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Abstract
We explore the equivalence between neural net-
works and kernel methods by deriving the first
exact representation of any finite-size paramet-
ric classification model trained with gradient de-
scent as a kernel machine. We compare our exact
representation to the well-known Neural Tangent
Kernel (NTK) and discuss approximation error
relative to the NTK and other non-exact path ker-
nel formulations. We experimentally demonstrate
that the kernel can be computed for realistic net-
works up to machine precision. We use this exact
kernel to show that our theoretical contribution
can provide useful insights into the predictions
made by neural networks, particularly the way in
which they generalize.

1. Introduction
This study investigates the relationship between kernel meth-
ods and finite parametric models. To date, interpreting the
predictions of complex models, like neural networks, has
proven to be challenging. Prior work has shown that the
inference-time predictions of a neural network can be ex-
actly written as a sum of independent predictions computed
with respect to each training point. We formally show that
classification models trained with cross-entropy loss can
be exactly formulated as a kernel machine. It is our hope
that these new theoretical results will open new research
directions in the interpretation of neural network behavior.

There has recently been a surge of interest in the connec-
tion between neural networks and kernel methods (Bietti
& Mairal, 2019; Du et al., 2019; Tancik et al., 2020; Ab-
dar et al., 2021; Geifman et al., 2020; Chen et al., 2020;
Alemohammad et al., 2021). Much of this work has been
motivated by the the neural tangent kernel (NTK), which
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Figure 1: Comparison of test gradients used by Discrete
Path Kernel (DPK) from prior work (Blue) and the Exact
Path Kernel (EPK) proposed in this work (green) versus total
training vectors (black) used for both kernel formulations
along a discrete training path with S steps. Orange shading
indicates cosine error of DPK test gradients versus EPK test
gradients shown in practice in Fig. 2.

Figure 2: Measurement of gradient alignment on test points
across the training path. The EPK is used as a frame of
reference. The y-axis is exactly the difference between
the EPK and other representations. For example EPK �
DPK = h�s,t(X),�s,t(x)� �s,0(x)i (See Definition 3.4).
Shaded regions indicate total accumulated error. Note: this
is measuring an angle of error in weight space; therefore,
equivalent positive and negative error will not result in zero
error.
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describes the training dynamics of neural networks in the
infinite limit of network width (Jacot et al., 2018). We argue
that many intriguing behaviors arise in the finite parameter
regime (Bubeck & Sellke, 2021). All prior works, to the
best of our knowledge, appeal to discrete approximations
of the kernel corresponding to a neural network. Specifi-
cally, prior approaches are derived under the assumption
that training step size is small enough to guarantee close
approximation of a gradient flow (Ghojogh et al., 2021;
Shawe-Taylor et al., 2004; Zhao & Grishman, 2005).

In this work, we show that the simplifying assumptions used
in prior works (i.e. infinite network width and infinitesimal
gradient descent steps) are not necessary. Our Exact Path
Kernel (EPK) provides the first, exact method to study the
behavior of finite-sized neural networks used for classifica-
tion. Previous results are limited in application (Incudini
et al., 2022) due to dependence of the kernel on test data
unless strong conditions are imposed on the training pro-
cess as by (Chen et al., 2021). We show, however, that the
training step sizes used in practice do not closely follow
this gradient flow, introducing significant error into all prior
approaches (Figure 2).

Our experimental results build on prior studies attempting to
evaluate empirical properties of the kernels corresponding
to finite neural networks (Lee et al., 2018; Chen et al.,
2021). While the properties of infinite neural networks are
fairly well understood (Neal & Neal, 1996), we find that the
kernels learned by finite neural networks have non-intuitive
properties that may explain the failures of modern neural
networks on important tasks such as robust classification
and calibration on out-of-distribution data.

This paper makes the following significant theoretical and
experimental contributions:

1. We prove that finite-sized neural networks trained with
finite-sized gradient descent steps and cross-entropy
loss can be exactly represented as kernel machines us-
ing the EPK. Our derivation incorporates a previously-
proposed path kernel, but extends this method to ac-
count for practical training procedures (Domingos,
2020b; Chen et al., 2021).

2. We demonstrate that it is computationally tractable
to estimate the kernel underlying a neural network
classifier, including for small convolutional computer
vision models.

3. We compute Gram matrices using the EPK and use
them to illuminate prior theory of neural networks and
their understanding of uncertainty.

4. We employ Gaussian processes to compute the covari-
ance of a neural network’s logits and show that this

reiterates previously observed shortcomings of neural
network generalization.

2. Related Work
Fundamentally, the neural tangent kernel (NTK) is rooted
in the concept that all information necessary to represent a
parametric model is stored in the Hilbert space occupied by
the model’s weight gradients up to a constant factor. This
is very well supported in infinite width (Jacot et al., 2018).
In this setting, it has been shown that neural networks are
equivalent to support vector machines, drawing a connec-
tion to maximum margin classifiers (Chen et al., 2021;
Chizat & Bach, 2020). Similarly, Shah et al. demonstrate
that this maximum margin classifier exists in Wasserstien
space; however, they also show that model gradients may
not contain the required information to represent this (Shah
et al., 2021).

The correspondence between kernel machines and paramet-
ric models trained by gradient descent has been previously
developed in the case of a continuous training path (i.e. the
limit as gradient descent step size " ! 0) (Domingos,
2020a). We will refer to the previous finite approximation
of this kernel as the Discrete Path Kernel (DPK). However,
a limitation of this formulation is its reliance on a continu-
ous integration over a gradient flow, which differs from the
discrete forward Euler steps employed in real-world model
training. This discrepancy raises concerns regarding the
applicability of the continuous path kernel to practical sce-
narios (Incudini et al., 2022). Moreover, the formulation of
the sample weights and bias term in the DPK depends on its
test points. Chen et al. propose that this can be addressed, in
part, by imposing restrictions on the loss function used for
training, but did not entirely disentangle the kernel formu-
lation from sample importance weights on training points
(Chen et al., 2021).

We address the limitations of Domingos (2020a) and Chen
et al. (2021) in Subsection 3.5. By default, their approach
produces a system which can be viewed as an ensemble
of kernel machines, but without a single aggregated kernel
which can be analyzed directly. Chen et al. (2021) pro-
pose that the resulting sum over kernel machines can be
formulated as a kernel machine so long as the sign of the
gradient of the loss stays constant through training; how-
ever, we show that this is not necessarily a sufficient re-
striction. Instead, their formulation leads to one of several
non-symmetric functions which can serve as a surrogate
to replicate a given models behavior, but without retaining
properties of a kernel.
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3. Theoretical Results
Our goal is to show an equivalence between any given finite
parametric model trained with gradient descent fw(x) (e.g.
neural networks) and a kernel based prediction that we con-
struct. We define this equivalence in terms of the output of
the parametric model fw(x) and our kernel method in the
sense that they form identical maps from input to output. In
the specific case of neural network classification models, we
consider the mapping fw(x) to include all layers of the neu-
ral network up to and including the log-softmax activation
function. Formally:

Definition 3.1. A kernel is a function of two variables which
is symmetric and positive semi-definite.

Definition 3.2. Given a Hilbert space X , a test point x 2 X ,
and a training set XT = {x1, x2, ...xn} ⇢ X indexed by I ,
a Kernel Machine is a model characterized by

K(x) = b+
X

i2I

aik(x, xi) (1)

where the ai 2 R do not depend on x, b 2 R is a constant,
and k is a kernel. (Rasmussen et al., 2006)

By Mercer’s theorem (Ghojogh et al., 2021) a kernel can be
produced by composing an inner product on a Hilbert space
with a mapping � from the space of data into the chosen
Hilbert space. We use this property to construct a kernel
machine of the following form.

K(x) = b+
X

i2I

aih�(x),�(xi)i (2)

Where � is a function mapping input data into the weight
space via gradients. Our � will additionally differentiate
between test and training points to resolve a discontinuity
that arises under discrete training.

3.1. Exact Path Kernels

We first derive a kernel which is an exact representation
of the change in model output over one training step, and
then compose our final representation by summing along
the finitely many steps. Models trained by gradient descent
can be characterized by a discrete set of intermediate states
in the space of their parameters. These discrete states are
often considered to be an estimation of the gradient flow,
however in practical settings where ✏ 6! 0 these discrete
states differ from the true gradient flow. Our primary theo-
retical contribution is an algorithm which accounts for this
difference by observing the true path the model followed
during training. Here we consider the training dynamics
of practical gradient descent steps by integrating a discrete
path for weights whose states differ from the gradient flow
induced by the training set.

Gradient Along Training Path vs Gradient Field: In
order to compute the EPK, gradients on training data must
serve two purposes. First, they are the reference points for
comparison (via inner product) with test points. Second,
they determine the path of the model in weight space. In
practice, the path followed during gradient descent does
not match the gradient field exactly. Instead, the gradient
used to move the state of the model forward during training
is only computed for finitely many discrete weight states
of the model. In order to produce a path kernel, we must
continuously compare the model’s gradient at test points
with fixed training gradients along each discrete training
step s whose weights we we interpolate linearly by ws(t) =
ws � t(ws � ws+1). We will do this by integrating across
the gradient field induced by test points, but holding each
training gradient fixed along the entire discrete step taken.
This creates an asymmetry, where test gradients are being
measured continuously but the training gradients are being
measured discretely (see Figure 1).

To account for this asymmetry in representation, we will
redefine our data using an indicator to separate training
points from all other points in the input space.

Definition 3.3. Let X be two copies of a Hilbert space H

with indices 0 and 1 so that X = H ⇥ {0, 1}. We will write
x 2 H ⇥ {0, 1} so that x = (xH , xI) (For brevity, we will
omit writing H and assume each of the following functions
defined on H will use xH and xI will be a hidden indicator).
Let fw be a differentiable function on H parameterized by
w 2 Rd. Let XT = {(xi, 1)}Mi=1 be a finite subset of X
of size M with corresponding observations YT = {yxi}Mi=1

with initial parameters w0 so that there is a constant b 2 R
such that for all x, fw0(x) = b. Let L be a differentiable
loss function of two values which maps (f(x), yx) into the
positive real numbers. Starting with fw0 , let {ws} be the
sequence of points attained by N forward Euler steps of
fixed size " so that ws+1 = ws � "rL(f(XT ), YT ). Let
x 2 H ⇥ {0} be arbitrary and within the domain of fw for
every w. Then fws(t) is a finite parametric gradient model
(FPGM).

Definition 3.4. Let fws(t) be an FPGM with all correspond-
ing assumptions. Then, for a given training step s, the exact
path kernel (EPK) can be written

KEPK(x, x
0
, s) =

Z 1

0
h�s,t(x),�s,t(x

0)idt (3)

where

�s,t(x) = rwfws(t,x)(x) (4)
ws(t) = ws � t(ws � ws+1) (5)

ws(t, x) =

(
ws(0), if xI = 1

ws(t), if xI = 0
(6)
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Note: � is deciding whether to select a continuously or
discrete gradient based on whether the data is from the
training or testing copy of the Hilbert space H . This is
due to the inherent asymmetry that is apparent from the
derivation of this kernel (see Appendix section A.2). This
choice avoids potential discontinuity in the kernel output
when a test set happens to contain training points.

Lemma 3.5. The exact path kernel (EPK) is a kernel.

Theorem 3.6 (Exact Kernel Ensemble Representation). A
model fwN trained using discrete steps matching the con-
ditions of the exact path kernel has the following exact
representation as an ensemble of N kernel machines:

fwN = KE(x) :=
NX

s=1

MX

i=1

ai,sKEPK(x, x
0
, s) + b (7)

where

ai,s = �"
dL(fws(0)(xi), yi)

dfws(0)(xi)
(8)

b = fw0(x) (9)

Proof Sketch. Assuming the theorem hypothesis, we’ll mea-
sure the change in model output as we interpolate across
each training step s by measuring the change in model state
along a linear parametrization ws(t) = ws � t(ws �ws+1).
We will let d denote the number of parameters of fw. For
brevity, we define L(xi, yi) = l(fws(0)(xi), yi) where l is
the loss function used to train the model.

dŷ

dt
=

dX

j=1

dŷ

@wj

dwj

dt
(10)

=
dX

j=1

dfws(t)(x)

@wj

 
�"

MX

i=1

@L(xi, yi)

@fws(0)(xi)

@fws(0)(xi)

@wj

!

(11)

We use fundamental theorem of calculus to integrate this
equation from step s to step s + 1 and then add up across
all steps. See Appendix A.2 for the full proof.

Remark 1 Note that in this formulation, b depends on the
test point x. In order to ensure information is not being
leaked from the kernel into this bias term the model f must
have constant output for all input. When relaxing this prop-
erty, to allow for models that have a non-constant starting
output, but still requiring b to remain constant, we note that
this representation ceases to be exact for all x. The resulting
approximate representation has logit error bounded by its
initial bias which can be chosen as b = mean(fw0(0)(XT )).
Starting bias can be minimized by starting with small pa-
rameter values which will be out-weighed by contributions

from training. In practice, we sidestep this issue by ini-
tializing all weights in the final layer to 0, resulting in
b = log(softmax(0)), thus removing b’s dependence on
x.

Remark 2 The exactness of this proof hinges on the sepa-
rate measurement of how the model’s parameters change.
The gradients on training data, which are fixed from one
step to the next, measure how the parameters are changing.
This is opposed to the gradients on test data, which are not
fixed and vary with time. These measure a continuous gra-
dient field for a given point. We are using interpolation as a
way to measure the difference between the step-wise linear
training path and the continuous loss gradient field.

Theorem 3.7 (Exact Kernel Machine Reduction). Let
rL(f(ws(x), y) be constant across steps s, (ai,s) =
(ai,0). Let the kernel across all N steps be defined as
KNEPK(x, x0) =

P
N

s=1 ai,0KEPK(x, x0
, s) Then the exact

kernel ensemble representation for fwN can be reduced
exactly to the kernel machine representation:

fwN (x) = KM(x) := b+
MX

i=1

ai,0KNEPK(x, x
0) (12)

See Appendix A.3 for full proof. By combining theorems
3.6 and 3.7, we can construct an exact kernel machine rep-
resentation for any arbitrary parameterized model trained
by gradient descent which satisfies the additional property
of having constant loss across training steps (e.g. any ANN
using catagorical cross-entropy loss (CCE) for classifica-
tion). This representation will produce exactly identical
output to the model across the model’s entire domain. This
establishes exact kernel-neural equivalence for classifica-
tion ANNs. Furthermore, Theorem 3.6 establishes an exact
kernel ensemble representation without limitation to models
using loss functions with constant derivatives across steps.
It remains an open problem to determine other conditions
under which this ensemble may be reduced to a single kernel
representation.

3.2. Discussion

�s,t(x) depends on both s and t, which is non-standard but
valid, however an important consequence of this mapping
is that the output of this representation is not guaranteed
to be continuous. This discontinuity is exactly measuring
the error between the model along the exact path compared
with the gradient flow for each step.

We can write another function k
0 which is continuous but

not symmetric, yet still produces an exact representation:

k
0(x, x0) = hrwfws(t)(x),rwfws(0)(x

0)i (13)

The resulting function is a valid kernel if and only if for
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Algorithm 1 Exact Path Kernel: Given a training set (X,Y ) with M data points, a testing point x and N weight states
{w0, w1...wN}, the kernel machine corresponding to the exact path kernel can be calculated for a model with W weights
and K outputs. We estimate the integral across test points by calculating the Riemann sum with sufficient steps (T ) to
achieve machine precision. For loss functions that do not have constant gradient values throughout training, this algorithm
produces an ensemble of kernel machines.

b = f(w0, x)
for s = 0 to N do
J
X = rwfws(0)(X) {Jacobian of training point outputs w.r.t model weights [M ⇥K ⇥W ] }

for t from 0 to 1 with step 1/T do
ws(t) = ws + t(ws+1 � ws)

J
x +=

1

T
rwfws(t)(x) {Jacobian of testing point output w.r.t model weights averaged across T steps [K ⇥W ]}

end for
Gijk =

P
w
J
X

ijw
J
x

kw
{Inner product on the weight space, this is the kernel value [M ⇥K ⇥K]}

L
0 = rfL(fws(0)(X), Y ) {Jacobian of loss w.r.t model output of training points [M ⇥K]}

P
s

ik
=
P

j
L
0
ij
Gijk {Inner product of kernel value scaled by loss gradients [M ⇥K]}

end for
Psik = {P 0

, P
1
, ..., P

N} {Stack values across all training steps [N ⇥M ⇥K]}

p̂ = �"
1

M

P
s

P
i
Psik + b {Sum across training steps and average across training points for final prediction [K]}

every s and every x,
Z 1

0
rwfws(t)(x)dt = rwfws(0)(x) (14)

We note that since f is being trained using forward Euler,
we can write:

@ws(t)

dt
= �"rwL(fws(0)(xi), yi) (15)

In other words, our parameterization of this step depends on
the step size " and as " ! 0, we have

Z 1

0
rwfws(t)(x)dt ⇡ rwfws(0)(x) (16)

In particular, given a model f that admits a Lipshitz con-
stant K this approximation has error bounded by "K and
a proof of this convergence is direct. This demonstrates
that the asymmetry of this function is exactly measuring
the disagreement between the discrete steps taken during
training with the gradient field. This function is one of sev-
eral subjects for further study, particularly in the context of
Gaussian processes whereby the asymmetric Gram matrix
corresponding with this function can stand in for a covari-
ance matrix. It may be that the not-symmetric analogue of
the covariance in this case has physical meaning relative to
uncertainty.

3.3. Independence from Optimization Scheme

We can see that by changing equation 15 we can produce an
exact representation for any first order discrete optimization

scheme that can be written in terms of model gradients ag-
gregated across subsets of training data. This could include
backward Euler, leapfrog, and any variation of adaptive step
sizes. This includes stochastic gradient descent, and other
forms of subsampling (for which the training sums need
only be taken over each sample). One caveat is adversarial
training, whereby the ai are now sampling a measure over
the continuum of adversarial images. We can write this
exactly, however computation will require approximation
across the measure. Modification of this kernel for higher
order optimization schemes remains an open problem.

3.4. Ensemble Reduction

In order to reduce the ensemble representation of Equation
(7) to the kernel representation of Equation (12), we require
that the sum over steps still retain the properties of the kernel
(symmetry and positive semi-definiteness). In particular we
require that for every subset of the training data xi and
arbitrary ↵i and ↵j , we have

nX

i=1

nX

j=1

MX

l=1

NX

s=1

↵i↵jal,s

Z 1

0
KEPK(xi, xj)dt � 0 (17)

A sufficient condition for this reduction is that the gradi-
ent of the loss function does not change throughout train-
ing. This is the case for categorical cross-entropy where
labels are in {0, 1}. In fact, in this specific context the gra-
dient of the loss function does not depend on f(x), and
are fully determined by the ground truth label, making the
gradient of the cross-entropy loss a constant value through-
out training (See Appendix section A.3). Showing the
positive-definiteness of more general loss functions (e.g.
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Figure 3: Updated predictions with kernel ai updated via gradient descent with training data overlaid for classes 1 (left), 2
(middle), and 3 (right). The high prediction confidence in regions far from training points demonstrates that the learned
kernel is non-stationary.

mean squared error loss) will likely require additional reg-
ularity conditions on the training path, and is left as future
work.

3.5. Prior Work

Constant sign loss functions have been previously studied
by Chen et al. (Chen et al., 2021), however the kernel that
they derive for a finite-width case is of the form

K(x, xi) =

Z
T

0
|rfL(ft(xi), yi)|hrwft(x),rwft(xi)idt

(18)

The summation across these terms satisfies the positive
semi-definite requirement of a kernel, however the weight
|rL(ft(xi), yi)| depends on xi which is one of the two
inputs. This makes the resulting function K(x, xi) asym-
metric and therefore not a kernel.

3.6. Uniqueness

Uniqueness of this kernel is not guaranteed. The mapping
from paths in gradient space to kernels is in fact a function,
meaning that each finite continuous path has a unique exact
kernel representation of the form described above. However,
this function is not necessarily onto the set of all possible
kernels. This is evident from the existence of kernels for
which representation by a finite parametric function is im-
possible. Nor is this function necessarily one-to-one since
there is a continuous manifold of equivalent parameter con-
figurations for neural networks. For a given training path,
we can pick another path of equivalent configurations whose
gradients will be separated by some constant � > 0. The
resulting kernel evaluation along this alternate path will
be exactly equivalent to the first, despite being a unique
path. We also note that the linear path l2 interpolation is not
the only valid path between two discrete points in weight
space. Following the changes in model weights along a
path defined by Manhattan Distance is equally valid and
will produce a kernel machine with equivalent outputs. It re-
mains an open problem to compute paths from two different

starting points which both satisfy the constant bias condition
from Definition (3.4) which both converge to the same final
parameter configuration and define different kernels.

4. Experimental Results
Our first experiments test the kernel formulation on a dataset
which can be visualized in 2d. These experiments serve as
a sanity check and provide an interpretable representation
of what the kernel is learning.

Figure 4: Class 1 EPK Kernel Prediction (Y) versus neural
network prediction (X) for 100 test points, demonstrating
extremely close agreement.

4.1. Evaluating The Kernel

A small test data set within 100 dimensions is created by
generating 1000 random samples with means (1, 4, 0, ...),
(4, 1, 0, ...) and (5, 5, 0, ...) and standard deviation 1.0.
These points are labeled according to the mean of the Gaus-
sian used to generate them, providing 1000 points each from
3 classes. A fully connected ReLU network with 1 hidden
layer is trained using categorical cross-entropy (CCE) and
gradient descent with gradients aggregated across the entire
training set for each step. We then compute the EPK for
this network, approximating the integral from Equation 3
with 100 steps which replicates the output from the ReLU
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network within machine precision. The EPK (Kernel) out-
puts are compared with neural network predictions in Fig. 4
for class 1. Having established this kernel, and its corre-
sponding kernel machine, one natural extension is to allow
the kernel weights ai to be retrained. We perform this up-
dating of the krenel weights using a SVM and present its
predictions for each of three classes in Fig. 3.

4.2. Kernel Analysis

Having established the efficacy of this kernel for model
representation, the next step is to analyze this kernel to
understand how it may inform us about the properties of the
corresponding model. In practice, it becomes immediately
apparent that this kernel lacks typical properties preferred
when humans select kernels. Fig. 3 show that the weights
of this kernel are non-stationary on our toy problem, with
very stable model predictions far away from training data.
Next, we use this kernel to estimate uncertainty. Consistent
with many other research works on Gaussian processes for
classification (Rasmussen et al., 2006) we use a GP to
regress to logits. We then use Monte-Carlo to estimate
posteriors with respect to probabilities (post-soft-max) for
each prediction across a grid spanning the training points
of our toy problem. The result is shown on the right-hand
column of Fig. 5. We can see that the kernel values are
more confident (lower standard deviation) and more stable
(higher kernel values) the farther they get from the training
data in most directions.

In order to further understand how these strange kernel
properties come about, we exercise another advantage of
a kernel by analyzing the points that are contributing to
the kernel value for a variety of test points. In Fig. 6 we
examine the kernel values for each of the training points
during evaluation of three points chosen as the mean of the
generating distribution for each class. The most striking
property of these kernel point values is the fact that they are
not proportional to the euclidean distance from the test point.
This appears to indicate a set of basis vectors relative to each
test point learned by the model based on the training data
which are used to spatially transform the data in preparation
for classification. This may relate to the correspondence
between neural networks and maximum margin classifiers
discussed in related work ( (Chizat & Bach, 2020) (Shah
et al., 2021)). Another more subtle property is that some
individual data points, mostly close to decision boundaries
are slightly over-weighted compared to the other points in
their class. This latter property points to the fact that during
the latter period of training, once the network has already
achieved high accuracy, only the few points which continue
to receive incorrect predictions, i.e. caught on the wrong
side of a decision boundary, will continue contributing to
the training gradient and therefore to the kernel value.

Figure 5: (left) Kernel values measured on a grid around
the training set for our 2D problem. Bright yellow means
high kernel value (right) Monte-Carlo estimated standard
deviation based on gram matrices generated using our kernel
for the same grid as the kernel values. Yellow means high
standard deviation, blue means low standard deviation.

4.3. Extending To Image Data

We perform experiments on MNIST to demonstrate the ap-
plicability to image data. This kernel representation was
generated for convolutional ReLU Network with the cate-
gorical cross-entropy loss function, using Pytorch (Paszke
et al., 2019). The model was trained using forward Euler
(gradient descent) using gradients generated as a sum over
all training data for each step. The state of the model was
saved for every training step. In order to compute the per-
training-point gradients needed for the kernel representation,
the per-input jacobians are computed at execution time in
the representation by loading the model for each training
step i, computing the jacobians for each training input to
compute rwfws(0)(xi), and then repeating this procedure
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Figure 6: Plots showing kernel values for each training point relative to a test point. Because our kernel is replicating the
output of a network, there are three kernel values per sample on a three class problem. This plot shows kernel values for all
three classes across three different test points selected as the mean of the generating distribution. Figures on the diagonal
show kernel values of the predicted class. Background shading is the neural network decision boundary.

for 200 t values between 0 and 1 in order to approximateR 1
0 fws(t)(x). For MNIST, the resulting prediction is very

sensitive to the accuracy of this integral approximation, as
shown in Fig. 7. The top plot shows approximation of the
above integral with only one step, which corresponds to the
DPK from previous work ( (Chen et al., 2021), (Domingos,
2020a), (Incudini et al., 2022)) and as we can see, careful
approximation of this integral is necessary to achieve an
accurate match between the model and kernel.

5. Conclusion and Outlook
The implications of a practical and finite kernel representa-
tion for the study of neural networks are profound and yet
importantly limited by the networks that they are built from.
For most gradient trained models, there is a disconnect be-
tween the input space (e.g. images) and the parameter space
of a network. Parameters are intrinsically difficult to inter-
pret and much work has been spent building approximate
mappings that convert model understanding back into the

input space in order to interpret features, sample impor-
tance, and other details (Simonyan et al., 2013; Lundberg
& Lee, 2017; Selvaraju et al., 2019). The EPK is composed
of a direct mapping from the input space into parameter
space. This mapping allows for a much deeper understand-
ing of gradient trained models because the internal state of
the method has an exact representation mapped from the
input space. As we have shown in Fig. 6, kernel values
derived from gradient methods tell an odd story. We have
observed a kernel that picks inputs near decision bound-
aries to emphasize and derives a spatial transform whose
basis vectors depend neither uniformly nor continuously
on training points. Although kernel values are linked to
sample importance, we have shown that most contributions
to the kernel’s prediction for a given point are measuring an
overall change in the network’s internal representation. This
supports the notion that most of what a network is doing is
fitting a spatial transform based on a wide aggregation of
data, and only doing a trivial calculation to the data once
this spatial transform has been determined (Chizat & Bach,
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Figure 7: Experiment demonstrating the relationship be-
tween model predictions and kernel predictions for varying
precision of the integrated path kernel. The top figure shows
the integral estimated using only a single step. This is equiv-
alent to the discrete path kernel (DPK) of previous work
(Domingos, 2020b; Chen et al., 2021). The middle figure
shows the kernel evaluated using 10 integral steps. The final
figure shows the path kernel evaluated using 200 integral
steps.

2020). As stated in previous work (Domingos, 2020a), this
representation has strong implications about the structure
of gradient trained models and how they can understand
the problems that they solve. Since the kernel weights in
this representation are fixed derivatives with respect to the

loss function L, ai,s = �"
@L(fws(0)(xi), yi)

@fi
, nearly all of

the information used by the network is represented by the
kernel mapping function and inner product. Inner products

are not just measures of distance, they also measure angle.
In fact, figure 8 shows that for a typical training example,
the L2 norm of the weights changes monotonically by only
20-30% during training. This means that the "learning" of
a gradient trained model is dominated by change in angle,
which is predicted for kernel methods in high dimensions
(Härdle et al., 2004).

Figure 8: This plot shows a linear interpolation w(t) =
w0+ t(w1�w0) of model parameters w for a convolutional
neural network fw from their starting random state w0 to
their ending trained state w1. The hatched purple line shows
the dot product of the sum of the gradient over the training
data X , hrwfw(t)(X), (w1 � w0)/|w1 � w0|i. The other
lines indicate accuracy (blue), total loss (red decreasing),
and L2 Regularization (green increasing)

For kernel methods, our result also represents a new direc-
tion. Despite their firm mathematical foundations, kernel
methods have lost ground since the early 2000s because the
features implicitly learned by deep neural networks yield
better accuracy than any known hand-crafted kernels for
complex high-dimensional problems (Bengio et al., 2005).
We’re hopeful about the scalability of learned kernels based
on recent results in scaling kernel methods (Snelson &
Ghahramani, 2005). Exact kernel equivalence could allow
the use of neural networks to implicitly construct a kernel.
This could allow kernel based classifiers to approach the
performance of neural networks on complex data. Kernels
built in this way may be used with Gaussian processes to
allow meaningful direct uncertainty measurement. This
would allow for much more significant analysis for out-of-
distribution samples including adversarial attacks (Szegedy
et al., 2013; Ilyas et al., 2019). There is significant work to
be done in improving the properties of the kernels learned
by neural networks for these tools to be used in practice. We
are confident that this direct connection between practical
neural networks and kernels is a strong first step towards
achieving this goal.
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