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Abstract
Reconstructing the 3D volume of a molecule
from its differently oriented 2D projections is
the central problem of Cryogenic Electron Mi-
croscopy (cryo-EM), one of the main techniques
for macro-molecule imaging. Because the orien-
tations are unknown, the estimation of the images’
poses is essential to solve this inverse problem.
Typical methods either rely on synchronization,
which leverages the estimated relative poses of
the images to constrain their absolute ones, or
jointly estimate the poses and the 3D density of
the molecule in an iterative fashion. Unfortu-
nately, synchronization methods don’t account
for the complete images’ generative process and,
therefore, achieve lower noise robustness. In the
second case, the iterative joint optimization suf-
fers from convergence issues and a higher compu-
tational cost, due to the 3D reconstruction steps.
In this work, we directly estimate individual poses
with an equivariant deep graph network trained
using a self-supervised loss, which enforces agree-
ment in Fourier domain of image pairs along the
common lines defined by their poses. In particu-
lar, the equivariant design turns out essential for
the proper convergence. As a result, our method
can leverage the synchronization constraints - en-
coded by the synchronization graph structure - to
improve convergence as well as the images gener-
ative process - via the common lines loss -, with
no need to perform intermediate reconstructions.

1. Introduction
Cryogenic electron microscopy (Cryo-EM) is one of the
major techniques in structural biology for capturing and
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studying the structure of macromolecules (Nogales, 2016;
Henderson et al., 1990). In single particle cryo-EM, a field
of the intended specimen is prepared, and the solution is
frozen to cryogenic temperature. A single image is taken
using projections by an electron microscope, yielding many
2D images of the intended specimen (macromolecules or
proteins). The central task is to find the 3D structure of
the molecule from the noisy 2D-images obtained through
this process. The Nobel prize-winning cryo-EM provides
many advantages compared to competing imaging tech-
niques (Benjin & Ling, 2020). As an example, unlike X-ray
crystallography, cryo-EM does not require protein crystal-
lization, which is difficult for some molecules like mem-
brane protein. Unfortunately, 3D reconstruction, consid-
ered as an inverse problem, includes many challenges: low
signal-to-noise ratio (SNR), model mismatch with contrast
transfer function (CTF) of the microscope, heterogeneity
of the imaged molecules and molecule in-place translations
(Singer & Sigworth, 2020) but, most importantly, unknown
molecule poses in the 2D images. Indeed, the frozen spec-
imens are differently oriented in the space prior to tomo-
graphic projections. Note that, assuming known poses, a 3D
reconstruction can be estimated by inverting the projection
step, as commonly done in general tomographic imaging.

Dealing with unknown poses remains a crucial step in the
reconstruction pipeline. The class of inverse problems with
similar pose ambiguities is mathematically formulated in
the general framework of multi-reference alignment (Singer,
2018), and there is a plethora of techniques for cryo-EM re-
construction accompanied with software packages (Scheres,
2012; Punjani et al., 2017; Fernandez-Leiro & Scheres,
2017). Dealing with unknown orientations and the align-
ment problem remains an active area of research, see for
example (Fan et al., 2021; Fan & Zhao, 2019a;b; Bandeira
et al., 2020; 2017; Perry et al., 2018; Singer et al., 2011).
Pure synchronization algorithms, which do not take into
account the image formation model, tend to suffer in per-
formance in the lowest SNR regimes (Singer & Sigworth,
2020). On the other hand, in Expectation-Maximization
(EM) based algorithms, pose estimation and 3D reconstruc-
tion happen in an iterative fashion. For example, this is
the approach followed in the popular RELION software
(Scheres, 2012). Although this approach directly incor-
porates the data’s generative process when estimating the
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Figure 1: Formation model of Cryo-EM images. Images
sharing the same (z) or opposite (−z) viewing axis differ
respectively by a planar rotation r ∈ SO(2) or a planar
reflection and rotation fr ∈ O(2).

poses, it suffers from convergence issues and the additional
overhead of performing the 3D reconstruction at each itera-
tion.

In this paper, we propose a deep learning based method
able to directly infer the images’ poses, while accounting
for the generation model of the images. In particular, we
adopt a multi-layer equivariant graph neural network which
simultaneously process a dataset (or a subset) of projection
images and predicts an initial estimation of the underlying
poses. The equivariant design enables us to encode some of
our prior knowledge about the geometry of the problem into
the architecture: in particular, our model guarantees that
the predicted poses are consistent across rotated and mir-
rored versions of the same image. However, we emphasise
that the model’s predictions are not expected to be optimal
estimators of the images’ poses, but rather a sufficiently
good initialization for a second refinement step, which can
be performed with more expensive state-of-the-art methods
such as RELION. Our equivariant deep learning solution
is inspired by the group synchronization framework (Perry
et al., 2018; Cesa et al., 2022a), which helps the model avoid
local optima during the initial phases of pose estimation.

Since the ground truth orientations are not available in real
datasets, we follow a self-supervised learning approach by
introducing a common-lines based loss to train the network.
Many classical approaches in cryo-EM rely on the common-
lines method (Van Heel, 1987; Goncharov, 1986; Singer &
Shkolnisky, 2011), although this is less frequent now. The
principle is that any two 2D images should contain a pair of

central lines on which their Fourier Transforms agree, see
Sec. 3 for more details. This common line captures two out
of three angles in the relative pose of underlying molecules,
and all common lines can be used for final pose estimation
and reconstruction. Unfortunately, the estimation of com-
mon lines is itself expensive and sensitive to noise (Singer
et al., 2010). In contrast with Singer & Shkolnisky (2011),
we use the information of common lines directly and do
not rely purely on relative poses: our loss enforces the con-
sistency of image pairs along the common line defined by
their estimated poses. As argued in Sec. 3.2, this allows our
method to explicitly account for the generative process of
the images during the training phase, thereby circumventing
the limitations of pure synchronization methods. Finally,
our deep learning design can amortize the cost of pose esti-
mation over images and can be scaled up by using batches
of random subsets of images at each iteration.

In summary, our method estimates the final poses using
complete information available in image pairs without the
overhead of 3D reconstruction, and it can potentially scale
up to large number of samples by using amortized inference
of poses. While our models unfortunately show unsatisfying
performance in Sec. 5, we discuss some interesting findings
in Sec. 6.

1.1. Cryo-EM image formation model

In a simplified, abstract setting, the cryo-EM image forma-
tion model can be summarized as follows.

Let Ψ : R3 → R be the 3D density function of a molecule.
Let SO(3) be the group of 3D rotations, SO(2) the group
os 2D rotations and O(2) the group of 2D rotations and re-
flections. Let Ri ∈ SO(3) be a rotation in 3D; in particular,
we write Ri = (xi,yi, zi) ∈ R3×3, with xi,yi, zi ∈ R3 to
indicate the three orthonormal columns of the matrix Ri.

Then, an image oi : R2 → R is generated by the tomo-
graphic projection Π along the Z axis of the molecule Ψ,
after being rotated by R−1

i , i.e. oi = Π(R−1
i .Ψ):

oi(x, y) = [Π(R−1
i .Ψ)](x, y) (1)

=

∫
z

Ψ
(
Ri(x, y, z)

T
)
dz (2)

=

∫
z

Ψ(xxi, yyi, zzi) dz (3)

where (x, y, z)T ∈ R3 is interpreted as a 3D vector. Then,
the vector zi ∈ R3 is the direction along which the pro-
jection is performed. Fig. 1 provides an example of image
formation: note that two images obtained by projecting the
molecule along the same axis z are related by a planar rota-
tion r ∈ SO(2), while two images obtained by projecting
along the opposite axes z and −z are related by a planar
rotation and reflection fr ∈ O(2).
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Figure 2: Visualization of the Fourier-Slice theorem together with our pose estimation differentiable model Φ and the
common-line loss L.

1.2. Proposed idea

In this work, we train a deep learning model Φθ which, given
a set of images {oi}Ni=1 in input, outputs an estimation of
their corresponding poses {Ri}Ni or models a posterior dis-
tribution qθ({Ri}i|{oi}i) over them. In Sec. 4, we describe
a few variations of this model; in particular, we will consider
models predicting the pose of each image independently or
jointly and models leveraging an equivariant design.

Since a typical cryo-EM dataset does not come with ground
truth data about the poses or the 3D density, we set up a
“self-supervised” geometric loss to train the model. For
each pair of images oi and oj , we use a neural network Φθ

to sample or estimate the poses Ri and Rj and train it to
minimize the discrepancy between the images oi and oj in
the Fourier domain along their corresponding common line,
which can be estimated directly from Ri and Rj , as we will
see in Sec. 3.

2. Related Work
Group Synchronization: Given a noisy observation of
the relative poses between a set of images, the group syn-
chronization problem consists in finding an assignment of
absolute poses to the images which is most consistent with
the relative ones. Perry et al. (2018) derived an Approxi-
mate Message Passing (AMP) algorithm (an approximation
of Belief Propagation) to solve the generic group synchro-
nization problem when all relative poses are observed. In
cryo-EM, the relative pose Rij = R−1

j Ri can be estimated
by directly comparing the images oi and oj whenever they
approximately have the same or opposite viewing direction,
in which case Rij ∈ O(2) is only a planar rotation or reflec-
tion. Cesa et al. (2022a) studied the synchronization when
only relative poses in O(2) are available and considered a

spectral relaxation of the problem.

Common line methods: Previous works (Pragier & Shkol-
nisky, 2019; Singer et al., 2010; Singer & Shkolnisky, 2011;
Shkolnisky & Singer, 2012; Wang et al., 2013) studied the
fact that the Fourier transforms of cryo-EM image pairs
must align along a line passing through their origin. This
property can be used to establish constraints on the absolute
poses of each pair of images, which can be solved in various
ways to estimate the final poses. For example, Bandeira
et al. (2020) used Semi-Definite Programming (SDP) while
Singer & Shkolnisky (2011); Shkolnisky & Singer (2012)
considered a spectral relaxation of the problem, which is
faster to solve. Unfortunately, the estimation of common
lines itself is an expensive process that involves comparing
each pair of images, and it is highly sensitive to noise; see
(Singer et al., 2010).

Deep learning approaches for cryo-EM: A variety of deep
learning solutions for cryo-EM have been proposed in the
literature. Ullrich et al. (2019) first proposed using a vari-
ational framework to solve the reconstruction problem, as-
suming known poses. Rosenbaum et al. (2021) used amor-
tized inference over the unknown poses but required prior
information about the backbone of the protein. Other works
leverage implicit neural functions to model the 3D molecu-
lar density (Zhong et al., 2019; 2021). More recently, (Levy
et al., 2022a;b) successfully applied amortized inference for
complete ab initio reconstruction. See also (Donnat et al.,
2022; Toader et al., 2023) for recent surveys of the deep
learning methods. In Sec. 4, our MLP architectures predict
the pose of each image independently too: while they re-
semble the previous deep amortized inference approaches,
we don’t use a reconstruction based loss to train them. We
are not aware of previous deep learning methods predicting
poses using a multitude of images, rather than single ones,
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like our message-passing models in Sec. 4.

SOTA methods: RELION (Scheres, 2012) and cryoSPARC
(Punjani et al., 2017) are two popular softwares implement-
ing state-of-the-art reconstruction methods based on EM-
like algorithm with soft-assignment of poses.

3. The Common Lines Loss
3.1. Fourier Slice Theorem and Common Lines

The tomographic projection Π is a linear operator and corre-
sponds to a 1D frequency-0 Fourier Transform F1 of the 3D
density along the Z axis. For this reason, it is convenient to
work with the images and the 3D density parameterized in
the Fourier domain.

Formally, we assume both the 3D density Ψ and any 2D
image oi to be approximately band-limited and locally-
supported. We also assume the density and the images, as
well as their Fourier transform, to be square-integrable, en-
suring the invertibility of the Fourier transform and the uni-
tary action of the rotations on them. In particular, by denot-
ing with Fd [·] the d-dimensional Fourier transform operator,
we assume Ψ,F3 [Ψ] ∈ L2(R3) and oi,F2 [oi] ∈ L2(R2).
Note also that the Fourier Transform Fd [·] : Rd → C is a
complex-valued signal.

First, define the 2D and 3D Fourier transforms as:

ôi(kx, ky) = F2 [oi] (kx, ky) (4)

=

∫
R2

oi(x, y)e
−i2π(xkx+yky)dxdy

Ψ̂(kx, ky, kz) = F3 [Ψ] (kx, ky, kz) (5)

=

∫
R3

Ψ(x, y, z)e−i2π(xkx+yky+zkz)dxdydz

By applying the Fourier transform on Eq. 1 and defining
k = (kx, ky, 0)

T , one can show1:

F2 [oi] (kx, ky) = F3

[
R−1

i .Ψ
]
(kx, ky, 0) (6)

= F3

[
R−1

i .Ψ
]
(k) = F3 [Ψ] (Ri.k) (7)

i.e. the Fourier Transform of the image oi corresponds to a
2D slice of the Fourier transform of the 3D density Ψ along
the plane obtained by rotating the XY plane (orthogonal to
the Z axis) with Ri. In particular, if Ri = (xi,yi, zi) ∈
SO(3), this plane is spanned precisely by xi and yi and it
is orthogonal to zi. This is visualized in Fig. 2, where the
Fourier transforms of different images correspond to differ-
ent 2D slices of the Fourier Transform of the 3D density.

1This equality is true up to a constant factor depending on the
normalization considered in the definition of the Fourier transform.
When considering an unitary discrete Fourier transform over a grid
of size D, a factor

√
D should be included.

Hence, it is more practical to consider a definition of the
tomographic projection operator directly in the Fourier do-
main Π : L2(R3) → L2(R2) as

[ΠF3 [Ψ]](x, y) := F3 [Ψ] (x, y, 0) (8)

To simplify the notation, we will not distinguish a density
from its Fourier transform unless necessary, i.e. Ψ and
oi refer to the 3D density function and the i-th image in a
basis-independent manner. Similarly, we will let Π generally
operate on both density functions or their Fourier transforms,
so we can generally write oi = ΠR−1

i Ψ, where R−1
i is

interpreted as the unitary linear operator acting on L2(R3),
the vector space of density functions, independently from
the choice of basis for this space (i.e. in the spatial or the
Fourier domain).

Common Lines This property leads to an important obser-
vation: the Fourier transforms (F2 [oi] ,F2 [oj ]) of any two
(non-coplanar) images (oi, oj) agree exactly along a line
passing through the origin, i.e. along the intersection of the
corresponding 2D slices. Geometrically, because this line
belongs to both planes, it must be orthogonal to both zi and
zj . It follows that the common line is spanned by the cross-
product of them, that is by the vector lij =

zi×zj

∥zi×zj∥ ∈ R3.

3.2. Deriving the Common-Line Loss

In this section, we derive our self-supervised loss from varia-
tional inference principles to show it encodes all information
about the cryo-EM generative process.

Following the variational inference framework (Kingma &
Welling, 2013), we consider the unknown poses as latent
variables, a posterior (encoder) qθ({Ri}i|{xi}i), parameter-
ized by our neural network Φθ, and a generative process (de-
coder) pΨ({oi}i|{Ri}i) =

∏
i pΨ(oi|Ri), parameterized

by the 3D molecular density Ψ. As commonly done in
the literature, we assume i.i.d. Gaussian noise with vari-
ance σ2, i.e. pΨ(oi|Ri) = N (oi|ΠR−1

i Ψ, σ2I). Assuming
unitary Fourier transform, the i.i.d. Gaussian assumption
holds in the Fourier domain, too, i.e. pΨ(F2 [oi] |Ri) =
N (F2 [oi] | F3

[
ΠR−1

i Ψ
]
, σ2I). From now on, we will not

explicitly write the Fourier transform operator Fd [·].

In a typical scenario, one would optimize both θ and Ψ by
maximizing the variational lower bound:

L(θ,Ψ; {oi}i) = −KL (qθ({Ri}i|{oi}i)|pΨ({Ri}i))
(9)

+ Eqθ({Ri}i|{oi}i) [log pΨ({Ri}i|{oi}i)]

which, using a uniform prior pΨ({Ri}i) over the poses and
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expanding the true posterior, equals

L(θ,Ψ; {oi}i) = H (qθ({Ri}i|{oi}i)) (10)

− Eqθ({Ri}i|{oi}i)

[
1

2σ2

∑
i

∥∥Π(R−1
i Ψ)− oi

∥∥2
2

]

Note that this target contains all the information about the
generative process of the images and the second term resem-
bles the quadratic loss used in Levy et al. (2022a).

However, in our case, we do not want to explicitly esti-
mate the 3D density Ψ, yet. Instead, recall that, for a fixed
assignment of the rotations {Ri}i, maximizing over Ψ is
equivalent to a least squares solution to the inverse linear
problem given by the observed images. In other words, by
denoting with ·H the conjugate transpose, the density Ψ
which minimizes the target

∑
i

∥∥Π(R−1
i Ψ)− oi

∥∥2 =ΨH

(∑
i

RiΠ
HΠR−1

i

)
Ψ

(11)

+
∑
i

∥oi∥2 − 2ΨH

(∑
i

RiΠ
Hoi

)

is given by the Moore-Penrose pseudo-inverse2 :

Ψ =

(∑
i

RiΠ
HΠR−1

i

)−1(∑
i

RiΠ
Hoi

)
(12)

Let’s study the term
∑

i RiΠ
HΠR−1

i .

Theorem 3.1. Let Π : L2(R3) → L2(R2) be the tomo-
graphic projection along the Z axis defined in the Fourier do-
main via slicing as in Eq. 8. The operator

∑
i RiΠ

HΠR−1
i

is diagonal and counts for each frequency k ∈ R3 the num-
ber of images containing it.

Proof. Let Vi
∼= L2(R2) be the subspace of L2(R3) of

functions over the 2D plane described by the rotation Ri =
(xi,yi, zi), i.e. orthogonal to zi. Note that Vi

∼= L2(R2) is
the co-image of ΠR−1

i or the image of the back-projection
RiΠ

H . Then, Πi := RiΠ
HΠR−1

i : L2(R3) → L2(R3) is
an orthogonal projection operator on Vi ⊂ L2(R3), i.e. it
acts as the identity on Vi. In other words, Πi is the identity
on the frequency k = (kx, ky, kz)

T if k belongs to the plane
spanned by (xi,yi), i.e. if k ⊥ zi, and is zero otherwise.
Then, the operator

∑
i RiΠ

HΠR−1
i =

∑
i Πi is diagonal,

i.e. it acts on each frequency k independently by scaling it
by a factor equal to the number of Ri = (xi,yi, zi) such
that k ⊥ zi.

2We implicitly restrict our consideration to the subspace of
L2(R3) corresponding to the subset of frequencies appearing in at
least one image, such that

∑
iRiΠ

HΠR−1
i is invertible.

Then, assuming rotations are approximately uniformly dis-
tributed, the operator

∑
i RiΠ

TΠRT
i is approximately a

scalar multiple of the identity ηI , where η is the average
number of images any 3D frequency appears in.

By replacing this matrix with ηI and replacing Ψ ≈
η−1

(∑
i RiΠ

Hoi
)

in the target function, we obtain∑
i

∥∥Π(R−1
i Ψ)− oi

∥∥2 = (13)

η−2
∑
ijk

oHj ΠR−1
j RiΠ

HΠR−1
i RkΠ

Hok

+
∑
ij

∥oi∥2 − 2η−1
∑
ij

oHj ΠR−1
j RiΠ

Hoi

Note now that the operator ΠRjR
−1
i ΠH projects the

common line from image j to image i and, therefore,
oHj ΠRjR

−1
i ΠHoi is just the inner product of the images

oi and oj along their common line. The order-three quan-
tity oHj ΠR−1

j RiΠ
HΠR−1

i RkΠ
Hok is the inner product be-

tween oj and ok along those points shared between the
three images i, j, k; because the intersection of three generic
planes contain just the origin, this term is almost always just
the average density of the molecule3 (i.e. the frequency 0
Fourier Transform), which is a constant term.

Finally, we recognize a simple quadratic loss∑
i

∥∥Π(R−1
i Ψ)− oi

∥∥2 (14)

≈
∑
ij

∥oi∥2 − 2η−1
∑
ij

oHj ΠR−1
j RiΠ

Hoi

which enforces each pair of images (oi, oj) to agree along
the common line defined by their respective estimated poses
(Ri, Rj). Hence, dropping the constant terms ∥oi∥2, the
final training target we want to maximize becomes

L(θ,�Ψ; {oi}i) = H (qθ({Ri}i|{oi}i)) (15)

+ Eqθ({Ri}i|{oi}i)

 1

ησ2

∑
ij

L(Ri, Rj)


with L(Ri, Rj) = oHj ΠR−1

j RiΠ
Hoi, which is only a func-

tion of the parameters θ of our encoder parameterising the
posteriors.

3.3. Computing the Common Line

Note that if Ri = (xi,yi, zi)
T , the vector zi defines the

axis orthogonal to the plane spanned by (xi,yi). Hence,

3The intersection is non-degenerate only if the common-line
lij =

zi×zj

∥zi×zj∥ belongs to ok too, i.e. if zT
k lij = 0. Assuming

Ri, Rj , Rk are uniformly distributed, the product zT
k lij is approx-

imately uniform in [−1, 1], so the case zT
k lij = 0 is negligible.
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the common line between two planes, identified by the two
axes zi and zj , is a line orthogonal to both zi and zj . An
orthogonal basis for this line is easily obtained via the (nor-
malized) cross product lij =

zi×zj

∥zi×zj∥2
. Next, we need to

find the equation of the line lij inside both planes, i.e. we
have to express lij with respect to xi,yi and with respect to
xj ,yj . Since these vectors are orthonormal, this is simply
given by the projection on them, i.e.:

xi = lTijxi yi = lTijyi xj = lTijxj yj = lTijyj (16)

Note that all these computations are differentiable with re-
spect to the predicted poses4 Ri, Rj .

Final loss We can use this to extract the common line from
two images oi and oj and then compute their discrepancy.
The loss in Eq. 15 can be implemented by using

L(Ri, Rj) =

∫
R
F2 [oi] (λxi, λyi) · F2 [oj ] (λxj , λyj)dλ

(17)

where · represents complex conjugation. As argued in
Sec. 3.2, this common-lines loss encodes the cryo-EM gen-
erative process and the geometry of the problem, providing
all constraints needed to solve the linear inverse problem.

In practice, we find a mean squared error more practical and
helpful to achieve convergence:

L(Ri, Rj) = (18)

−
∫
R
|F2 [oi] (λxi, λyi)−F2 [oj ] (λxj , λyj)|2 dλ

Note that this squared error includes the inner product in
Eq. 15 but also penalizes common lines which have higher
norm. This is helpful to avoid local optima where the model
only picks the line within an image with highest norm, re-
gardless of its alignment with the lines in the other images;
see Apx. B. Finally, the loss is implemented by sampling
a discrete number L of points along the common line in
both images oi and oj . This operation is differentiable
with respect to the sampling coordinates {(λlxi, λlyi)}Ll .
We use torch.nn.function.grid sample to sam-
ple L = 101 points with bilinear interpolation from each im-
age.

Frequency Marching As commonly done in the litera-
ture (Zhong et al., 2021), we follow a frequency-marching
strategy, i.e. we only use a low-resolution (heavily band-
limited) version of the images in our loss function, but we

4Here, we consider Ri, Rj ∈ R3×3 as matrices. A neural
network outputs an element of SO(3) (e.g. using quaternions or
SVD as in Sec. 4.1), which then needs to be converted into a 3× 3
matrix to compute the loss. If this conversion is differentiable, the
gradient can be back-propagated through the network’s output.

gradually increase their resolution during the training pro-
cess. This approach is helpful since the Fourier transforms
contain most energy in the low frequencies, while higher
frequencies are more affected by the i.i.d. white noise. By
initially using only the lowest frequencies, it is easier for the
models to avoid spurious local optima created by the noise.

Additional Regularization It is possible that a model’s
predictions are mostly concentrated around the same pose;
in particular, this is likely to happen at initialization. In this
case, our loss is not suitable, since we have assumed that all
poses are different such that the common line between each
pair of images is well defined. Indeed, whenever Ri and
Rj share a similar or opposite viewing direction zi ≈ ±zj ,
the gradient ∂L(Ri,Rj)

∂zi
is particularly noisy and unstable;

see Apx. A and Fig. 4. In order to prevent the model from
getting stuck in these solutions, we include an additional reg-
ularization term which forces the predicted poses to spread.
Specifically, we consider a linear combination of three terms.
1) The first term forces the center of the set of vectors
{zi}i (recall that zi is the viewing direction along which
the volume is projected to generate oi) to be close to zero
λ(1)({zi}) = 1

3

∥∥ 1
N

∑
i zi
∥∥2
2
. 2) The second term forces

the covariance of the vectors {zi}i to be close to identity
matrix divided by 3 (this is the covariance of a uniform distri-
bution on the unit sphere) λ(2)({zi}) = 1

9 |Cov({zi})−
1
3I|.

3) The last term λ(3) is an energy function modelling re-
pulsive forces between each pair of vectors in {zi}i, de-
fined5 as λ(3)

ij (zi, zj) = min(|zT
i zj |, 0.6). The final regu-

larization term to minimize is given by 0.15λ(1)({zi}) +
0.3λ(2)({zi}) + 1

N2

∑
i ̸=j λ

(3)
ij (zi, zj). We found these co-

efficients with a short hyperparameter search, comparing
the final performance of our models.

4. Deep Learning and Inductive Biases
In this section, we consider a few different approaches to
design the network Φθ used to predict the poses.

Steerable PCA features In all cases, for simplicity, we
do not use the full images {oi}i as inputs to our model. In-
stead, we leverage steerable PCA (Zhao et al., 2016; Zhao &
Singer, 2013) to project the images in the dataset to lower di-
mensional feature vectors. In particular, we use the ASPIRE
software to project to the top 400 principal components with
angular frequency smaller than 12. Note that steerable PCA
is typically used in ASPIRE (Zhao & Singer, 2014) as a
preprocessing step before estimating the images with similar

5Note that the use of the absolute value | · | implies the forces
depend on the angular distance between the axes aligned with the
vectors but they are independent of the vectors’ directions. min is
used to ensure the regularization only includes local repulsion and
does not enforce a uniform distribution too heavily.
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viewing directions and their relative rotations. Fig. 3 shows
some examples of denoised images using steerable PCA.

Variational Inference vs Point Estimate In Sec. 3.2 we
derived our loss under the variational inference framework,
but recent deep learning approaches to cryo-EM only rely on
deterministic encoder architectures, which just provide point
estimates of the poses, e.g. (Levy et al., 2022a). Similarly,
our methods also only output point-estimates.

π-rotation augmentation As observed in Levy et al.
(2022a), noisy low-resolution images are difficult to dis-
tinguish from their version rotated by π. Levy et al. (2022a)
consider a ”symmetrized loss” by only backpropagating
through the lowest loss achieved by an image oi or its ro-
tated version rπ.oi. Instead of adapting our loss6, for each
image oi, our models output both the estimated pose R̂i and
a binary distribution over {R̂i, R̂irπ}. We use the Gumbel-
Softmax trick to sample and train the models; by using
an initial high-temperature, we initially sample the two ro-
tations randomly, ensuring sufficient exploration, but we
gradually decrease the temperature over the first three train-
ing epochs, allowing the models to learn to prefer only one
of the two solutions.

Amortized Inference with MLP The simplest design
employs the same network to predict the pose of each image
independently from the others, i.e. R̂i = Φθ(oi). Because
we use the steerable PCA features instead of the raw images,
this architecture is implemented by a simple MLP. This
approach is a simplified version of the amortized inference
used in Levy et al. (2022a), which trains a convolutional
neural network (CNN) to predict the pose of each image
independently, but differs by the training loss used.

Message Passing Inspired by the group synchronization
framework (see Sec. 2), we also consider more complex
architectures which predict an image’s pose conditioned on
all images in a batch. The intuition behind this idea is that
the relative poses between pairs of images provide sufficient
information to compute an approximate estimation of the
absolute poses. Moreover, the synchronization problem is
typically easier to solve than the complete cryo-EM inverse
problem (even state-of-the-art solutions can suffer from con-
vergence issues); for instance, Perry et al. (2018) describe
an iterative message passing algorithm which provably con-
verges to a solution, while Cesa et al. (2022a) consider a
spectral relaxation of the problem which can be directly
solved via eigenvalue decomposition. For this reason, we
expect our models can benefit from the relative poses as
well as all images’ features to estimate a single image’s

6Note that, if our model is O(2) equivariant as in Sec. 4.3, the
prediction of oi and rπ.oi are guaranteed to be consistent, so there
is no benefit in using the symmetrized loss in such case.

pose. Following this design principle, in Sec. 4.2, we con-
sider an architecture which uses attention to leverage the
intermediate features of all images in a batch to estimate
their poses. Instead, in Sec. 4.4, we describe an equivariant
architecture which includes a message-passing module sim-
ilar to Perry et al. (2018), sharing messages between nodes
corresponding to images with similar viewing directions and
aligning the features in the neighborhood of a node using
the relative rotations on the edges.

4.1. Parameterizing SO(3) elements

Our architectures need to output elements in SO(3). To
do so, our models output two vectors x′,y′ ∈ R3. We
map this output to SO(3) by projecting the matrix R′ =
(x′,y′,x′ × y′) ∈ R3×3 to the closest SO(3) matrix via
SVD7, i.e. if R′ = UΣV T is the SVD of R′, the matrix
R = UV T is its projection to SO(3). Importantly, this
construction is equivariant to the group O(2) acting on the
plane spanned by (x′,y′), which is important in Sec. 4.3.

4.2. Non-equivariant baselines

The first baseline is a simple 6-layer MLP. We also con-
sider an attention-based architecture (MLP-Self-Attention),
including an MLP (processing each image independently)
followed by 4 self-attention layers. Self-attention is applied
across the full set of images present in a mini-batch.

4.3. Local O(2) Equivariance

The cryo-EM problem presents a number of symmetries
which can be leveraged by equivariant neural networks
(Cohen & Welling, 2016a; Cohen et al., 2018; Kondor &
Trivedi, 2018; Weiler et al., 2021). We summarize these
symmetries in Tab. 1; see also (Cesa et al., 2022a) for a
more detailed discussion.

Indeed, note that if a single image oi is mirrored or trans-
formed by a planar rotation g ∈ O(2), the pose of the new
image g.oi is related to the original one by a similar trans-
formation, i.e. Rig

−1 (rows 1 and 4 of Tab. 1 and Fig. 1).
Here, the action of g = rαf

c ∈ O(2), with α ∈ [0, 2π) and
c ∈ {0, 1}, on SO(3) in Rig

−1 is given by

g : Ri 7→ Rig
−1 = Ri

[
−1c

1
−1c

] [
cosα − sinα
sinα cosα

1

]
(19)

This local O(2) symmetry can be encoded into a neural
network via equivariance. Specifically, an O(2) equivariant
model satisfies the following constraint by design:

Φθ(g.oi, {oj}j ̸=i) = Φθ(oi, {oj}j ̸=i)g
−1 ∀g ∈ O(2) .

7Note that, sinceR′ is constructed by using x′×y′, if x′ ̸= y′,
detR′ > 0. Since Σ has non-negative entries, it follows that
R = UV T already has positive determinant.
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Table 1: Summary of the Cryo-EM symmetries. 1-4 are local symmetries, involving only the pose of single images. 5-6 are global
symmetries, involving a transformation of a reference density Ψ and, therefore, of all images’ poses.

description symmetry

1 r.oi = Π(rR−1
i .Ψ) r ∈ SO(2) rotation around Z axis SO(2) equivariance

2 oi = Π(mz R
−1
i .Ψ) mz ∈ O(3) mirroring along Z axis Mirroring (Z) invariance

3 f .oi = Π(mxR
−1
i .Ψ) mx ∈ O(3), f ∈ O(2) mirroring along X axis Mirroring (XY ) equivariance

4 f .oi = Π(ryR
−1
i .Ψ) ry = mx mz ∈ SO(3) rotation by π around Y axis Reflection equivariance

5 oi = Π((RRi)
−1.RΨ) R ∈ SO(3) pose ambiguity

6 oi = Π((Rirz)
−1. i Ψ) i = −1 · I ∈ O(3) inversion, rz ∈ SO(3) rotation by π around Z axis chirality ambiguity

We construct a 6-layer equivariant MLP using the escnn
library (Weiler & Cesa, 2019; Cesa et al., 2022b). In the
design of the network, the input features already carry an
action of O(2) since they are generated by steerable PCA.
The output are two vectors x′,y′ as described in Sec. 4.1;
the action of O(2) on them is the one defined in Eq. 19,
restricted on the first two columns of Ri. In the intermediate
layers of the network, we use ∼ 500 channels containing
copies of regular representations of O(2), band-limited up
to a maximum frequency L, decreasing with the depth of the
network from L = 12 in input to L = 1 in output. We apply
pointwise ELU non-linearities computed using a discretized
Fourier transform as described in Cesa et al. (2022b).

4.4. The group synchronization problem and Global
SO(3) Equivariance

As we argued earlier, the estimation of the poses of a set of
images can be related to the group synchronization problem.
In this section, we assume the reader has some familiarity
with the framework of steerable and gauge CNNs (Cohen &
Welling, 2016b; Weiler et al., 2021; Cesa et al., 2022b) and
the message passing algorithm from Perry et al. (2018).

First, we note that the AMP algorithm of Perry et al. (2018)
interestingly resembles the typical design of steerable and
gauge CNNs, which use the following building block8:

f l+1(i) = σ

Wl

∑
j∼i

ρl(gij)f
l(j) + bl

 (20)

where ρl is the representation of the equivariance group
G acting on the features f l(j) ∈ Rcl and Wl ∈ Rcl+1×cl

is an equivariant linear map. In particular, we highlight
the following facts: 1) each channel in the features f l(i)
associated to a node i are (bandlimited) Fourier transforms
of probability density functions over SO(3), representing
the estimated posteriors. 2) the message-passing module
parallel-transports these features along an edge j ∼ i by
rotating them via ρ(gij) according to the relative rotation
gij ∈ G on the edge. 3) the algorithm alternates a message-
passing step with the application of a softmax activation σ,

8Although messages can be weighted by non-isotropic convo-
lution kernels Wl(∆xij) rather than a constant kernel Wl.

which turns the aggregated messages into a probability dis-
tribution. A gauge CNN like de Haan et al. (2021) follows
a similar pattern (possibly, replacing softmax with another
activation σ).

Given this observation, we unfold the basic message passing
of AMP (without Onsager correction) into a neural network.
A similar, albeit more complex, strategy is typically used
to train neural networks to solve compressed-sensing prob-
lems in a principled way, e.g. (Gregor & LeCun, 2010;
Borgerding & Schniter, 2016). Specifically, each layer uses
this message passing for each channel independently and
then learns a G-equivariant linear map Wl to mix the fea-
tures of each node. We replace softmax with a simpler
ELU activation applied over features in the SO(3) regular
representation band-limited up to frequency L = 2. Our
6-layer message-passing network is preceded by a 2-layer
O(2) equivariant MLP encoder, which processes each image
independently and initializes the message passing features.

With respect to Perry et al. (2018), we don’t know the full
synchronization graph, with the relative poses in SO(3) of
every pair, but we can still rely on a local version of it.
As shown in Cesa et al. (2022a), these local relative poses
in G = O(2) still sufficiently constrain the global ones.
Moreover, they show that these local messages approximate
a local parallel transport operator over the projective plane,
which further motivates the relation with Gauge CNNs.

However, the solution to the synchronization problem is not
unique, and the solution space presents a global symmetry.
Indeed, note that the set of poses {Ri}Ni can be simultane-
ously transformed as {RRi}Ni by a 3D rotation R ∈ SO(3)
while still being valid (row 5 of Tab. 1). This symmetry
is also related to the fact that cryo-EM images do not con-
tain information about the actual pose of the molecule. In
summary, the full symmetry is given by SO(3)×O(2)×N ,
where SO(3) acts (globally) on the left while each O(2)
acts (locally) on the right of an estimated pose. Hence, here
G = SO(3)×O(2). Since the features f l(i) of each node
i contain band-limited functions over SO(3), the action ρl

of G is just induced by its action on the elements of SO(3).

AMP is equivariant to this full symmetry, and our neural
version will be equivariant too if its linear layers are also
G = SO(3)×O(2) equivariant. While our network does not
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need SO(3) equivariance (the global symmetry is already
broken by the O(2) equivariant MLP encoder preceding the
message passing), we choose to evaluate both versions of
the architecture in our experiments.

(a) Original images
with SNR = 0.12.

(b) Denoised images
with Steerable PCA.

Figure 3: Examples of images from the dataset and their
denoised version using Steerable PCA.

5. Experiments
To validate our method, we use a synthetic dataset gener-
ated from the density of the 70S Ribosome9 (Hentschel
et al., 2017). We use 5000 images with SNR 0.12 and size
97× 97; see Fig. 3. Since we consider only synthetic data
with known poses, we can directly evaluate the quality of
the predicted poses. During training and evaluation, we use
different random batches containing subsets of the dataset;
the final performance is given by the averaged predictions.
Estimated and real poses are compared using the correla-
tion10 1

N
√
3

∥∥∥∑i RiR̂
T
i

∥∥∥
F

. During training, for each image
oi in the batch, the common-line loss is evaluated on the
pair (i, j) for 200 random images oj in the batch. A short
hyperparameter search is performed to tune some design
choices and standard training parameters.

Table 2: Pose correlation for different methods.

Method Pose Correlation

VDM O(2) L = 1 (Cesa et al., 2022b) 82.0
MFVDM O(2) L = 5 (Cesa et al., 2022b) 97.5

MLP 43.2± 0.1
MLP-Self-Attn 39.9± 0.005

MLP O(2) 92.2
GNN G = O(2) L = 2 93.8

GNN G = SO(3)×O(2) L = 2 95.4

Using the full dataset, we build the (frequency L = 1) O(2)

9Structure 5o60 from the Protein Data Bank database.
10Note its invariance to a global rotation of the estimated poses.

Vector Diffusion Map (VDM) matrix (Cesa et al., 2022b)
and save its top eigenvectors. For a random batch, the lo-
cal synchronization graph is efficiently estimated by using
these eigenvectors11, i.e. we use the MFVDM denoising
from Cesa et al. (2022b) with L = 1. We also use the
full MFVDM algorithm as a baseline; it denoises the near-
est neighbors and the relative rotations via MFVDM up to
frequency L = 1 or 5 and performs the final synchroniza-
tion via spectral relaxation. To evaluate the appropriateness
of the proposed self-supervised loss and compare it with
our non-trainable baseline, we only consider the task of
overfitting the training data. Tab. 2 reports our results; un-
fortunately, our methods do not improve over the baseline.

6. Discussion of Results and Conclusion
In this work, we proposed two novel ideas: 1) a common-
lines based loss to train a deep pose estimator network and
replace the expensive intermediate 3D reconstructions and
2) the integration of group synchronization to improve the
convergence of the pose estimation. Specifically, we ex-
pected group synchronization to help avoiding local optima
and the common-line loss to enable accurate estimations by
explicitly encoding the generative process. Unfortunately,
our preliminary experimental results demonstrated an un-
satisfying performance of our methods. Still, these results
yield a few interesting observations.

First, we observe that an O(2)-equivariant design is not only
useful but actually necessary for the models to converge
to reasonable estimates. Moreover, by including a mes-
sage passing component and by further enforcing SO(3)-
equivariance to more closely imitate the AMP algorithm,
while not necessary, our model’s performance improves.
This illustrates the importance of including the right induc-
tive biases to solve the problem in a principled way. Hence,
future works could explore new strategies to combine this
approach with the deep amortized inference from Levy et al.
(2022a), which has been proven successful so far, possibly
replacing steerable PCA features with raw images.

Second, the common-line loss might suffer from more local
optima: since it compares pairs of poses which variate at
each iteration, the training target quickly changes and can be
unstable. Instead, the loss in Levy et al. (2022a) relies on a
single reconstruction which is smoothly adapted, providing
a more stable target for optimization. See also Apx. B for a
simple study of the common-line loss landscape.

Finally, we suspect our model’s performance is limited by
the quality of the estimated noisy synchronization graph.
Future works could study better ways to estimate or learn
relative poses without relying on imprecise PCA features.

11If ψ(i) ∈ Rd×2 are the top d eigenvectors at node i, the matrix
ψ(i)Tψ(j) and its determinant approximate Rij and zT

i zj .
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Figure 4: Ratio between the variance of the gradient and its norm as a function of the similarity between the viewing
directions zi and zj .

A. Gradient of Common-Line loss at co-planar poses
In this section, we show how the presence of images with co-planar poses affect our common-lines based loss and, more
specifically, its gradient.

Consider two images oi and oj and their predicted poses Ri = (xi,yi, zi) ∈ R3×3 and Rj = (xj ,yj , zj) ∈ R3×3. Note
we assume R∗ ∈ R3×3 rather than R∗ ∈ SO(3) since our loss depends on Ri, Rj parameterized as matrices in R3×3 and
the following arguments are independent of how our neural networks predict elements of SO(3) (although the particular
choice of parameterization can affect how this gradient is back-propagated through the model).

Note that the loss L(Ri, Rj) from Eq. 17 or Eq. 18 only depends on the coordinates in Eq. 16, i.e.:

xi = lTijxi yi = lTijyi xj = lTijxj yj = lTijyj

For convenience, define vi = (xi, yi)
T ∈ R2 and vj = (xj , yj)

T ∈ R2 and write Lij = L(Ri, Rj). Then, using the chain
rule:

∂Lij

∂Ri
=

∂vi

∂Ri

∂Lij

∂vi
+

∂vj

∂Ri

∂Lij

∂vj
(21)

Hence, in this section, we can focus only on the partial derivatives ∂vi

∂Ri
and ∂vj

∂Ri
. We will study the partial derivatives with

respect to xi,yi and zi independently.

First, note that:

∂xi

∂xi
=

∂yi
∂yi

= lij (22)

∂yi
∂xi

=
∂xi

∂yi
= 0 (23)

and

∂xj

∂xi
=

∂yj
∂xi

=
∂xj

∂yi
=

∂yj
∂yi

= 0 (24)

Hence, we only need to consider the following quantities: ∂xi

∂xi
, ∂vi

∂zi
= (∂xi

∂zi
, ∂yi

∂zi
) and ∂vj

∂zi
= (

∂xj

∂zi
,
∂yj

∂zi
).

To understand how the similarity of zi and zj , we study the variance of the gradients when Rj is perturbed by a small
amount of noise, as a function of the similarity |zT

i zj |.
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To do so, we sample 300 random pairs of rotations Ri, Rj ∈ SO(3) and compute their similarity |zT
i zj |. Then, for each

pair, we generate 50 variations of Rj by perturbing it with a small Gaussian noise with standard deviation σ = 0.04 in the
quaternion space, and compute each gradient ∂xi

∂xi
, ∂vi

∂zi
and ∂vj

∂zi
.

For each pair, we compute the average norm of the gradients (Frobenious norm for the Jacobians) and the standard deviation
(over the 50 samples) of each partial derivative, which we average to obtain a single number. In Fig. 4, we plot the ratio
between the standard deviation and the average norm for each pair, as a function of the similarity |zT

i zj |.

Whenever zi is close to ±zj , the variance of the gradient is very close to its average norm (the ratio approaches 1); this
is particularly true for the gradients of zi, see Fig. 4a but less severe for zi and yi. That result suggests that the training
process can be particularly unstable in this setting, especially since the gradient on zi is necessary to leave this situation but
it is also the most affected by that.

B. Common-Line Loss Landscape
In this section, we provide a simple study of the common-line loss landscape. To do so, we compute the common line loss
between two random images oi and oj , respectively at the poses RiRθ1 and RjRθ2 .

Ri = (xi,yi, zi) and Rj = (xj ,yj , zj) are the ground-truth poses of oi and oj .

Rθ =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 is a 2D rotation by θ ∈ [0, 2π).

Hence, RiRθ is the pose of oi rotated by θ around its projection axis zi and simply corresponds to rotating the common line
vi = (xT

i lij ,y
T
i lij)

T ∈ R2 in the image oi by θ. Note that if θ1 = θ2 = π, the loss is unchanged since the common line
predicted is the same, only reflected.

In Fig. 5, we plot the common-line loss in Eq. 18 as a function of θ1 and θ2, for different random pairs (i, j). Note that any
possible predicted pair of common lines corresponds to a point in the figure (multiple choices of Ri, Rj ∈ SO(3) lead to the
same common lines). This enables us to study the complete loss landscape for the simple case of N = 2 images. The right
column of Fig. 5 highlights the global minima of the loss.

First, we note the expected periodicity of the loss by θ1 = θ2 = π in all images.

In the first pair (first row), we also observe spurious global minima at θ1 = 0 and θ2 = π (and the opposite), which
corresponds to a reflection of the correct common line in only one of the two images. This is likely related to the spurious
planar symmetry described in Levy et al. (2022a) and in Sec. 4, which motivated the use of a ”symmetrized loss” in Levy
et al. (2022a).

We also note that the landscape can vary a lot over different pairs. While the first pair has a smooth landscape with two clear
global minima at expected locations (0, 0) and (π, π), other pairs show multiple global optima. In some cases, like the last
row, the two locations (0, 0) and (π, π) are close but not exactly global optima.

We also compare the original formulation of the loss in Eq. 17 with the modified version in Eq. 18 which we use in our
experiments. Fig. 6 shows similar plots obtained using Eq. 17 (pairs are randomly sampled and don’t necessary match those
in Fig. 5). When using the original loss in Eq. 17, the global optima often do not include the ground-truth (0, 0) and (π, π).

Finally, we emphasise that this study is limited to the case N = 2. However, during training, the loss is averaged over
multiple pairs.
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Figure 5: Common line loss using Eq. 18 between two random images oi and oj using the poses RiRθ1 and RjRθ2 , with
θ1, θ2 ∈ [0, 2π). Each row is a different random pair (i, j). In the right column, areas where L < 0.4 are highlighted with a
darker color.
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Figure 6: Common line loss using Eq. 17 between two random images oi and oj using the poses RiRθ1 and RjRθ2 , with
θ1, θ2 ∈ [0, 2π). Each row is a different random pair (i, j). In the right column, the points closer to global optima are
highlighted with a darker color.
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