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Abstract
Recent advances in neural network (NN) architec-
tures have demonstrated that complex topologies
possess the potential to surpass the performance
of conventional feedforward networks. Nonethe-
less, previous studies investigating the relation-
ship between network topology and model perfor-
mance have yielded inconsistent results, compli-
cating their applicability in contexts beyond those
scrutinized. In this study, we examine the utility
of directed acyclic graphs (DAGs) for modeling
intricate relationships among neurons within NNs.
We introduce a novel algorithm for the efficient
training of DAG-based networks and assess their
performance relative to multilayer perceptrons
(MLPs). Through experimentation on synthetic
datasets featuring varying levels of difficulty and
noise, we observe that complex networks founded
on pertinent graphs outperform MLPs in terms of
accuracy, particularly within high-difficulty sce-
narios. Additionally, we explore the theoretical
underpinnings of these observations and explore
the potential trade-offs associated with employing
complex networks. Our research offers valuable
insights into the capabilities and constraints of
complex NN architectures, thus contributing to
the ongoing pursuit of designing more potent and
efficient deep learning models.

1. Introduction
Modern neural architectures are widely believed to draw
significant design inspiration from biological neuronal net-
works. The artificial neuron, the fundamental functional unit
of neural networks (NNs), is based on the McCulloch-Pitts
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unit (Fitch, 1944), sharing conceptual similarities with its
biological counterpart. Additionally, state-of-the-art convo-
lutional NNs incorporate several operations directly inspired
by the mammalian primary visual cortex, such as nonlinear
transduction, divisive normalization, and maximum-based
pooling of inputs. However, these architectures may be
among the few examples where the evolutionary structural
and functional properties of neuronal systems have been
genuinely relevant for NN design. Indeed, the topology
of biological connectomes has not yet been translated into
deep learning model engineering.

Due to the ease of implementation and deployment, widely-
used neural architectures predominantly feature a regular
structure resembling a sequence of functional blocks (e.g.,
neuronal layers). The underlying multipartite graph of a
multilayer perceptron (MLP) is typically controlled by a few
hyperparameters that define its basic topological properties:
depth, width, and layer sizes. Only recently have computer
vision engineers transitioned from chain-like structures (Si-
monyan & Zisserman, 2014) to more elaborate connectivity
patterns (He et al., 2016; Huang et al., 2017; Xie et al.,
2019a) (e.g., skip connections, complete graphs). Never-
theless, biological neuronal networks display much richer
and less templated wirings at both the micro- and macro-
scale (Fornito et al., 2013). Considering synaptic connec-
tions between individual neurons, the C. elegans nematode
features a hierarchical modular (Bassett et al., 2010) con-
nectome, wherein hubs with high betweenness centrality
are efficiently interconnected (Barthelemy, 2004; Towlson
et al., 2013). Moreover, the strength distribution of the adult
Drosophila central brain closely follows a power law with
an exponential cutoff (Scheffer et al., 2020).

As a result, the relationship between the graph structure of
a NN and its predictive abilities remains unclear. In the
literature, there is evidence that complex networks can be
advantageous in terms of predictive accuracy and parameter
efficiency (Kaviani & Sohn, 2021). However, past attempts
to investigate this connection have yielded conflicting re-
sults that are difficult to generalize outside the investigated
context. The first experiment on complex NNs was per-
formed in 2005 by Simard et al., who trained a randomly
rewired MLP on random binary patterns (Simard et al.,
2005). Nearly a decade later, Erkaymaz and his collabo-
rators employed the same experimental setup on various

1



Breaking the Structure of Multilayer Perceptrons with Complex Topologies

Figure 1. Overview of the topology exploration process. Left: Feedforward neural network (NN) generation. All studied models are
constructed using the same three-step procedure. First, we generate an undirected graph with a predetermined degree distribution. Then,
we set edge directions and map computational operations to the network nodes. Right: Experiments. For each investigated topology, we
sample multiple graphs from the same degree distribution. The corresponding NNs are trained on one of the benchmark datasets. The
resulting test accuracies are collected and stored for subsequent analyses.

real-life problems (Erkaymaz et al., 2012; 2014; Erkay-
maz & Ozer, 2016; Erkaymaz et al., 2017) (e.g., diabetes
diagnosis, performance prediction of solar air collectors).
The best-performing models featured a number of rewirings
consistent with the small-world regime. However, all as-
sessed topologies were constrained by MLP-random inter-
polation. In (Annunziato et al., 2007), an MLP and a NN
generated following the Barabási-Albert (BA) procedure
were compared on a chemical process modeling problem.
Both models were trained with an evolutionary algorithm,
but the MLP achieved a lower RMSE. The learning ma-
trix (Monteiro et al., 2016), a sequential algorithm for the
forward/backward pass of arbitrary directed acyclic graphs
(DAGs), enabled the evaluation of several well-known com-
plex networks on classification (Monteiro et al., 2016) and
regression (Platt et al., 2019) tasks. The experiments in-
cluded random and small-world networks, two topologies
based on “preferential attachment”, a complete graph, and
a C. elegans subnetwork (Dunn et al., 2004). Nevertheless,
the learning matrix’s time complexity limited the network
sizes (i.e., 26 nodes), and for each task, a different win-
ning topology emerged, including the MLP. Also Stier et
al. successfully trained BA- and WS-based (Watts-Strogatz)
NNs with backpropagation (Stier & Granitzer, 2019) on the
MNIST classification task (Lecun et al., 1998) by placing
the generated networks between two fully-connected layers.
While this design choice was made in order to adapt the ar-
chitecture to the dimensionalities of the input/output, it may
represent a confound when disentangling the contributions
of the different network modules to the overall classification
performance. Some recent works have instead focused on
multipartite sparse graphs (Mocanu et al., 2018; You et al.,
2020). While these architectures outperformed the complete
baselines, their topological complexity was entirely encoded
within the connections between adjacent layers.

Another body of work is based on computational graphs

defined on a macroscopic scale (Xie et al., 2019b; Worts-
man et al., 2019; Roberts et al., 2019). In these NNs, nodes
represent compositions of operators while links represent
“flows” of tensors or channels. Generally, Neural Architec-
ture Search (NAS), which aims to automate the design of
neural architectures, also falls within this category. The
discipline, born in its modern variant with (Zoph & Le,
2017), which uses a controller based on reinforcement learn-
ing to generate NN architectural hyperparameters, has re-
cently shifted towards techniques capable of formulating
topological search in a differentiable manner (Liu et al.,
2019; Gu et al., 2021). However, these techniques are ap-
plied to cells (small subgraphs with fewer than 10 nodes)
that are repeated within the overall architecture. Although
NAS has achieved remarkable results in vision and NLP, the
constraints imposed on the microscopic topology of the gen-
erated networks make these models unsuitable for the tasks
for which the networks mentioned in the previous paragraph
are employed.

We propose the hypothesis that, given the same number of
nodes (i.e., neurons) and edges (i.e., parameters), a complex
NN might exhibit superior predictive abilities compared to
classical, more regularly structured MLPs. Unlike previous
studies, we conduct a systematic exploration (of which we
have reported an overview in Figure 1) of random, scale-free,
and small-world graphs (Figure 2) on synthetic classification
tasks, with particular emphasis on the following:

• Network size. The defining properties of a complex
topology often emerge in large-scale networks. For ex-
ample, the second moment of a power-law degree dis-
tribution diverges only in the N →∞ limit (Barabási,
2016), where N is the network size1. The networks in
(Monteiro et al., 2016; Platt et al., 2019) have 15 and

1The proposition holds when the degree exponent is smaller
than 3.
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Figure 2. Example feedforward NNs (128 neurons, 732 synaptic
connections) based on complex topologies: scale-free (BA), ran-
dom (ER), and small-world (WS). All graphs are directed and
acyclic. Information flows from top to bottom. Input, hidden, and
output units are denoted in green, red, and yellow, respectively.
Since the networks are defined at the micro-scale, hidden and out-
put nodes implement weighted sums over the incoming edges. In
the hidden units, the computational operation is followed by an
activation function. The activations of nodes located on the same
horizontal layer can be computed in parallel.

26 nodes, respectively. We trained models with 128
neurons.

• Dataset size. The estimation error achieved by a pre-
dictor depends on the training set size: the greater
the number of samples, the lower the error (Shalev-
Shwartz & Ben-David, 2014). Except for studies based
on multipartite graphs, all previous research works in a
small-data regime. Our datasets are three times larger
than those used before.

• Hyperparameter optimization. Learning rate and
batch size are crucial in minimizing the loss function.
Ref. (Monteiro et al., 2016) is the only one that consid-
ers finding the optimal learning rate. The role of batch
size has never been investigated. Each DAG, however,
could be characterized by its optimal combination of
hyperparameters. Hence, we optimized the learning
rate and batch size for each topology.

2. Theory
In this section, we briefly report on the theory behind some
graph generators from network science. These graph mod-
els are involved in generating the NNs employed in our

investigation, as discussed in Section 3.

Erdős-Rényi (ER). An ER graph (Erdős et al., 1960), or
random network, is uniformly sampled from the set of all
graphs with N nodes and L edges. For N ≫ ⟨k⟩, the degree
distribution of a random graph is well approximated by a
Poisson distribution: pk = e−⟨k⟩ ⟨k⟩k

k! ; k and ⟨k⟩ represent
node degree and average degree, respectively.

Watts-Strogatz (WS). The WS generator (Watts & Strogatz,
1998) aims to create graphs that exhibit both high clustering
and the small-world property; this is achieved by interpo-
lating lattices with random networks. The generation starts
from a ring in which nodes are connected to their immedi-
ate neighbors. The links are then randomly rewired with
probability p.

Barabási-Albert (BA). The well-known BA model (Albert
& Barabási, 2002) can be used to generate networks char-
acterized by the pk ∝ k−3 scale-free degree distribution.
Being the model inspired by the growth of real networks,
the generative procedure iteratively attaches nodes with m
stubs to a graph that evolves from an initial star of m + 1
nodes. Node additions respond to the preferential attach-
ment mechanism: the probability that a stub reaches a node
is proportional to the degree of the latter.

Multilayer Perceptron (MLP). The underlying networks of
MLPs are called multipartite graphs. In a multipartite graph
(i.e., a sequence of bipartite graphs) nodes are partitioned
into layers, and each layer can only be connected with the
adjacent ones; no intra-layer link is allowed. Additionally,
inter-layer connections have to form bicliques (i.e., fully-
connected bipartite graphs).

3. Methods
The following sections present our methodology. Section
3.1 describes how our benchmark datasets are constructed.
In Section 3.2, we provide details on the proposed NN
generation pipeline. Finally, Section 3.3 details out the
experimental protocol.

3.1. Datasets

The foundation of the datasets developed, as displayed in
Figure 3, is established by manifold learning generators2

provided by the scikit-learn machine learning library
(Pedregosa et al., 2011). To modify the generators for clas-
sification purposes, 3D points sampled from one of the
available curves (s curve and swiss roll) are segmented into
n classes× n reps portions based on their univariate
position relative to the primary dimension of the manifold

2https://scikit-learn.org/stable/
datasets/sample_generators.html
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Figure 3. Benchmark classification datasets. Top: the swiss roll.
Bottom: the s curve. Each dataset is composed of 3D points
divided into multiple segments. Classes are color-coded. Datasets
differ in terms of difficulty (x axis) and noise (y axis).

samples. As the term implies, n classes refers to the
number of classes involved in the considered classification.
Each segment is then arbitrarily allocated to a class, main-
taining task balance (i.e., precisely n reps segments have
the same label). We define n reps as the task difficulty. An
additional aspect of our datasets is the standard deviation σ
of the Gaussian noise that can be added to the points. The
generation procedure is finalized with a min-max normal-
ization.

3.2. Feedforward Neural Networks

All trainable models are produced following the same 3-step
procedure and share N and L. Consequently, NNs exhibit
identical density and parameter counts.

Undirected Graph Generation. The initial step in cre-
ating a NN involves sampling an undirected graph using
the generators detailed in Section 2. Once N and L are
established, all models exhibit a single parameter config-
uration compatible with the required density3. The WS
generator is the sole exception: the probability p is allowed
to vary between 0 and 1. If the generator is limited to sam-
ple networks with a number of links from a finite set (e.g.,
L = m + (N − m − 1)m according to the BA model),
we first generate a graph with slightly higher density than
the target before randomly eliminating excess edges. After
obtaining the graph, we confirm the existence of a single
connected component.

Directed Acyclic Graph (DAG) Conversion. Before per-
forming any calculations, the direction for information prop-

3This statement is accurate if the number of MLP layers is
predetermined.

agation through the network links must be determined; this
is accomplished by randomly assigning, without replace-
ment, an integer index from {1, . . . , N} to the network
nodes. It can be shown that the directed graph obtained
by setting the direction of each edge from the node with
a lower index to the node with a higher index is free of
cycles. However, this conversion results in an unpredictable
number of sources and sinks. Since classification tasks typ-
ically involve a pre-defined number of input features and
output classes, it is necessary to resolve such network-task
discrepancies. To address this issue, we developed a straight-
forward heuristic (Appendix A) capable of adjusting DAGs
without altering the underlying undirected graphs.

Mapping of Functional Roles. The last step of the pre-
sented procedure consists in mapping computational op-
erations to the DAG nodes. Working at the micro-scale
(i.e., connections between single neurons), the operations
allowed are two. Source nodes implement constant func-
tions; their role, indeed, is to feed the network with the
initial conditions for computations. Hidden and sink nodes,
instead, perform a weighted sum over the incoming edges,
followed by an activation function:

av = σ

(∑
u

wuvau + b

)
(1)

where av is the activation of node v, σ denotes the activation
function4 (SELU (Klambauer et al., 2017) for hidden nodes
and the identity function for sinks), u represents the generic
predecessor of v, wuv is the weight associated with edge
(u, v) and b the bias.

Algorithm 1 NN Initializtion
L ← longest path(G)
for l← 1 to |L| − 1 do

P l ← ∅
for v ∈ Ll do
P l ∪ {u : (u, v) ∈ E}

end for
M l ← 0
W l ← 0
for v ∈ Ll do

for u ∈ {u : (u, v) ∈ E} do
muv ← 1

end for
end for
W l ← init(W l,M l)

end for

4Depending on the context, we use the same σ notation for
both the standard deviation of the dataset noise and the activation
function.
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Algorithm 2 NN Forward Pass
for l← 1 to |L| − 1 do
al ← σ((M l ⊙W l)xl)

end for

We implemented the mapping of functional roles in Python5,
based on the pseudocode of Algorithm 1. Starting from
a DAG (i.e., G = (N , E)), our code returns an NN that
can be deployed as a PyTorch Module. Its forward pass
follows Algorithm 2. The procedure was designed to facil-
itate systematic experiments with NNs composed of hun-
dreds of neurons. According to our preliminary findings,
the forward pass execution time depends heavily on the
number of matrix multiplications performed. Previous
methods for functional role mapping yield models that re-
quire, in the worst case, a number of operations either lin-
ear, for sparse DAGs (Monteiro et al., 2016), or quadratic,
for dense DAGs (Stier & Granitzer, 2019), in the num-
ber of nodes. By computing activations in parallel, our
algorithm performs a number of matrix multiplications that
is, at most, linear but typically sublinear in the number
of nodes, depending on the given graph topology. In Al-
gorithm 1, the input DAG is partitioned into a minimum
height layering L = {L0, . . . , L|L|−1} (i.e., the smallest
ordered set of layers in which nodes in a layer only re-
ceive connections from nodes in previous layers) using
the longest path() algorithm (Tamassia, 2016; Healy &
Nikolov, 2002). For each layer, the algorithm tracks node
predecessors, P l, and utilizes this information to initialize
a learnable weight matrix, W l ∈ R|Ll|×|P l|. Specifically,
we allocate memory for all predecessor-target connections
(i.e., (u, v) : u ∈ P l, v ∈ Ll). Some edges, however, may
not exist in the original graph; thus, we employ a binary
mask M l ∈ {0, 1}|Ll|×|P l| to preserve the input topology
and prevent the gradient from updating non-existent con-
nections. Finally, the weight matrix is initialized through
init(), considering the actual node degrees. Algorithm 2
delineates how the generated NN performs the forward pass.
For each layer, the activations of node predecessors, xl, are
collected and multiplied by the masked weight matrix (i.e.,
M l ⊙W l), which is obtained through a point-wise multipli-
cation between the mask and weight matrices. The resulting
vector, al, corresponds to the current layer activations. An
example forward pass is depicted in Figure 4.

3.3. Experiments

In this section, we outline the experimental protocol devised
to compare the performance of various graph topologies
investigated.

5The code can be accessed at https://github.com/
BoCtrl-C/forward.

Figure 4. Forward pass computation for an example NN built
through Algorithm 1 (from top to bottom). Top: computation
of the activations of layer 1. Bottom: computation of the activa-
tions of layer 2. The subnetworks involved are highlighted through
the red overlay. Computations follow al = σ((M l ⊙W l)xl), in
accordance with Algorithm 2.

Dataset Partitioning. Each generated dataset is randomly
divided into three non-overlapping subsets: the train, valida-
tion, and test splits. All model trainings are conducted on
the train split, while the validation split is used in validation
epochs and hyperparameter optimization. Test samples, on
the other hand, are accessed only during the evaluation of
the final models.

Model Training. Models are trained by minimizing cross
entropy with the Adam (Kingma & Ba, 2015) optimizer
(β1 = 0.9, β2 = 0.999). A scheduler reduces the learning
rate by a factor of 0.5 if no improvement is seen on the
validation loss for 10 epochs. The training procedure ends
when learning stagnates (w.r.t. the validation loss) for 15
epochs, and the model weights corresponding to the epoch
in which the minimum validation loss has been achieved are
saved.

Hyparameter Optimization. Hyperparameters are opti-
mized through a grid search over a predefined 2D space (i.e.,
learning rate/batch size). We generate networks of the same
topological family starting from 5 different random seeds.
In the MLP case, models differ only in the weight initial-
ization. For each parameter pair, the 5 models are trained
accordingly, and the resulting best validation losses are col-
lected. Then, the learning rate and batch size that minimize
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the median validation loss computed across the generation
seeds are selected as the optimal hyperparameters of the
considered graph family.

Topology Evaluation. Once the optimal learning rate and
batch size are found, we train 15 new models characterized
by the considered topology and compute mean classification
accuracy and standard deviation on the dataset test split. The
procedure is repeated for each investigated graph family
and a Kruskal-Wallis (H-test) (Kruskal & Wallis, 1952)
is performed in order to test the null hypothesis that the
medians of all accuracy populations are equal. If the null
hypothesis is rejected, a Mann-Whitney (U-test) (Mann &
Whitney, 1947) post hoc analysis follows.

4. Results
We obtained the presented results by following the exper-
imental protocol outlined in Section 3 using the specified
topologies (i.e., BA, ER, MLP, and WS) and datasets. We set
n classes = 3 and n reps ∈ 3, 6, 9, 12; for the swiss
roll dataset, σ ∈ 0.0, 1.0, while for the s curve, σ ∈ 0.0, 0.3.
The train, validation, and test split sizes were 1350, 675, and
675, respectively. Given that in a 1-hidden layer MLP (h1
notation) the number of synaptic connections depends solely
on N (i.e., L = 3×H +H × 3, with H = N − 3− 3), we
chose an MLP with 128 neurons as a reference model and
calculated the hyperparameters for the complex networks
to achieve graphs with L = 732 edges. The additional de-
gree of freedom in the WS generator enabled us to separate
the small-world topology into three distinct graph families:
p.5 (p = 0.5), p.7 (p = 0.7), and p.9 (p = 0.9). The
hyperparameter optimization searched for learning rates in
{0.03, 0.01, 0.003, 0.001} and batch sizes in {32, 64}.

Figure 5 displays the mean test accuracy achieved by each
group of models as a function of task difficulty. All mani-
folds, noise levels, and difficulties are represented. Exclud-
ing difficulty level 9 in the swiss roll dataset, the accuracy
curves exhibit a clear decreasing trend. Specifically, as the
difficulty increases, the performance of the MLPs degrades
more rapidly than that of complex networks. Confidence
intervals, on the other hand, are wider in the high-difficulty
plot regions. As expected, noisy tasks were more challeng-
ing to learn.

In Figure 6, the results obtained by the models for the two
highest levels of task difficulty are shown in detail. The
H-test null hypothesis is rejected for all experiments, and
the U-test statistical annotations are displayed. Regardless
of the scenario considered, a complex topology consistently
holds the top spot in the mean accuracy ranking. MLPs, in
contrast, are always the worst-performing models. More-
over, the MLP performance differs significantly from that
of the complex networks, in a statistical sense.

Figure 5. Mean test accuracy as a function of the task difficulty.
Confidence intervals (± standard deviation) are reported as well.
Different subplots correspond to different datasets. Each curve
denotes the trend of a specific network topology.

5. Discussion
The most significant finding from the experiments per-
formed is the performance in terms of accuracy attained
by the architectures built on complex topologies in the high-
difficulty regime. In this context, and in light of the statisti-
cal tests carried out, the complex models prove to be a solid
alternative to MLPs.

Formally justifying the observed phenomenon is challeng-
ing. Fortunately, in 2017, Poggio et al. discussed two
theorems (Poggio et al., 2017) that guided our explanation.
According to the first theorem6, a shallow network (e.g., an
MLP h1) equipped with infinitely differentiable activation
functions requires N = O(ϵ−n) units to approximate a con-
tinuous function f of n variables with an approximation
error of at most ϵ > 0. This exponential dependency is tech-
nically called the curse of dimensionality. On the other hand,
the second theorem states that if f is compositional and the
network presents its same architecture, we can escape the
“curse”. It is important to remember that a compositional
function is defined as a composition of “local” constituent
functions, h ∈ H (e.g., f(x1, x2, x3) = h2(h1(x1, x2), x3),
where x1, x2, x3 are the input variables and h1, h2 the
constituent functions). In other words, the structure of
a compositional function can be represented by a DAG.
In this approximation scenario, the required number of
units depends on N = O(

∑
h ϵ

−nh), where nh is the in-
put dimensionality of function h. If maxh nh = d, then

6We invite the reader to consult ref. (Poggio et al., 2017) for a
complete formulation of the theorems.
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Figure 6. Mean test accuracy at the highest difficulty levels. Top:
difficulty = 9. Bottom: difficulty = 12. The bars display both
means and standard deviations. Each bar corresponds to a spe-
cific network topology and is represented by a consistent color
across all histograms (following the color scheme from Figure
5). Statistical annotations appear above the histograms, with each
segment indicating a significant difference between two accuracy
distributions.

∑
h ϵ

−nh ≤
∑

h ϵ
−d = |H|ϵ−d.

The primary advantage of complex networks is their po-
tential to avoid the curse of dimensionality when relevant
graphs for the function to be learned are present. Under
the assumption that the function linking the swiss roll and
s curve points to the ground truth labels is compositional
(intuitively, in non-noisy datasets, each class is a union of
various segments), we conjecture that our complex NNs can
exploit this compositionality. In the high-difficulty regime,
the necessary network size for MLP h1 to achieve the same

accuracy as complex models likely exceeds the size set for
experiments. While one could argue that the datasets em-
ployed were compositionally sparse by chance, according
to (Poggio, 2022), all efficiently computable functions must
be compositionally sparse (i.e., their constituent functions
have “small” d). Performance differences on noisy datasets
are less noticeable, possibly due to the minimal overlap
between the functions to be approximated and the studied
topologies. Notably, our setup does not precisely match the
theorem formulations in (Poggio et al., 2017) (e.g., SELUs
are not infinitely differentiable), but Poggio et al. argue
that the hypotheses can likely be relaxed. No statistically
significant differences emerged between the complex graph
families from the results of Section 4. Various explanations
exist for this outcome: all tested topologies could be com-
plex enough to include relevant subgraphs of the target f
functions; the random DAG conversion heuristic might have
perturbed hidden topological properties of the original undi-
rected networks; or the degree distribution of a network may
not be the most relevant topological feature in a model’s
approximation capabilities.

However, the higher accuracy in complex networks comes
with trade-offs. Although the methodology in Section 3.2
improves the scalability of complex NNs and enables ex-
perimentation with arbitrary DAGs, it is important to note
that 1-hidden layer MLPs typically have faster forward pass
computation. In these models, the forward pass requires
only two matrix multiplications, whereas, in NNs built using
Algorithm 1, the number of operations depends on the DAG
height.

6. Conclusion
In this study, we investigated the application of complex
NN architectures for classification tasks. Our experiments
demonstrated that complex topologies can outperform tradi-
tional MLPs, particularly in high-difficulty scenarios. This
observation is corroborated by the theoretical framework
presented in (Poggio et al., 2017), which indicates that com-
plex networks can circumvent the curse of dimensionality
by exploiting the compositionality of the function being
approximated.

Despite the considerable performance improvements of-
fered by complex networks, there are trade-offs to consider.
Specifically, the scalability of these models and the compu-
tational cost of the forward pass pose potential challenges.
However, our methodological advancements facilitate exper-
imentation with arbitrary DAGs, helping to mitigate some
of the scalability concerns.

Finally, it is worth noting that, although the used models
exhibit a topology closer to that of real neuronal networks,
there are significant structural differences, including the ab-
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sence of cycles within computational graphs. Transitioning
from feedforward complex networks to recurrent networks
necessitates the utilization of backpropagation through time
and novel notions of layering and forward pass. These
modifications would introduce design and implementation
challenges, solutions to which lie beyond the scope of this
work.

In summary, our research suggests that complex NN archi-
tectures hold promise within the field of machine learning,
particularly for tackling challenging classification tasks. We
anticipate that our findings will inspire further investiga-
tion into complex topologies and their potential applications
across various deep learning domains.
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A. Task Alignment
When converting an undirected network into a DAG using the procedure outlined in Section 3.2, the resulting DAG inherits a
fixed number of sources and sinks. However, these numbers may not align with the requirements of a specific computational
task, such as the number of features and classes involved in a classification. Consequently, it may be necessary to modify the
DAG without altering the underlying undirected graph to match the desired number of sources and sinks. This perturbation
process is not applicable to all possible DAGs, and designing an algorithm that guarantees successful perturbation in all
cases is challenging. Nonetheless, we have implemented a heuristic approach that accomplishes this task for the experiments
conducted. The heuristic relies on four functions that can add or remove one source or sink at a time, and these functions can
be repeatedly called. For brevity, we describe the function that transforms a randomly selected source into a hidden node in
Algorithm 3. All other functions operate similarly. The algorithm takes as input a topologically sorted DAG, denoted as
G = (N , E), where nodes are identified by their topological indices (i.e., uid ∀ u ∈ N ). It is important to note that when
transforming a source into a hidden node, the function may also convert another node into a source. Similar issues can arise
with the other functions. Therefore, within the developed heuristic, we call these functions multiple times as needed until
the target DAG is obtained or until a predetermined maximum number of iterations is reached.

Algorithm 3 Source Removal
Input: DAG G whose nodes are topologically sorted
Output: G′
v ∼ {u : {(u′, u) ∈ E} = ∅}
s = min{uid : (v, u) ∈ E}
for u ∈ N do

if uid > vid and uid ≤ s then
uid ← uid − 1

end if
end for
vid ← s
E ′ ← ∅
for (u, v) ∈ E do

if uid < vid then
E ′ ∪ {(u, v)}

end if
if uid > vid then
E ′ ∪ {(v, u)}

end if
end for
G′ ← (N , E ′)
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