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Abstract

Homology-based invariants can be used to charac-
terize the geometry of datasets and thereby gain
some understanding of the processes generating
those datasets. In this work we investigate how
the geometry of a dataset changes when it is sub-
sampled in various ways. In our framework the
dataset serves as a reference object; we then con-
sider different points in the ambient space and en-
dow them with a geometry defined in relation to
the reference object, for instance by subsampling
the dataset proportionally to the distance between
its elements and the point under consideration.
We illustrate how this process can be used to ex-
tract rich geometrical information, allowing for
example to classify points coming from different
data distributions.

1. Objective
Topological data analysis (TDA) is about extracting topolog-
ical signatures from samples in a dataset, for instance with
the goal of feeding them as features to machine learning
algorithms. For example, consider a dataset of greyscale
images such as MNIST, which can be analysed as follows.

Via individual approach, where signatures are extracted for
each image separately, for instance by regarding them as
the grid of pixels that constitutes each image as a simplicial
complex on which a real-valued function is defined based
on the pixel intensity. Applying persistent homology to the
super-level sets of this function, leads to features encoding
some geometrical information about each image, such as
the presence of a hole for a digit “0”.
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Global approach focuses on the whole dataset, seen as a
point cloud, with the aim to reveal global information about
the distribution from which the dataset was drawn.

Relative approach, which we introduce in this article, fo-
cuses, as in the global approach, on the point cloud repre-
senting a dataset (or more generally, any reference object)
but with a goal, similar to the individual approach, to reveal
information about a particular sample. The sample defines
a probability distribution on the dataset (e.g. by attaching
higher probabilities to points near the sample), subsets of
the dataset are then drawn according to the probability, from
which topological signatures are extracted and averaged.
The result is a description of the geometry of the sample,
relative to the dataset, which can further be used to explore
the geometrical variation of a dataset or be used in machine
learning and statistical analysis.

This note is about illustrating a pipeline realizing the relative
approach. We would like to stress that this note is not about
how to choose parameters for the proposed pipeline. That
will be the content of the follow up writings.

2. Introduction
Providing suitable representations of data by objects
amenable for statistical and machine learning methods is
one of the key steps towards a successful analysis. During
the last decade homological representations of data played
a significant role in many applications ranging from nano-
characterization of materials (Lee et al., 2017) to neuro-
science (Kanari et al., 2018). It is not well understood why
homology-based invariants can be informative, and explor-
ing this question has been difficult because homology is not
directly amenable for statistical tools, as we can not average
homology or describe what expected homology might mean.
Thus for data analysis purposes homology needs to be trans-
formed into objects that are amenable for statistical analysis.
The aim of this article is to show that one such transforma-
tion, called stable ranks (introduced in (Scolamiero et al.,
2017; Chachólski & Riihimäki, 2020)), can encode rich ge-
ometrical information about a dataset as a whole but also
about a sample, relative to the dataset, when the latter is
subsampled it in appropriate ways.
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datasets subsampled in various ways.

Consider a point in the plane. In itself a point does not have
an interesting geometry, however in relation to other objects
(called reference objects) it has rich geometrical aspects
such as being on the left or right side of an oriented line,
or being inside or outside a circle. Similarly, consider the
very classical problem of recognizing handwritten digits in
MNIST data (LeCun et al.). To decide if a handwritten digit
represents 1 or 7, we might look at the geometrical aspects
of the point representing the digit relative to, for instance,
the reference object formed by some representatives of other
handwritten digits. For both reading and writing purposes,
humans have learned which variations of written digits can
be recognized. Thus the key information needed to identify
a handwritten digit is encoded in the spaces of points repre-
senting each digit. It is therefore expected that geometrical
aspects relative to these spaces contain rich discriminative
information. We propose to use homology-based invariants
(called stable ranks) to encode this information and explore
how they can be used to distinguish different types of points.

What do we mean by geometrical information? In this ar-
ticle it is information extracted from any space associated
with the considered problem or object, where by a space we
mean a simplicial complex or a family of them. For example
let R be a finite subset of Rn. By restricting a metric from
Rn to R we can form its Vietoris-Rips complexes (Haus-
mann, 1995). This is just one instance of a possible spacial
representation of metric properties of R. Here is another
possibility which we explore in this article. Choose a natural
number s (called sample size) and consider the collection
of the Vietoris-Rips complexes of some s-element subsets
of R, chosen according to some specified rule, for instance
selecting all of them, or only those that are at certain dis-
tance to a given point. We find that this type of spacial
representation of metric properties of R is informative. The
way we use this representation is as follows. First, persis-
tent homology is extracted for each of the subsets (there is
an extensive literature regarding persistent homology see
for example (Edelsbrunner & Harer, 2008; Ghrist, 2008;
Weinberger, 2011)). If s is relatively small, the compu-
tational cost of this step is reasonable and can be done in
parallel for each subset and for a rather high homological de-
gree. The next step is to average these outcomes over some
choice of the s-element subsets. This step requires trans-
forming persistent homologies into objects whose averages
(expected values) can be calculated. For that purpose we
utilise stable ranks (Chachólski & Riihimäki, 2020; Gäfvert
& Chachólski, 2017; Scolamiero et al., 2017) that represent
persistence modules by non-increasing piecewise constant
functions (see Appendix A). Stable ranks also enable us
to use the associated kernel (Agerberg et al., 2021) and
for example SVMs for classification purposes. We should
mention that there are other ways of representing persis-

tence modules by objects suitable for statistical analysis,
for example persistence landscapes (Bubenik, 2015) or per-
sistence images (Adams et al., 2017). The Vietoris-Rips
persistent homology associated to a set of samples obtained
by subsampling a point cloud has previously been explored
in (Chazal et al., 2015; Solomon et al., 2022).

In this article a pipeline for assigning a stable rank (non-
increasing piecewise constant function) to a subset R in
Rn is presented. The space of parameters for our pipeline
naturally splits into two types called global and relative.
Global stable ranks encode some geometrical aspects of R.
Relative stable ranks encode some geometrical aspects of
points in Rn relative to R. In Section 5 we give simple
examples in which it is possible to geometrically interpret
the outcomes of the relative pipeline (lying on specified side
of a hyperplane or inside a circle). Although in general
geometrical interpretation of both relative and global stable
ranks may be too complex, these invariants can be used for
distinguishing purposes. For example we show that the train-
ing set in MNIST representing 7 is geometrically different
from the test set in MNIST representing 7, as their invari-
ants based on the homology in degree 1 are quite different.
Thus, the geometry of the testing dataset for 7 is not entirely
representative of the geometry of its training dataset. In
Section 4 we also illustrate variability among global stable
ranks of MNIST training datasets across different digits in
homological degrees 0, 1, and 2. We explore this variability
in Section 5 for classification purposes. For example if as a
reference object we choose the union of the training MNIST
datasets for digits 1 and 7, then the test digits labeled by 1
and 7 can be quite accurately classified using their relative
stable ranks and only few labeled samples. We believe this
is a consequence of the fact that global geometrical aspects
of the training MNIST datasets for 1 and 7, as measured by
their global stable ranks, are quite different.

3. Pipeline
The initial input is a finite subset R ⊂ Rr called a reference
object. We are going to explain how to assign to it various
non-increasing piecewise constant functions. These func-
tional representations of R can be then used as inputs for
various analysis pipelines such as SVMs.

Step A: probabilities.

The objective is to obtain a function prob : R → R, called
probability, with the following properties: all its values are
non-negative, and their sum Σx∈Rprob(x) is either 1 or 0.
For example we could take the uniform probability which
is the constant function with value 1/|R|. Here is another
construction, divided into two steps A1 and A2:
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Step A1: filter function.

The objective is to obtain a function filter : R → R called a
filter. In our particular construction the input consists of a
point p in Rr and a vector field V : R → Rr on R. In this
article the focus is on two types of a vector field: a constant
vector field, and a vector field Vc : R → Rr determined by
a point c, called center, in Rr which assigns to x in R the
vector Vc(x) := c− x from x to c. For example, we could
take c to be the point p or the center of mass of R.

In this step, the output is the function filter : R → R assign-
ing to x the following value:

0 if V(x) = 0

|projspan(V(x))(p− x)| if V(x) · (p− x) ≥ 0

−|projspan(V(x))(p− x)| if V(x) · (p− x) < 0

For example, for the vector field Vp, the associated filter
function assigns to x in R the distance between x and p.

Step A2: distribution and probabilities.

In this step, we need to choose a non-negative function
D : R → R (called distribution), used to obtain the follow-
ing probability function prob : R → R which is the outcome
of this step. Let S = Σy∈RD(filter(y)).

prob(x) :=

{
0 if S = 0

D(filter(x))/S if S ̸= 0

Step B: averaged stable ranks.

The objective is to obtain a non-increasing piecewise con-
stant function representing the reference object R.

Step B1: sub-sampling.

The function prob : R → R, obtained in step A, is used to
sample the reference object R. For this purpose two natural
numbers s and n need to be chosen, called respectively
sample size and number of instances. The outcome of this
step is a set S described as follows:

• If s > |x ∈ R | prob(x) > 0|, then the outcome S is
the empty set.

• If s ≤ |x ∈ R | prob(x) > 0|, then the outcome S is of
size n whose elements are subsets of R of size s. Each
of these subsets is a random choice (with replacement)
of s elements from R according to the probabilities
specified by the function prob.

Step B2: stable ranks.

In this step the set S is converted into a stable rank function
in the following way:

• Every element σ of the outcome S of step B1, which
is a subset of the reference object R, is converted into
the following persistence module (homology of degree
l with coefficients in F2 of the corresponding Vietoris-
Rips complex, with respect to the Euclidean distance):

t 7→ Hl(VRt(σ),F2)

• For every σ in S, the obtained persistence module
is transformed into a non-increasing piecewise con-
stant function given by its stable rank r̂ank(σ) with
respect to the distance type contours Df/T , associated
with the density f : [0,∞) → (0,∞), and truncated at
T ∈ [0,∞], see Definitions 5.4 and 5.6 (Chachólski &
Riihimäki, 2020) (see also Appendix A). In this article
we take f to be the standard density function given by
the constant function 1.

• The final outcome of the entire pipeline, which depends
on the homological degree l and truncation T defined
in this step, is the average of all these stable ranks
across all σ in S:

r̂ankprob,s,n,l,TR :=
(
Σσ∈S r̂ank(σ)

)
/n

4. Global stable ranks
The results of the pipeline described in Section 3, when the
outcome of step A is given by the uniform probability func-
tion, are called global stable ranks of the reference object.
These global stable ranks encode aspects of the geometry of
the reference object captured by homologies of its s-element
subspaces. In this section we illustrate examples of global
stable ranks for the MNIST dataset (LeCun et al.). Recall
that MNIST is a dataset of handwritten digits widely used
in machine learning, composed of 60000 training samples
and 10000 test samples. The samples are considered as
points in R784, since the images have 28× 28 = 784 pixels.
For every d in {0, 1, . . . , 9}, consider two reference objects
Testd ⊂ R784 and Traind ⊂ R784 formed by these hand-
written digits in respectively the test and the training sets of
MNIST which are labeled by d.

As illustrated in Figure 1, the reference objects Testd and
Traind, for d = 2, 7, 8 have noticeably different global sta-
ble ranks, indicating that there is some variation in the ge-
ometry between the training and test datasets. Since there
is a probabilistic step in our pipeline, the whole process is
repeated 10 times to demonstrate stability of the outcome.

A measure of geometric similarity between the reference ob-
jects can be obtained by considering distances between the
obtained stable ranks, for example by using the L1 distance.
We compute the average stable ranks corresponding to the
training and test set respectively and present the distance
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between them, for each digit, in Table 1. To further inves-
tigate whether the difference corresponds to a dataset shift
or is due to random factors we pool the training and the test
set together and perform random partitions. This is done 10
times for each digit, average stable ranks are then computed
and the distance between the training and test sets resulting
from these random partitions is compared to the distances
obtained for the original training and test split. The results
indicate that the difference between training and test sets
is not due to random factors alone. Perhaps it results from
the way the dataset was originally partitioned (partitioned
by writers, but several samples belong to each writer hence
potentially introducing a bias).

Figure 1. Stable ranks corresponding to a few digits, homology
pairs, illustrating the difference between the stable ranks obtained
from 10 repetitions of the pipeline for Testd (orange) and for Traind

(blue) reference objects respectively. The following parameters
were used:

prob s n homological degree T
uniform 30 2000 0 (left), 1 (middle), 2 (right) ∞

Table 1. Distances between stable ranks corresponding to training
and test sets for different digits and homological degrees. The data
is presented for stable ranks corresponding to the original training
and test split and for stable ranks corresponding to random splits
into training and test set.

Digit H0 org H0 rand H1 org H1 rand H2 org H2 rand

0 356.3 122.3 36.1 7.7 7.3 1.6
1 365.3 93.8 10.1 3.4 0.2 0.6
2 1143.7 125.7 30.1 6.7 4.6 0.6
3 982.7 134.3 15.0 3.6 1.1 0.8
4 728.0 41.6 27.2 1.7 6.1 0.4
5 294.7 119.8 54.1 13.5 7.9 3.3
6 550.1 42.2 31.0 2.4 2.6 0.5
7 702.6 101.0 49.5 2.3 4.9 0.3
8 427.5 132.6 46.5 9.4 7.5 0.8
9 843.2 57.1 24.3 4.8 2.2 0.8

When we write a digit, we intuitively know which variations
still enable communication. We can think about the space
Traind as a space encoding such possible variations of d.
A basic question is how dependent these spaces are on the
digits and whether these spaces, for different digits, have de-
tectable global geometrical differences. Figure 2 illustrates
some global stable ranks of these spaces.

We note that in our experiments, the global stable ranks
obtained by subsampling s-element subspaces were as (and

sometimes more) distinctive of the digits as the stable ranks
one can obtain from the computation of persistent homol-
ogy on the whole reference object, without subsampling, a
procedure that is heavier computationally.

Figure 2. The pipeline was repeated 10 times for every reference
objects Traind, for all digits d, with the following parameters:

prob s n homological degree T
uniform 30 2000 0 (left), 1 (middle), 2 (right) ∞

In Section 6, we discuss a strategy of how to use the geome-
try of the spaces Traind, encoded through our pipeline, to
classify handwritten digits. Presented examples suggest that
the further apart the geometrical properties of the spaces
Traind1

and Traind2
are, the easier it is to distinguish be-

tween handwritten digits labeled by d1 and d2. This indi-
cates that we need to look for ways of amplifying geometri-
cal differences, if there are any, between the spaces Traind
for various d. In Figure 2 the stable ranks for some of the
digits, such as digits 3 and 5, are hard to distinguish. Are
these spaces then geometrically different and if so how can
we encode differences between them? Let us change the
truncation parameter T to 1800. The effect is shown in Fig-
ure 3, illustrating the fact that varying the parameters, e.g.
sample size or the parameters used to construct the stable
ranks, can lead to stable distinctive descriptors.

Figure 3. The pipeline was repeated 10 times for every reference
object Traind, for all digits d (left), and for digits 3 and 5 (right),
with the following parameters:

prob s n homological degree T
uniform 30 2000 1 1800

5. Relative stable ranks in the plane
The results of the pipeline described in Section 3, when
the outcome of step A is given by the probability function
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determined by a point p, are called relative stable ranks of
the reference object. We think about relative stable ranks as
encoding geometrical information about the position of the
point p in the ambient space Rr in relation to the reference
object. In this section we illustrate how relative stable ranks
can be used to describe simple geometrical aspects of points
in Rr. Our initial data X consist of 200 random points
on the plane (consisting of both orange and blue points in
Figure 4) whose positions we would like to geometrically
describe.

Example 1

• Reference object: a single point with coordinates
[−1, 2].

• Point: any point p in X .

• Vector field: given by the vector [1, 1].

• Distribution: we consider two distributions:

–

D1(x) :=

{
1 if x ≥ 0

0 if x < 0

–

D2(x) :=

{
1 if − 2 ≤ x ≤ 1

0 otherwise

• The other parameters: s = 1, n = 1, homological
degree is 0, and T = ∞.

Since the reference object consists of just one point, other
homological degrees than 0 are irrelevant. The outcome
of our pipeline in this case, for every point p in X , is a
constant function 0 or 1. In this way the initial dataset
X is partitioned into two clusters: points leading to the
stable rank 0 and points leading to the stable rank 1. The
two illustrations in Figure 4, which correspond to the two
distributions D1 and D2, show such partitions of X . We see
that our pipeline can for example distinguish between points
lying on different sides of a hyperplane, an interesting piece
of geometrical information.

Example 2

• Reference object: a noisy circle (of radius 3) repre-
sented by green dots in Figure 5.

• Point: any point p in X .

• Filter: assigns to an element in the reference object its
distance to p.

• Distribution: Gaussian centered at 0 with standard
deviation 1.

Figure 4. 200 random points colored according to whether the
corresponding stable rank has constant value 1 (orange) or 0 (blue).
The stable ranks were obtained with reference object containing
only point [−1, 2] and the vector field given by the vector [1, 1]
(Example 1 Section 5).

• The other parameters: s = 10, n = 100, homological
degree is 0, and T = ∞.

In Figure 5 on the left, obtained stable ranks for all points in
X are plotted. Those stable ranks corresponding to points
whose distance to the origin is less than 3 are orange and
the others are blue. In the illustration on the right a point
is orange if corresponding stable rank at 0.87 has value
bigger than 1.87. The other points of X are blue. Green
dots represent the reference object. In this case a simple
threshold obtained by visually inspecting the stable ranks
allowed us to discriminate between points inside and outside
the circle, again an interesting geometrical property. In the
next section we will see that such classification rules can
also be learned from the data.

Figure 5. Left: Stable ranks corresponding to the random points in
the plane, colored according to their distance to the origin. Right:
Reference object (green) and random points colored according to
whether the corresponding stable rank at 0.87 has value bigger
(orange) or lower (blue) than 1.87 (Example 2 Section 5).

Deciding if a points is inside or outside a circle can be
obtained by our pipeline with another set of parameters:

Example 3

• Reference object: the noisy circle as in Example 2.

• Point: any point p in X .
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• Vector field: assigns to an element in the reference
object the vector from that element to the center of
mass of the reference object (which in this case is close
to the origin).

• Distribution: D(x) :=

{
1 if x ≥ 1

0 if x < 1
.

• The other parameters: s = 10, n = 100, homological
degree is 0, and T = ∞.

In Figure 6 on the left, obtained stable ranks for all points
in X are plotted. As in Example 2, those stable ranks
corresponding to points, whose distance to the origin is less
than 3, are orange and the other are blue. In the illustration
on the right a point is orange if the corresponding stable
rank at 1.5 has value bigger than 3.9. The other points of X
are blue, and the green dots represent the reference object.
We see again that our pipeline can be used to decide if a
point is inside or outside a circle.

Figure 6. Left: Stable ranks corresponding to the random points in
the plane, colored according to their distance to the origin. Right:
Reference object (green) and random points colored according
to whether the corresponding stable rank at 1.5 has value bigger
(orange) or lower (blue) than 3.97 (Example 3 Section 5).

6. Relative stable ranks on MNIST
In Section 4 we provided experiments on MNIST for global
stable ranks. In this section we now shift the focus to rela-
tive stable ranks. In the following experiments, subsets of
the training sets corresponding to one or several digits will
be used as reference objects. We will illustrate that these
reference objects, when sampled from the perspective of dif-
ferent types of points in R784, such as points corresponding
to digits in the test set, have interesting geometries.

Following the steps defined in the pipeline, for a point under
consideration p and for elements in the reference object x in
R we choose as filter function fp(x) = ||p− x||2, i.e. the
Euclidean distance between the point under consideration
and the elements of the reference object. As distribution
we choose a Gaussian, whose parameters µp, σp are chosen
in order to concentrate the probability mass on elements of

the reference object close to p, yet ensuring the probability
mass is distributed on sufficiently many elements for the
samples to be diverse enough. We consider the set Distp
of all distances between p and points in R, i.e. fp(x) for
all x ∈ R. We select µp to be the k:th percentile of Distp,
where k typically is a low number. We then choose σp in
relation to the sample size parameter such that sample size
× amplification elements of Distp lie within one standard
deviation, where amplification is also a fixed parameter.

6.1. Illustration of the pipeline and first example

We start with a basic example to illustrate the pipeline. We
take as our reference object the set Train1, of all samples
from the MNIST training set corresponding to the digit 1.
Next we select two points from the ambient space, R784: the
origin of that space and the center of mass of the reference
object. Based on the values of the filter function, a Gaussian
is chosen for each of the two points (we use as parameters
k:th percentile= 1, amplification= 5). Next, as described in
Section 3, a probability distribution on the reference object
is computed for each point, by evaluating the values of the
filter function under the Gaussian and normalizing.

We illustrate this idea in Figure 7. The two first principal
components of the reference object are computed. We then
project the reference object together with the origin and
center of mass on the principal components. The origin
(left plot) and the center of mass (right plot) are represented
by black squares, and the dots representing elements of the
reference object are colored according to their probability
in the same way as in the previous plot.

Figure 7. Projection on the two first principal components of the
reference object. The origin (left) and the center of mass (right)
are represented by black squares. Other dots are colored according
to their probability.

Having illustrated that different points lead to different prob-
ability distributions, we now subsample the reference object
according to these probability distributions. For each such
sample a distance space is constructed (with Euclidean dis-
tance). Next, as described in Section 3, these distance spaces
are converted into persistence modules corresponding to
each homological degree, and then to stable ranks (we use
sample size= 50, number of instances= 100). The resulting
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average stable ranks, presented in Figure 8, demonstrate that
the geometrical signatures corresponding to the origin and
the center of mass are distinct. We plot 10 stable ranks for
each point and homological degree, obtained by repeating
the whole procedure each time.

Figure 8. Stable ranks corresponding to the origin and the center
of mass for different homological degrees.

Another way to illustrate how the geometry changes as we
subsample the reference object in different fashions is to
take the perspective of one point only – here we choose
the center of mass – but to vary the parameters defined in
the previous section. In Figure 9 we show the effect of in-
creasing the amplification parameter, which means that less
probability mass will be concentrated on elements whose
distance is close to the mean of the Gaussian. As the value
of this parameter increases, the stable ranks become closer
to the global descriptor of the reference object described
in Section 4, i.e. to the stable rank obtained by uniform
subsampling of the reference object, indicating that the ge-
ometry is less and less informative.

Figure 9. Plot 1, 2, 3: Projection on the two first principal compo-
nents of the reference object. The center of mass is represented
by a black square. Other dots are colored according to their proba-
bility when varying the amplification parameter. Plot 4, 5: Stable
ranks corresponding to the center of mass for the different param-
eters and stable rank corresponding to uniform subsampling, for
homological degrees H0 and H1.

6.2. Inside and outside

Instead of choosing the center of mass of the whole refer-
ence object, we now perform k-means clustering (k=10) on
the reference object and select the center of mass of each
cluster. We also sample 10 points randomly from the am-
bient space (the subset of R784 corresponding to allowed
pixel values). We can then apply the procedure described in
the previous section to obtain 10 stable ranks for the points
corresponding to the centers of mass and 10 stable ranks
corresponding to the random points, for each homology
degree.

These stable ranks are displayed in Figure 10 together with
the average stable rank corresponding to a uniform subsam-
pling of the reference object. Our aim is to illustrate that
stable ranks resulting from sampling from ”inside” the refer-
ence object, e.g. for centers of mass, are distinct from stable
ranks obtained by sampling from the ”outside”, e.g. from
random points in the ambient space or from the origin (in
the previous example). The latter are in turn more similar to
the stable rank obtained by uniform subsampling.

Figure 10. Stable ranks corresponding to random points, to the
centers of mass of clusters and to uniform sampling, for different
homological degrees.

6.3. Distinguishing out-of-sample points from two
subsets of the reference object

In the previous section, we saw a clear distinction between
stable ranks obtained by sampling from the ”inside” and
from the ”outside” of the reference object. But the sta-
ble ranks corresponding to different centers of mass also
displayed some variability, indicating a difference in the
geometry. We aim to explore this idea further in the follow-
ing setting: we now take as our reference object the union
Train1 ∪ Train7 of all samples from the MNIST training set
corresponding to digit 1 or digit 7. We note that we still
have only one reference object and the labels (indicating
whether an element of the reference object corresponds to a
1 or a 7) are not used. Instead of considering random points
or centers of mass as in the previous section, we now con-
sider 10 points randomly chosen from Test1 and 10 points
randomly chosen from Test7 and repeat the same procedure
to compute the stable ranks representing these points. In our
pipeline we use the following parameters: sample size= 30,
amplification= 2, for the homological degree 0, the trunca-
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tion parameter T is set to be ∞, and for the homological
degree 1, the truncation parameter is set to be 1200.

We can see in Figure 11 that the stable ranks corresponding
to test set digit 1 are distinct from those corresponding to test
set digit 7, and they are both distinct from the stable ranks
resulting from the uniform subsampling of the reference
object. Hence, when we sample based on distances to test
set 1 digits or 7 digits, we sample subsets of the reference
object where the geometry is different, which allows us to
discriminate between the points we sampled from.

To quantify the capacity to discrimate between digits based
on their stable ranks, we train a Support-vector machine
classifier on the 20 stable ranks, for each homological de-
gree, using the kernel obtained by taking inner products
between stable ranks in the L2 function space (Agerberg
et al., 2021). We can then evaluate the model on the re-
maining samples of digit 1 and 7 from the MNIST test set
(samples that are neither part of the reference object nor
part of the 20 samples used for the training). We obtain an
accuracy of 96.9% for H0 stable ranks and 94.5% for H1
(average accuracy after repeating the procedure 10 times
with different samples used for training). While we are not
aiming at approaching state of the art accuracy levels we
believe the results point to the fact that the geometry of a
reference object, when chosen judiciously and in relation
to a point, can be informative about characteristics of this
point. We also note that we used a large unlabeled dataset
(our reference object) but only a few (20) labeled samples,
which is the setting of semi-supervised learning.

Figure 11. Stable ranks corresponding to test set 1 digits, 7 dig-
its and to uniform sampling, for different homological degrees.
Training set 1 digits and 7 digits used as reference object.

6.4. Distinguishing out-of-sample points based on
another reference object

In the previous section, we considered a reference object
which consisted of samples from the same data distributions
(handwritten 1 digits and 7 digits) as the points that we
sampled from and tried to discriminate. Now, while still
trying to distinguish between test set samples of digits 1
and 7, we instead take as our reference object the union
Train2 ∪ Train3 of all samples from the MNIST training set
corresponding to digits 2 or 3. Stable ranks are computed

following the same procedure, however, for the homological
degree 1, we used 1900 for the truncation parameter T . The
obtained stable ranks are illustrated in Figure 12. Interest-
ingly, when subsampled from different points representing
1 digits and 7 digits, the geometry of this reference object,
which a priori is not related to the data distribution of those
digits, nonetheless contains information about those points.

Figure 12. Stable ranks corresponding to test set 1 digits, 7 dig-
its and to uniform sampling, for different homological degrees.
Training set 2 digits and 3 digits used as reference object.

7. Discussion
Extracting stable ranks is a simplifying procedure. Find-
ing appropriate parameters controlling stable ranks so that
relevant aspects of the problem at hand are retained is the
key challenge. In this paper we indicate that choosing an
appropriate reference object and ways of sampling it can
be used for this purpose. For example in experiment 6.3
the reference object is the union of the training sets corre-
sponding to digits 1 and 7 which was shown to be effective
for distinguishing between them. While analogous experi-
ments can be repeated with similar results for several other
pairs of digits, some pairs of digits were nonetheless harder
to distinguish. In experiment 6.3 we could in general see
that it was harder to distinguish test set digits from the two
classes when the global geometries of the digits (see Section
4) were similar. But while more difficult, it was still often
possible, since by sampling from the perspective of different
points one can reveal different local geometric patterns that
are specific to the digit. A classifier, when fed with such pat-
terns, can thus still learn to distinguish the digits. Moreover,
in experiment 6.4, when sampling a reference object that is
not the union of the training sets corresponding to the digits
we want to distinguish, we are in a different situation where
global geometric similarity of the digits does not necessarily
matter. Which reference object to choose is however not ob-
vious. Another possibility is to combine different geometric
signatures, e.g. stable ranks obtained by taking the training
sets corresponding to digits 1 and 7 as separate reference
objects, and computed for different homological degrees
and parameters. Such signatures could then be combined in
e.g. an ensemble learning scheme. We also emphasize that
our method by construction only considers relative geomet-
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rical aspects to a point. Another interesting direction is thus
to combine it with other methods (distance-based machine
learning methods, neural networks, etc.) and analyze the
combined effect.
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A. Appendix
In this appendix we briefly recall the role the parameters density and truncation of our pipeline (see Section 3) play for
constructing stable ranks. We refer to (Agerberg et al., 2021; Chachólski & Riihimäki, 2020; Gäfvert & Chachólski, 2017)
where more information about stable ranks can be found.

Stable ranks are built using a process called hierarchical stabilization. An input for this process has two ingredients. One is
a discrete invariant such as the rank function rank : Tame([0,∞), vectF) → N, which assigns to a persistence module its
minimal number of generators. The other ingredient is a pseudometric d on the domain of the discrete invariant, which
in the case of the rank function is given by persistence modules Tame([0,∞), vectF). The outcome of the hierarchical
stabilization, for the mentioned rank function, is a Lipschitz function r̂ankd : Tame([0,∞), vectF) → M, called stable
rank, where M is the space of Lebesgue measurable functions [0,∞) → [0,∞). We think about the stable rank function
as the model associated to the pseudometric d. In this framework (supervised) persistence analysis is about identifying
these pseudometrics d for which structural properties of the (training) data are reflected by the geometry of its image in M
through the function r̂ankd.

The reason we care about densities and truncations is because any choice of them leads to a pseudometric on persistence
modules. Thus we can use densities and truncations as parameters of a rich space of such pseudometrics. We refer the reader
to the mentioned sources for an explanation of how a density and a truncation leads to a pseudometric. See (Agerberg et al.,
2021; Chachólski & Riihimäki, 2020) for examples where choosing an appropriate density leads to improvement in certain
classifications tasks. In this article we have seen that a choice of truncation can also lead to better results.
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