scheduler as for SVHN, the training
is done for 200 epochs. Weight decay and momentum are
set as in SVHN training.

Finally, in order to apply more computationally expensive
neuronwise flatness regularization, we add one more penul-
timate fully-connected layer in the architecture of WideRes-
Net with 64 neurons. Our experiments reveal that this addi-
tional layer does not change the outcome of the training in
case of non-flatness regularized run.

With the described setup we did not achieve the accuracy
reported in the original paper, that are 0.99± 0.01 error for
SAM on SVHN with auto-augmentation and 1.14 ± 0.04
for baseline training on SVHN with auto-augmentation;
3.61± 0.06 error for SAM on FashionMNIST with cutout
and 3.86 ± 0.14 for baseline training on FashionMNIST
with cutout. We report the results achieved in Table 1 in the
rows corresponding to SVHN and FashionMNIST.

4.2. Medical Shape Reconstruction

3D shape reconstruction has important applications in both
computer vision (Smith et al., 2020; Chibane et al., 2020)
and medical imaging (Amiranashvili et al., 2022; Li et al.,
2021). Machine learning methods for shape reconstruction
have become increasingly popular in recent years, however,
often suffer from bad generalization, i.e., a neural network
cannot generalize properly to shape variations that are not
seen during training. In this experiment, we demonstrate
that FAM regularizer can effectively mitigate the generaliza-
tion problem in a skull shape reconstruction task, where a
neural network learns to reconstruct anatomically plausible
skulls from defective ones (Li et al., 2021; Kodym et al.,
2020). Here, due to the large size of the layers, we used
the approximated layerwise flatness measure for FAM opti-
mization. We do not include SAM baseline here, while the
general question here is whether flatness can aid in general-
ization for the current task.

4.2.1. DATASET

The skull dataset used in this experiment contains 100 binary
skull images for training and another 100 for evaluation. The

surface of a skull shape is constituted by the non-zero voxels
(i.e., the ‘1’s), and we create defective skulls by removing a
portion of such voxels from each image. For the evaluation
set, two defects are created for each image - one is similar to
the defects in the training set while the other is significantly
different in terms of its shape and size, as well as its position
on the skull surface. The dimension of the skull images is
643.

4.2.2. NETWORK ARCHITECTURE AND EXPERIMENTAL
SETUP

The neural network (∼ 1M trainable parameters) follows
a standard auto-encoder architecture, in which five two-
strided convolutional and deconvolutional layers are used for
downsampling and upsampling respectively. The output of
the last convolutional layer is flattened and linearly mapped
to an eight-dimensional latent code, which is then decoded
by another linear layer before being passed on to the first
deconvolution. The network takes as input a defective skull
and learns to reconstruct its defectless counterpart.

As a baseline we train the network using a Dice loss (Mil-
letari et al., 2016), and a Dice loss combined with the FAM
regularizer , which is applied to the second linear layer (of
size 64 × 8) of the network. We experimented with dif-
ferent coefficients λ that weigh the regularizer against the
Dice loss. All experiments use the Adam optimizer with
a constant learning rate of 10−4. The trained models are
evaluated on the two aforementioned evaluation sets, using
Dice similarity coefficient (DSC), Hausdorff distance (HD),
and 95 percentile Hausdorff distance (HD95). DSC is the
main metric in practice for skull shape reconstruction (Li
et al., 2021), measuring how well two shapes overlap (the
higher the better3), while the distance measures i.e., HD and
HD95 are supplementary.

4.2.3. RESULTS AND DISCUSSION

Figure 1 shows the Dice loss curves under different weight-
ing coefficients λ. Table 2 shows the quantitative results
on the two evaluation sets, and Figure 2 shows the distri-
bution of the evaluation results for λ = 0.02, 0.002, 0.0006
and the baseline. The DSC (100), HD (100) and HD95
(100) columns in Table 2 show the evaluation results at an
intermediate training checkpoint (epoch 100).

These results reveal several interesting findings: (i) At
both the intermediate (epoch=100) and end checkpoint
(epoch=200), the training loss of the baseline network is
clearly lower than that of the regularized networks (Fig-
ure 1), whereas its test accuracy is obviously worse than
its regularized counterparts in terms of all metrics (Table

3The Dice loss (Figure 1), on the contrary, is usually imple-
mented as 1−DSC, which we minimize during training.

6

FAM: Relative Flatness Aware Minimization

Table 1. Results for Image Classification Tasks

Baseline SAM FAM
CIFAR10 95.53± 0.0001 95.61± 0.001 95.62± 0.002
CIFAR100 84.48± 0.12 85.72± 0.08 87.2± 0.05
SVHN 97.72± 0.02 97.84± 0.05 97.81± 0.07
FashionMNIST 94.57± 0.28 94.99± 0.02 94.6± 0.04

Figure 1. Curves of the Dice loss (y axis) with respect to training
epochs (x axis), under different λ. Note that the red (λ = 0.1) and
purple (λ = 0.7) lines overlap in this plot.

2); (ii) The baseline network achieves higher test accu-
racy (DSC) at the intermediate checkpoint than at the end
checkpoint, which is a clear indicator of overfitting, while
the test accuracy of a properly regularized network (e.g.,
λ = 0.02, 0.002) on either evaluation set 1 or evaluation
set 2 keeps improving as training progresses; (iii) Even a
very loose regularization (e.g., λ = 0.0006) can prevent the
Dice loss from decreasing until overfitting, as opposed to the
baseline network (Figure 1); (iv) It is also worth mentioning
that the scores on both evaluation sets stay essentially un-
changed for the FAM-regularized network (e.g., λ = 0.02),
indicating that moderately altering the defects (e.g., defect
shape, size, position) does not affect the network’s perfor-
mance, while in contrast, the baseline network performs
worse on evaluation set 2 than on evaluation set 1 in terms
of all metrics.

Choosing a proper λ is important for a desired reconstruc-
tive performance. A large λ enforces a flat(ter) curve of the
loss with respect to the weights of the second linear layer,
which is responsible for decoding the latent codes. However,
over-regularization (in our case λ = 0.1, 0.7) can lead to un-
varied shape reconstructions by the decoder, since, in order
for the loss to remain unchanged, the second linear layer
has to give the same decoding for different latent codes 4.

4Different skull shapes are expected to be encoded differently
through the downsampling path of the auto-encoder.

Figure 2. Boxplots of DSC, HD and HD95 given different λ (x
axis) on the two evaluation sets.

Therefore, the quantitative results for λ = 0.1, 0.7 in Table
2 should be interpreted with care, i.e., the over-regularized
networks ‘find’ a universal reconstruction that somehow
matches well with different evaluation cases (hence achiev-
ing relatively high DSC), which nevertheless defies the rule
of case-specific reconstruction.

4.3. Transformers

Since the introduction of transformers (Vaswani et al., 2017),
large language models have revolutionized natural language
processing by consistently pushing the state-of-the-art in
various benchmark tasks (Devlin et al., 2019; Clark et al.,
2020; He et al., 2021). However, a recurring challenge in
the fine-tuning process of these models is the occurrence
of instabilities (Hua et al., 2021; Mosbach et al., 2021).
These instabilities can negatively impact the performance
and reliability of the fine-tuned models. In the following
section we demonstrate how the application of FAM can
improve the downstream performance of transformers. We
do not compare with SAM both for the reasons stated in
the previous set of the experiments and also due to impossi-
bility to integrate additional gradient iteration into the used
implementation of BERT.

We fine-tune BERTBASE (110 million parameters) (Devlin
et al., 2019) to the Recognizing Textual Entailment (RTE)

7

FAM: Relative Flatness Aware Minimization

Table 2. Quantitative Results for Skull Shape Reconstruction Given Different λ

methods evaluation set 1 evaluation set 2
DSC DSC (100) HD HD (100) HD95 HD95 (100) DSC DSC (100) HD HD (100) HD95 HD95 (100)

baseline 0.6464 0.6569 7.0130 7.1787 2.0635 2.0422 0.6413 0.6489 7.1421 7.1939 2.0924 2.1371
FAM, λ = 0.0006 0.7155 0.6817 6.5531 6.7772 1.8202 1.8281 0.7156 0.6762 6.5542 7.0115 1.8178 1.9088
FAM, λ = 0.002 0.7173 0.7175 6.4813 6.5478 1.8175 1.8281 0.7175 0.7176 6.4813 6.5478 1.8148 1.8281
FAM, λ = 0.02 0.7176 0.7168 6.5221 6.5271 1.8210 1.8344 0.7176 0.7168 6.5221 6.5271 1.8210 1.8344
FAM, λ = 0.1 0.7176 0.7169 6.5085 6.5222 1.8210 1.8345 0.7176 0.7169 6.5085 6.5222 1.8210 1.8345
FAM, λ = 0.7 0.7177 0.7169 6.5202 6.5389 1.8210 1.8359 0.7177 0.7169 6.5202 6.5389 1.8210 1.8359

Figure 3. Development loss of the RTE training.

dataset (Dagan et al., 2006) from the General Language
Understanding Evaluation benchmark (Wang et al., 2018).
The dataset consists of sentence pairs with binary labels that
indicate whether the meaning of one sentence is entailed
from its counterpart. In the past, this dataset was found to
be particularly prone to instabilities (Phang et al., 2018).

Table 3. Results for the fine-tuning on the RTE validation set.

Baseline FAM
Accuracy 0.67364 0.6982
Standard Deviation 0.018 0.0154
Max 0.6931 0.7184

In stark contrast to other experiments, we chose a much
larger weighting coefficient λ = 3e6, as lower values had
no influence on the training. Our training setup involved
a learning rate of λ = 2e−5, a batch size of 32, and a
maximum sequence length of 128 for 20 epochs. We re-
port the average development set accuracy across five runs
with different random seeds. Table 3 presents the results
of this experiment. We observed a progressive increase in
validation loss throughout the training when the regular-
izer was not employed, indicating severe overfitting. While
this phenomenon persisted with FAM, its effect was less
pronounced, as depicted in Figure 3.

5. Discussion and Conclusion
We have shown that regularization based on the theoretically
sound relative flatness measure improves generalization in
a wide range of applications and model architectures, out-
performing standard training and sometimes SAM.

In our experiments (except for the skull reconstruction ex-
periments, due to the specific architecture of the network),
we have chosen the penultimate layer to compute relative
flatness, as suggested by Petzka et al. (2021). Their theory
ensures that achieving flatness in any one layer suffices to
reach good generalization. We leave a comprehensive em-
pirical study of the impact of the choice of layer (or even
using multiple layers) on model quality for future work. It
can be also investigated whether flatness regularized on one
of the layers also changes the flatness of other layers or not.

Relative flatness is connected to generalization under the
assumption of locally constant labels in the representation.
This assumption holds already for the input space in many
applications (e.g., image classification, and NLP)—the def-
inition of adversarial examples hinges on this assumption.
It implies, however, that flatness is not connected to gener-
alization for tasks where the assumption is violated. The
recent study by Kaddour et al. (2022) supports this empiri-
cally by showing that regularizing wrt. flatness is not always
beneficial. For future work it would be interesting to ver-
ify this study with FAM, testing the assumption of locally
constant labels, and expanding it to further tasks.

While current implementation of the FAM regularizer al-
lows for achieving better performance, the performance
with respect to the space consumption can be improved, as
well as computational time. This currently also limits the
applicability to convolutional layers, since treating them like
a standard layer would increase the number of parameters
greatly. This can be overcome by determining the correct
structure of the FAM regularizer for convolutional layers
and is an interesting direction for future work.

8

FAM: Relative Flatness Aware Minimization

References
Amiranashvili, T., Lüdke, D., Li, H. B., Menze, B., and Zachow,

S. Learning shape reconstruction from sparse measurements
with neural implicit functions. In International Conference on
Medical Imaging with Deep Learning, pp. 22–34. PMLR, 2022.
6

Andriushchenko, M. and Flammarion, N. Towards understanding
sharpness-aware minimization. In International Conference on
Machine Learning, pp. 639–668. PMLR, 2022. 3

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-
dassi, C., Borgs, C., Chayes, J. T., Sagun, L., and Zecchina,
R. Entropy-sgd: Biasing gradient descent into wide valleys.
In Proceedings of the International Conference of Learning
Representations, 2017. 1

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi,
C., Borgs, C., Chayes, J., Sagun, L., and Zecchina, R. Entropy-
sgd: Biasing gradient descent into wide valleys. Journal of Sta-
tistical Mechanics: Theory and Experiment, 2019(12):124018,
2019. 5

Chibane, J., Alldieck, T., and Pons-Moll, G. Implicit functions in
feature space for 3d shape reconstruction and completion. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6970–6981, 2020. 6

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. ELECTRA:
Pre-training text encoders as discriminators rather than genera-
tors. In International Conference on Learning Representations,
2020. 7

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le, Q. V.
Autoaugment: Learning augmentation policies from data. arXiv
preprint arXiv:1805.09501, 2018. 5

Dagan, I., Glickman, O., and Magnini, B. The pascal recognising
textual entailment challenge. In Quiñonero-Candela, J., Dagan,
I., Magnini, B., and d’Alché Buc, F. (eds.), Machine Learning
Challenges. Evaluating Predictive Uncertainty, Visual Object
Classification, and Recognising Tectual Entailment, pp. 177–
190, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. 8

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. 7

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017. 6

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp minima
can generalize for deep nets. In International Conference on
Machine Learning, pp. 1019–1028. PMLR, 2017a. 3

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. Sharp minima
can generalize for deep nets. In Proceedings of the 34th In-
ternational Conference on Machine Learning, volume 70, pp.
1019–1028. JMLR. org, 2017b. 1

Du, J., Yan, H., Feng, J., Zhou, J. T., Zhen, L., Goh, R. S. M., and
Tan, V. Efficient sharpness-aware minimization for improved
training of neural networks. In International Conference on
Learning Representations, 2021. 3, 5

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. Sharpness-
aware minimization for efficiently improving generalization.
In Proceedings of the International Conference on Learning
Representations, 2021. 1, 2, 3, 5

Gastaldi, X. Shake-shake regularization. arXiv preprint
arXiv:1705.07485, 2017. 5

He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-enhanced
bert with disentangled attention. In International Conference
on Learning Representations, 2021. 7

Hochreiter, S. and Schmidhuber, J. Simplifying neural nets by
discovering flat minima. In Advances in neural information
processing systems. Curran Associates, Inc., 1994. 1, 2, 3

Hua, H., Li, X., Dou, D., Xu, C., and Luo, J. Noise stability
regularization for improving bert fine-tuning. In Proceedings
of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, pp. 3229–3241, 2021. 7

Hutchinson, M. F. A stochastic estimator of the trace of the influ-
ence matrix for laplacian smoothing splines. Communications
in Statistics-Simulation and Computation, 19(2):433–450, 1990.
11

Izmailov, P., Wilson, A., Podoprikhin, D., Vetrov, D., and Garipov,
T. Averaging weights leads to wider optima and better gen-
eralization. In 34th Conference on Uncertainty in Artificial
Intelligence 2018, UAI 2018, pp. 876–885, 2018. 3

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., and Bengio, S.
Fantastic generalization measures and where to find them. In
International Conference on Learning Representations, 2020.
1, 2

Kaddour, J., Liu, L., Silva, R., and Kusner, M. When do flat
minima optimizers work? In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2022. 5, 8

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and
Tang, P. T. P. On large-batch training for deep learning: Gener-
alization gap and sharp minima. In Proceedings of International
Conference on Learning Representations, 2016. 2

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and
Tang, P. T. P. On large-batch training for deep learning: Gener-
alization gap and sharp minima. In Proceedings of the Interna-
tional Conference on Learning Representatiosn, 2017. 1

Kodym, O., Španěl, M., and Herout, A. Skull shape reconstruction
using cascaded convolutional networks. Computers in Biology
and Medicine, 123:103886, 2020. 6

Krizhevsky, A. and Hinton, G. Learning multiple layers of features
from tiny images. Technical report, University of Toronto, 2009.
5

Kwon, J., Kim, J., Park, H., and Choi, I. K. Asam: Adaptive
sharpness-aware minimization for scale-invariant learning of
deep neural networks. In International Conference on Machine
Learning, pp. 5905–5914. PMLR, 2021. 2, 3, 5

9

FAM: Relative Flatness Aware Minimization

Li, J., Pimentel, P., Szengel, A., Ehlke, M., Lamecker, H., Za-
chow, S., Estacio, L., Doenitz, C., Ramm, H., Shi, H., et al.
Autoimplant 2020-first miccai challenge on automatic cranial
implant design. IEEE transactions on medical imaging, 40(9):
2329–2342, 2021. 6

Liang, T., Poggio, T., Rakhlin, A., and Stokes, J. Fisher-rao metric,
geometry, and complexity of neural networks. In International
Conference on Artificial Intelligence and Statistics (AISTATS),
2019. 1

Liu, Y., Mai, S., Chen, X., Hsieh, C.-J., and You, Y. Towards
efficient and scalable sharpness-aware minimization. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12360–12370, 2022a. 3, 5

Liu, Y., Mai, S., Cheng, M., Chen, X., Hsieh, C.-J., and You, Y.
Random sharpness-aware minimization. Advances in neural
information processing systems, 2022b. 3, 5

Milletari, F., Navab, N., and Ahmadi, S.-A. V-net: Fully convolu-
tional neural networks for volumetric medical image segmen-
tation. In 2016 fourth international conference on 3D vision
(3DV), pp. 565–571. Ieee, 2016. 6

Mosbach, M., Andriushchenko, M., and Klakow, D. On the sta-
bility of fine-tuning {bert}: Misconceptions, explanations, and
strong baselines. In International Conference on Learning Rep-
resentations, 2021. 7

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng,
A. Reading digits in natural images with unsupervised fea-
ture learning. In Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2011. 5

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. 11

Petzka, H., Adilova, L., Kamp, M., and Sminchisescu, C. A
reparameterization-invariant flatness measure for deep neural
networks. In Science meets Engineering of Deep Learning 2019.
Neural Information Processing Systems (NIPS), 2019. 4

Petzka, H., Kamp, M., Adilova, L., Sminchisescu, C., and Boley,
M. Relative flatness and generalization. Advances in Neural
Information Processing Systems, 34:18420–18432, 2021. 1, 2,
5, 8

Phang, J., Févry, T., and Bowman, S. R. Sentence encoders
on stilts: Supplementary training on intermediate labeled-data
tasks. arXiv preprint arXiv:1811.01088, 2018. 8

Sankar, A. R., Khasbage, Y., Vigneswaran, R., and Balasubra-
manian, V. N. A deeper look at the hessian eigenspectrum of
deep neural networks and its applications to regularization. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 9481–9488, 2021. 5

Smith, E., Calandra, R., Romero, A., Gkioxari, G., Meger, D.,
Malik, J., and Drozdzal, M. 3d shape reconstruction from
vision and touch. Advances in Neural Information Processing
Systems, 33:14193–14206, 2020. 6

Sun, X., Zhang, Z., Ren, X., Luo, R., and Li, L. Exploring the
vulnerability of deep neural networks: A study of parameter
corruption. arXiv preprint arXiv:2006.05620, 2020. 1

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International conference on
machine learning, pp. 6105–6114. PMLR, 2019. 5

Tropp, J. A. User-friendly tail bounds for sums of random matrices.
Foundations of computational mathematics, 12:389–434, 2012.
11

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Attention is
all you need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 7

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman,
S. GLUE: A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. 8

Wen, K., Ma, T., and Li, Z. How does sharpness-aware minimiza-
tion minimizes sharpness? In OPT 2022: Optimization for
Machine Learning workshop at NeurIPS, 2022. 3

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight perturbation
helps robust generalization. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 2958–2969. Curran
Associates, Inc., 2020a. 1

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight perturbation
helps robust generalization. Advances in Neural Information
Processing Systems, 33:2958–2969, 2020b. 3

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017. 5

Yao, Z., Gholami, A., Lei, Q., Keutzer, K., and Mahoney, M. W.
Hessian-based analysis of large batch training and robustness
to adversaries. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. 1

Yao, Z., Gholami, A., Keutzer, K., and Mahoney, M. W. Pyhessian:
Neural networks through the lens of the hessian. In 2020 IEEE
international conference on big data (Big data), pp. 581–590.
IEEE, 2020. 4

Zagoruyko, S. and Komodakis, N. Wide residual networks. arXiv
preprint arXiv:1605.07146, 2016. 5

Zheng, Y., Zhang, R., and Mao, Y. Regularizing neural net-
works via adversarial model perturbation. arXiv preprint
arXiv:2010.04925, 2020. 1

Zhuang, J., Gong, B., Yuan, L., Cui, Y., Adam, H., Dvornek,
N. C., s Duncan, J., Liu, T., et al. Surrogate gap minimization
improves sharpness-aware training. In International Conference
on Learning Representations, 2022. 3, 5

10

FAM: Relative Flatness Aware Minimization

16*16 32*32 64*64 128*128 256*256
Layer Size (Input*Output)

10 2

10 1

100

101

Co
m

pu
tio

na
l t

im
e

(s
ec

)

Non_Vectorized
Vectorized
Functorch

Figure 4. Comparing non-vectorized and vectorized autograd, as well as functorch in terms of the computation time for computing the full
Hessian of a single neural network layer for different layer sizes.

A. Hessian Computation and Approximation
In practice, the training time for FAM regularization depends on the method used for calculating the Hessian, respectively
approximating its trace in case of the simplified relative flatness measure. In the following, we discuss several practical
approaches in pytorch (Paszke et al., 2019).

A.1. Computation of the Full Hessian

Computing the Hessian, i.e., the second derivatives wrt. a neural network’s weights, can straight-forwardly be done in
pytorch using its autograd library. This method, however, is not optimized for runtime. The torch.autograd library also
provides an experimental vectorized version of the Hessian computation. It uses a vectorization map as the backend
to vectorize calls to autograd.grad, which means that it only invokes it once instead of once per row, making it more
computationally efficient. We compare the non-vectorized to the vectorized variant of torch.autograd. Recently, the pytorch
library functorch (in beta) provided a fast Hessian computation method build on top of the autograd library and also using a
vectorization map. Additionally, it uses XLA, an optimized compiler for machine learning that accelerates linear algebra
computations. This further accelerates Hessian computation, but does not yet work with all neural networks—in particular,
the functorch Hessian computation requires batch normalization layers to not track the running statistics of training data.
In Figure 4 we show that using the vectorized approach substantially reduces computation time by up to three orders of
magnitude. For larger Hessians, the functorch library further improves runtime over the vectorized autograd method by an
order of magnitude. All experiments are performed on an NVIDIA RTX A6000 GPU.

A.2. Computation of the Trace of the Hessian

When the layers are high-dimensional, forming the full Hessian can be memory and computationally expensive. Since FAM
requires the calculation of the trace of a Hessian, we apply the trick of using the Hutchinson’s method (Hutchinson, 1990) to
approximate the trace of the Hessian. The version of Hutchinson’s trick we use is described as follows:

Let A ∈ RD×D and v ∈ RD be a random vector such that E
[
vvT

]
= I . Then,

Tr(A) = E
[
vTAv

]
=

1

V

V∑
i=1

vTi Avi.

where v is generated using Rademacher distribution and V is the number of Monte Carlo samples. The intuition behind
this method is that by averaging over many random vectors, we can obtain an estimate of the trace of the matrix. It
has been proved that the trace estimator converges with the smallest variance to the trace if we use Rademacher random
numbers (Tropp, 2012). This method is in general very useful when we need to compute the trace of a function of a matrix.

11

FAM: Relative Flatness Aware Minimization

0 50 100 150 200 250 300
Trace values

10 2

10 1

100

Co
m

pu
tio

na
l t

im
e(

se
c)

16*16

32*32
64*64

128*128

16*16
32*32

64*64

128*128 512*512

1024*1024

Functorch
Hutchinson

Figure 5. Computational time of the trace of the hessian for different layer sizes using Functorch and Hutchinson’s method

Computational time for the direct functorch computation of the Hessian trace and for the Hutchinson’s trick is shown in
Figure 5.

12

