
Can strong structural encoding reduce the importance of Message Passing?

Floor Eijkelboom 1 Erik Bekkers 1 Michael Bronstein 2 Francesco Di Giovanni 3

Abstract
The most prevalent class of neural networks op-
erating on graphs are message passing neural net-
works (MPNNs), in which the representation of
a node is updated iteratively by aggregating in-
formation in the 1-hop neighborhood. Since this
paradigm for computing node embeddings may
prevent the model from learning coarse topolog-
ical structures, the initial features are often aug-
mented with structural information of the graph,
typically in the form of Laplacian eigenvectors
or Random Walk transition probabilities. In this
work, we explore the contribution of message
passing when strong structural encodings are pro-
vided. We introduce a novel way of modeling
the interaction between feature and structural in-
formation based on their tensor product rather
than the standard concatenation. The choice
of interaction is compared in common scenar-
ios and in settings where the capacity of the
message-passing layer is severely reduced and
ultimately the message-passing phase is removed
altogether. Our results indicate that using tensor-
based encodings is always at least on par with the
concatenation-based encoding and that it makes
the model much more robust when the message
passing layers are removed, on some tasks incur-
ring almost no drop in performance. This suggests
that the importance of message passing is limited
when the model can construct strong structural
encodings.

1. Introduction
Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli
et al., 2008) is now one of the most studied and adopted
framework for machine learning on graphs. GNNs typi-

1University of Amsterdam 2University of Oxford 3University of
Cambridge. Correspondence to: Floor Eijkelboom <eijkelboom-
floor@gmail.com>.

Proceedings of the 2nd Annual Workshop on Topology, Algebra,
and Geometry in Machine Learning (TAG-ML) at the 40 th In-
ternational Conference on Machine Learning, Honolulu, Hawaii,
USA. 2023. Copyright 2023 by the author(s).

cally operate on attributed graphs, and learn functions that
model complex interactions among the underlying topology
and the features (Sperduti, 1993; Goller & Kuchler, 1996;
Bruna et al., 2014; Defferrard et al., 2016). Since graphs
are a flexible way of representing many data, GNNs are be-
ing developed in many scientific and industrial fields alike
(Stokes et al., 2020; Mirhoseini et al., 2021; DeZoort et al.,
2023; Bapst et al., 2020). Accordingly, understanding what
makes a GNN work, when it is needed, and how to best
leverage the topological information from the graph in the
GNN pipeline are all essential problems of broad interest.

One of the most common classes of GNNs is message pass-
ing neural networks (MPNNs) (Gilmer et al., 2017), where
the features associated with each node are iteratively up-
dated based on the 1-hop neighborhood information in the
graph. While this approach directly leverages the sparsity of
the underlying graph by only exchanging messages among
adjacent nodes, a consequence of this learning procedure
is that nodes with similar local structures will obtain sim-
ilar hidden representations, even when they actually play
different roles from a coarser topological scale. These ambi-
guities, ultimately, impact the expressive power of MPNNs.
In fact, Xu et al. (2019); Morris et al. (2019) showed that
MPNNs are, at most, as powerful as the 1-WL color refine-
ment algorithm (Weisfeiler & Leman, 1968) in distinguish-
ing pairs of graphs without features. In tasks where the
graph structure is fundamental - e.g. in molecular tasks -
this limits the capabilities of the network severely.

A solution to the problem of limited expressive power of
MPNNs that minimizes the impact on the efficiency by
preserving the message-passing template, amounts to aug-
menting the initial node features with structural information
(Bouritsas et al., 2022; Dwivedi et al., 2021), and is at the
heart of applications of transformers to graphs (Ying et al.,
2021; Kreuzer et al., 2021). This graph-aware feature aug-
mentation is typically based on either the eigenvectors of the
graph Laplacian or on the transition probabilities of random
walks on the graph. Although the choice of the structural
information to be provided is being investigated extensively
(Rampasek et al., 2022), how we combine this information
with the input features is a much less studied subject. In fact,
the canonical choice in this regard is simply concatenating
the node-features and the structural (positional) ones before
feeding them into a message-passing layer (often after a

1



Can strong structural encoding reduce the importance of Message Passing?

suitable encoding). Moreover, while structural information
is now known to improve MPNNs, especially on molecular
tasks, it is unclear to what extent message-passing is needed,
especially if we can extract structural information from the
graph in a powerful way.

Contributions. In this paper, we explore structural encod-
ing in GNNs and the role of the message-passing paradigm
when using structural features. First, we introduce a novel
way of modeling the interaction between feature and struc-
tural information based on their tensor product – rather
than the conventional concatenation operation – and com-
pare how these two approaches to structural encoding affect
performance in different GNN models. Second, in order
to assess the impact of the structural encoding compared
to that of the actual message-passing paradigm, we study
the effects of reducing the weights in the message-passing
layer and number of message passing layers in the model,
ultimately entirely removing the message-passing phase.

Our results indicate that using a tensor-product encoding is
always on par with the concatenation-based encoding, often
slightly outperforming the latter. Moreover, we provide em-
pirical evidence that when excluding the message passing
layer from our network, the tensor-based encoding is signif-
icantly more robust than its concatenation counterpart. In
fact, on some tasks, when using a tensor encoding almost
no drop in performance is observed, and a GNN consist-
ing of encoder and decoder, without any message passing,
performs on par with GNNs that include message passing
even when the number of parameters used is significantly
reduced. Furthermore, we observe that when the model is
provided with strong structural encodings, there is no major
improvement noticeable when using dense message passing
layers compared to using very sparsely parametrized ones
for both concatenation and tensor encodings. This suggests
that the role of message passing layers may often be limited
when the model is able to encode structural information in
a sufficiently powerful way.

2. Preliminaries
Graphs and MPNNs. Let G = (V, E) be an undirected
graph with nodes V and edges E and let i ∼ j denote
that nodes i and j are connected, i.e., (i, j) ∈ E . The
adjacency matrix A encodes the connectivity of the graph
since Aij = 1 if i ∼ j and Aij = 0 otherwise, while the
degree matrix D = diag(d1, . . . , dn), where di =

∑
j Aij ,

represents the connectivity of each node.

In the deep learning context, the nodes of the graph are
typically endowed with features {hi : i ∈ V} ⊂ Rd.
Graphs lend themselves as useful descriptors for data that
live on irregular domains, e.g. molecules or social networks.
Graph neural networks (GNNs) are neural architectures that

take as input graphs and process the graph structure in a
permutation-equivariant way, e.g., to predict the chemical
properties of a molecular graph.

One of the most common classes of GNNs are Message
Passing neural networks (MPNNs) (Gilmer et al., 2017),
where the features associated with each node are iteratively
updated based on the 1-hop neighborhood information, i.e.

hℓ+1
i = MPNNLayer(hℓ

i , {{hℓ
j}}i∼j), (1)

where hℓ
i denotes the hidden state of node i in layer ℓ and

{{hℓ
j}}i∼j is the multiset of adjacent features. Note that the

MPNN formalism includes several main instances of GNN
architectures such as GCN (Kipf & Welling, 2017), GIN (Xu
et al., 2019), or SAGEConv (Hamilton et al., 2017). The
initial features {hin

i } are typically embedded using some
multi-layer Perceptron (MLP),

hℓ=0
i = Encode(hin

i ).

To get a hidden state representing the entire graph – which
is needed for graph-level tasks – a permutation-invariant
readout map is applied to all final hidden states of the nodes,
that is for an MPNN of L layers we have

hG = Agg
v∈V

hL
v ,

where Agg is a permutation invariant operator such as sum,
mean, or max. This state is then passed through a final
decoder (often an MLP) to derive the final prediction com-
puted by the MPNN.

Augmented MPNNs. A now established paradigm to
frame the expressive power of GNNs is the graph-
isomorphism test. In fact, Xu et al. (2019); Morris et al.
(2019) proved that MPNNs are, at most, as powerful as
the 1-WL test (Weisfeiler & Leman, 1968) in distinguish-
ing unattributed graphs. As a consequence of this analogy,
MPNNs typically struggle to recognize (or count) substruc-
tures (Chen et al., 2020) and will, for instance, assign equal
graph-level embeddings to the graphs in Figure 1 despite
them being non-isomorphic due to the existence of cycles
of different length.

Figure 1. Non-isomorphic graphs not distinguished by 1-WL.

In tasks such as molecular prediction, identifying substruc-
tures and hence breaking ambiguities intrinsic to the 1-WL

2



Can strong structural encoding reduce the importance of Message Passing?

color refinement, play an important role. To compensate for
the shortcomings of classical MPNNs, several approaches
have been proposed to design more powerful GNNs (Maron
et al., 2018; Keriven & Peyré, 2019; Geerts & Reutter, 2022).
However, most of these frameworks suffer from often im-
practical space-time complexity.

A different approach, amounts to augmenting the standard
MPNN formulation in various ways by incorporating topo-
logical information from the underlying graph – in ac-
cordance with the conventional nomenclature, we use the
terminology ‘structural features’ (or structural encodings).
Such augmentation can take many forms, and we outline two
broad strategies. One way considers the graphs’ structure as
explicit features (Bodnar et al., 2021). By considering e.g.
rings as explicit features to be learned, we construct more
complex neighborhood structures with the consequence of
being able to distinguish strictly more graph isomorphisms
(see also Morris et al. (2019)). Though effective, these
methods tend to be computationally expensive and typically
require more apriori domain-knowledge to identify before-
hand the structures that are likely to be relevant for the task.

A second approach is to include structural information in the
node features, meaning that the initial feature and structural
information are altered as follows:

hℓ=0
i = Encode(hin

i ,pin
i ),

where pin
i denotes the structural information of node i. Typ-

ically, the encodings are formed by first concatenating hin
i

and pin
i and then passing the resulting state through an MLP.

Besides augmenting initial features only, alternative ap-
proaches such as updating the structural information through
the message passing layers separately, have also been ex-
plored (Dwivedi et al., 2021). Augmenting node features
with graph-aware structural information can be particularly
useful for graph transformers, where structural information
is used as positional information when passing messages
(Ying et al., 2021; Kreuzer et al., 2021; Rampasek et al.,
2022).

Structural (topological) information. Although different
strategies for augmenting features with graph-information
have been proposed, random-walk transition probabilities
and Laplacian-eigenvectors constitute the most adopted
classes of structural encodings (Dwivedi et al., 2021; Ram-
pasek et al., 2022). A random walk is a Markov chain
supported on the vertices of the graph with transition matrix
R defined by R = AD−1 – if we take any probability
distribution over the graph to be a row vector. The matrix
R is typically raised to various powers to find structural
information for random walks of different lengths, where
either all entries in Rk are used for pairwise nodes, or just
the diagonal entries to only describe landing probabilities
of a node to itself (see Li et al. (2020); Dwivedi et al. (2021)

respectively). Random walks are powerful descriptors of the
graph-topology – since they capture the diffusion properties
of the graph – and are intimately related to the spectrum of
the Laplacian (Chung & Graham, 1997). In fact, recently
Black et al. (2023); Di Giovanni et al. (2023) proved that
the phenomenon of over-squashing is likely to occur among
nodes that are hard to be visited by a random walk, i.e. with
large commute time.

An alternative to using random-walk features is found in
spectral graph theory, i.e. the study of properties of graphs
using the eigenvectors and eigenvalues of matrices describ-
ing the graph. For example, the eigenvectors of the graph
Laplacian are informative about the connectedness of the
graph, and as such are commonly used as structural fea-
tures in GNNs. Recall that the Laplacian L of a graph
is computed by taking the difference between degree and
adjacency matrices, i.e. L = D − A. For a Laplacian
L with eigendecomposition L = U⊤ΛU, one can define
plap
i :=

[
Ũi1 · · · Ũik

]
, where Ũ is matrix U reordered

such that the kth row in Ũ has the kth highest eigenvalue.

3. Tensor-product structural encoding
In this section, we introduce an alternative approach to
encode structural information in GNNs that leverages ten-
sor products, rather than the typical concatenation opera-
tion. We take inspiration from physics, and in particular
the description of quantum states, and design an encoding
operation that instead of concatenating input features and
structural features, takes the tensor product of the represen-
tation.

A novel structural encoding. Formally, the tensor (or
Kronecker) product ⊗ between matrices A and B is the
matrix formed by replacing each element in A with the
product of that element with B, i.e.

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Therefore, when considering a ⊗ b for vectors a ∈ Rd,b ∈
Rq, we find that the product ai · bj is the element in index
i ·q+j, i.e. being the vector found by concatenating vectors
b scaled for each element in a.

Typically, when constructing an encoding for our input fea-
tures and structural information, the respective vectors are
first concatenated and then projected, i.e.

(hi,pi) 7→ W

[
hi

pi

]
,

for some weight matrix W ∈ Rdhidden×(d+q). To embed the
input features using a tensor product, we simply mimic this

3



Can strong structural encoding reduce the importance of Message Passing?

approach, i.e.

(hi,pi) 7→ W(hi ⊗ pi),

for some weight matrix W ∈ Rdhidden×(d·q). The main ra-
tionale behind our choice of studying a tensor product rep-
resentation, is that it is now possible to construct a much
higher-dimensional (and hence more expressive) node repre-
sentation that accounts for both features and graph topology,
even by starting from lower-dimensional entities.

However, notice that the number of inputs to the projection
has increased significantly, which is something we account
for in the experiments by significantly reducing the input
dimension. More generally though, below we explore alter-
native ways of reducing the number of parameters that are
inspired by tensor-product and the phenomenon of entangle-
ment. We note that from now on, in both the discussion and
in the experiments, we restrict to the case where the feature
and the structural coordinates share the same dimension so
that (hi,pi) is mapped to a vector in Rdhidden×dhidden .

Sparsifying message-passing through entanglement. It
is common for a message-passing layer to update the fea-
ture of a state by using a linear projection of the current
state combined with the aggregation of the messages from
its neighbours, followed by a non-linear activation. Put
differently, for many common instances of MPNNs, the
MPNNLayer operation in (1) can be taken to be an MLP.
Accordingly, the vast majority of the parameters used by a
GNN enter the MPNN layer through the weight matrices of
the MLP. Since the proposed tensor-product encoding might
have a larger contribution to the size of the neural network,
and we are generally interested in assessing the importance
and impact of the message-passing step in the GNN, we
introduce a novel way of controlling the expressivity of
MPNNLayer and its parameter count.

Suppose that hi ∈ Rd2

for some d – as in the cases
of d-dimensional features augmented with d-dimensional
structural encoding using a tensor product. We can then
‘reshape’ hi to be a d × d matrix, which we denote by
Mat(hi). We then propose to approximate the linear layer-
projection in MPNNLayer with a series of small matrices
{(Wk,Qk)}Kk=1 with Wk,Qk ∈ Rd×d, by left and right
multiplying the node-state Mat(hi), i.e.

hi 7→
K∑

k=1

WkMat(hi)Qk. (2)

The update is then used on the current state and the aggrega-
tion over the 1-hop as per (1) before the action of a pointwise
non-linear activation, e.g. for GIN with a one-layer MLP
the state Mat(hi) would be updated as follows:

ReLU(
K∑

k=1

Wk((1 + ϵ) ·Mat(hi) +
∑
j∼i

Mat(hj))Qk).

Note that when using the sparse linear layers, the expres-
sivity of the message passing procedure is constrained, and
using a larger value of K increases its expressivity. We
remark that the proposed sparsification reduces the number
of parameters in each MPNN-layer from d4 to 2K × d2

parameters, i.e. a reduction of a factor of d2

2K parameters in
general.

We note that if the node-state satisfies h′
i = hi ⊗ pi, then

reshaping the tensor-product state into a matrix, simply cor-
responds to writing it as the outer product hip

⊤
i , meaning

that the sparse layer-update in (2) takes the form

h′
i 7→

K∑
k=1

(Wkhi)(Qkpi)
⊤ =

K∑
k=1

(Wk ⊗Qk)(hi ⊗ pi)

=

K∑
k=1

(Wk ⊗Qk)h
′
i.

Accordingly, the number K determines the level of ‘entan-
glement’ between the states hi and pi at node i. In fact,
each linear matrix on the tensor (outer) product space can be
decomposed as a sum of tensor products of smaller matrices;
since any matrix of shape (d×d)×(d×d) can be represented
using a linear combination of at most K = d4 of such tensor
product matrices, the larger K, the more entanglement we
can model and hence the more degrees of freedom we can
model in the tensor product space. This is a more geometric
approach to controlling the size of the weights and hence
the number of parameters in the message-passing layer.

We finally stress that even for states that are not in a tensor-
product form, the sparsification introduced in (2) still makes
sense, and will in fact be used for the concatenation case as
well in our experiments.

4. Empirical analysis
The aim of the experimental evaluation is twofold. First, we
evaluate the difference in performance when using tensor
encoding versus concatenation encoding by comparing their
performances for multiple MPNN layers and datasets. Sec-
ond, to better understand to what extent the graph structure
can be captured without (much) message passing by both
types of encodings, a comparison is done in which a low
parameter regime for the message passing is considered.
The capacity of the message passing is constrained by re-
ducing either the number of weights or the number of layers
– ultimately removing the message passing altogether.

4



Can strong structural encoding reduce the importance of Message Passing?

To ensure the models considered can embed the structural in-
formation well, the input features and structural information
are first embedded separately before either concatenation or
a tensor product is applied, i.e.

hℓ=0
i = Encode(Whhi,Wppi),

where Encode is either the concatenation or tensor prod-
uct encoding and Wh,Wp denote linear projections of the
input features and structural information respectively. More-
over, the readout is done by summing over the final hidden
states and passing the resulting state through a two-layer
MLP for the final prediction.

To compensate for the number of features in the tensor en-
codings compared to the case of concatenation, smaller di-
mensions are provided to the weight matrices Wh and Wp

when a tensor product is used. Namely, when using a result-
ing hidden dimension in the layers of d2 features, for tensor
the weight matrices embed the inputs to d-dimensional vec-
tors whereas in concatenation the matrices embed the inputs
to d2

2 features. As such, this comparison is restricted to
using hidden dimensionalities of d2 features for some even
number d and ensures that both approaches share similar
parameters.

The message passing layers considered in this work are
GCN, GIN, and SAGEConv. The effect of the structural
encodings is compared when 1) not reducing the number of
parameters in the linear layers, referred to as ‘full’ message
passing, 2) using the sparse linear layers as seen in (2) for
two different levels of entanglement, referred to as ‘sparse’
message passing, and 3) when removing the message pass-
ing layers altogether. Note that when doing either sparse or
no message passing, we do not compensate for the reduction
in parameters in any way, implying that the sparse and no
message passing models have significantly fewer weights.
Moreover, when no message passing is done, the model is
reduced to only the encoding and decoding phases, meaning
that all the graph structure must be learned through the struc-
tural encodings only. Last, an ablation study is conducted
for GCN to compare the effect of reducing both the number
of layers and the number of parameters in the models.

For the main experiments, a 4-layer MPNN architecture
with approximately 500K parameters using full message
passing is used as the point of reference for each of the
MPNN layer types. The corresponding hidden dimension is
then also used when doing sparse message passing and no
message passing in which cases the number of parameters
is severely reduced. We report the final training and test
performance averaged over 3 runs. We also denote the
relative improvement of tensor-encodings (‘gain’). In all
experiments, we use the structural encoding

pi :=
[
Rii R2

ii · · ·Rk
ii

]
,

i.e. the diagonal entries of the random walk matrix R with
random walks up to length 20.

All models are optimized using Adam with a learning rate
of 10−3 using a scheduler halving the learning rate when-
ever the model does not improve for 25 epochs. Training
is stopped when the learning rate drops below 10−5. The
regression tasks are optimized based on mean average error
(MAE) which is the metric reported, whereas the classifi-
cation is optimized using cross entropy and the reported
metric is the average precision (AP). For all main results,
we provide standard deviations over the multiple runs in
Appendix A, though these are omitted in the main text for
visual clarity.

4.1. Results

Peptides. The Long Range Graph Benchmark is a collec-
tion of five graph-based datasets with tasks that are based on
long-range dependencies in graphs. Two of these datasets -
Peptides-struct and Peptides-func - are multi-class regres-
sion and classification in the domain of chemistry. Results
are reported as train/test pairs and are provided in Table 1.
These datasets have been introduced as benchmarks for tasks
that may exhibit long-range interactions, and have in fact
been used by graph-transformers or GNN-models that are
designed to reduce over-squashing (Rampasek et al., 2022;
Gutteridge et al., 2023).

When considering full weight matrices, a tensor encoding
performs at least as well as concatenation, never leading
to a significant decrease in test performance. Furthermore,
we observe that using sparse linear layers in the MPNNs
does not lead to stark decreases in performance in general.
For the Peptides-struct task, we observe that both the final
train MAE and test MAE are quite similar to the perfor-
mance when using the approximate layers, suggesting that
indeed the role of MPNN layers in this task might not be
as crucial – or at least that over-parameterization of the
message-passing layers is redundant – something which
is emphasized by the fact that even on the train data the
model does not learn more when using full weight matrices
compared to the approximate layers. On the Peptides-func
task, we also notice that the difference between the test per-
formances of the full weights versus the approximate layers
is very minimal.

On the Peptides-struct task, we observe that not using
MPNN layers at all leads to a stark decrease in performance
compared to using the full weights in each layer when the
encodings are formed through concatenation, whereas when
using a tensor encoding such a decrease in performance is
not present. A similar effect is seen in the Peptides-func
task, where even though both encoding types perform worse
when no MPNN layers are added, this decrease in perfor-
mance is much stronger when concatenation is used. This

5



Can strong structural encoding reduce the importance of Message Passing?

Table 1. Results on Peptides-Struct (MAE) and Peptides-Func (AP). All results are averaged over 3 runs with different seeds.

Peptides-Struct (MAE ↓)

State Type full K = 10 K = 1 no MP

G
C

N
RW-Concat 0.212 / 0.255 0.21 / 0.255 0.226 / 0.251 0.64 / 0.643
RW-Tensor 0.212 / 0.252 0.206 / 0.254 0.223 / 0.249 0.249 / 0.268

Gain 1.0 / 1.012 1.019 / 1.004 1.013 / 1.008 2.57 / 2.399

G
IN

RW-Concat 0.5 / 0.29 0.64 / 0.555 0.225 / 0.252 0.64 / 0.643
RW-Tensor 0.239 / 0.257 0.498 / 0.309 0.22 / 0.249 0.25 / 0.266

Gain 2.092 / 1.128 1.285 / 1.796 1.023 / 1.012 2.56 / 2.417

SA
G

E RW-Concat 0.21 / 0.254 0.218 / 0.256 0.227 / 0.251 0.64 / 0.643
RW-Tensor 0.198 / 0.253 0.219 / 0.253 0.228 / 0.25 0.254 / 0.267

Gain 1.061 / 1.004 0.995 / 1.012 0.996 / 1.004 2.52 / 2.408

Peptides-Func (AP ↑)

State Type full K = 10 K = 1 no MP

G
C

N

RW-Concat 0.906 / 0.613 0.877 / 0.598 0.786 / 0.606 0.509 / 0.468
RW-Tensor 0.875 / 0.607 0.846 / 0.595 0.784 / 0.593 0.766 / 0.586

Gain 0.966 / 0.99 0.965 / 0.995 0.997 / 0.979 1.505 / 1.252

G
IN

RW-Concat 0.672 / 0.577 0.165 / 0.328 0.847 / 0.596 0.548 / 0.49
RW-Tensor 0.921 / 0.611 0.923 / 0.601 0.854 / 0.606 0.736 / 0.582

Gain 1.371 / 1.059 5.594 / 1.832 1.008 / 1.017 1.343 / 1.188

SA
G

E RW-Concat 0.907 / 0.607 0.844 / 0.594 0.773 / 0.596 0.555 / 0.501
RW-Tensor 0.929 / 0.616 0.842 / 0.607 0.776 / 0.601 0.724 / 0.579

Gain 1.024 / 1.015 0.998 / 1.022 1.004 / 1.008 1.305 / 1.156

suggests that tensor encodings are able to capture more com-
plex information in their encodings, supporting our intuition
for using tensor encodings in MPNNs.

Last, we observe that even without message passing layers
we are competitive with graph transformers on the Peptides-
struct task. This begs the question of to what extent this
dataset contains long-range interactions, and more specifi-
cally to what extent such interactions can also be captured
by strong structural encodings.

ZINC. The dataset ZINC is a molecular dataset with
molecules up to 38 heavy atoms. The task is to predict the
penalized logP score, used for training molecular generation
models. A subset of 12,000 molecules is used following
Dwivedi et al. (2020). Results are again reported as train/test
pairs and are provided in Table 2.

Similarly to the results observed in the Long Range Graph
Benchmark, tensor encodings are again mostly on par with
concatenation in all scenarios. Moreover, we again observe
that sparse MPNN layers are able to perform on par with full
weight matrices, suggesting that also in this task there is no
need to over-parametrize the message passing layers. Last,
we again observe a significant gap in the performance be-

tween tensor encodings and concatenation encodings when
no MPNN layers are used, again solidifying our intuition
that tensor encodings are strictly more expressive encodings
for topological information.

Ablation. The ablation study aims to reduce the message
passing layers even further by decreasing both the hidden
dimension and the number of layers in the message passing
phase. The performance is compared again for full message
passing, sparse message passing with an entanglement of
K = 1, and no message passing. Moreover, the joint en-
coder is removed, meaning that the hidden representations
in the first layer are simply found by either concatenating or
taking the tensor product of the individual encodings. The
hidden dimensions considered are {16, 36, 64, 328}, and
compared using one layer (L = 1) and four layers (L = 4).
The results reported are for the Peptides-struct task using a
GCN, and are again reported as train/test pairs in Table 3.

In the case of full message passing, we observe that we
can reduce the number of layers without noticing a signifi-
cant drop in performance when tensor encodings are used,
whereas such a drop is observed in the concatenation case.
We also observe that we can reduce the hidden dimension

6



Can strong structural encoding reduce the importance of Message Passing?

Table 2. Results on ZINC (MAE). All results are averaged over 3 runs with different seeds.

ZINC (MAE ↓)

State Type full K = 10 K = 1 no MP

G
C

N
RW-Concat 0.02 / 0.207 0.043 / 0.233 0.135 / 0.24 0.466 / 0.607
RW-Tensor 0.043 / 0.209 0.052 / 0.22 0.12 / 0.219 0.324 / 0.527

Gain 0.465 / 0.99 0.827 / 1.059 1.125 / 1.096 1.438 / 1.152

G
IN

RW-Concat 0.076 / 0.263 0.04 / 0.281 0.116 / 0.279 0.46 / 0.609
RW-Tensor 0.075 / 0.242 0.025 / 0.249 0.127 / 0.252 0.361 / 0.538

Gain 1.013 / 1.087 1.6 / 1.129 0.913 / 1.107 1.274 / 1.132

SA
G

E RW-Concat 0.021 / 0.192 0.03 / 0.176 0.104 / 0.193 0.457 / 0.614
RW-Tensor 0.023 / 0.201 0.04 / 0.177 0.121 / 0.205 0.367 / 0.552

Gain 0.913 / 0.955 0.75 / 0.994 0.86 / 0.941 1.245 / 1.112

Table 3. Ablation on Peptides-Struct (MAE). All results are averaged over 3 runs with different seeds.

Peptides-Struct (MAE ↓)

Full message passing

L
=

1 Parameters 689 2557 7169 162109
RW-Concat 0.64 / 0.643 0.64 / 0.643 0.395 / 0.397 0.254 / 0.261
RW-Tensor 0.283 / 0.282 0.269 / 0.269 0.255 / 0.26 0.226 / 0.255

L
=

4 Parameters 1457 6445 19457 477037
RW-Concat 0.279 / 0.281 0.264 / 0.267 0.248 / 0.259 0.219 / 0.253
RW-Tensor 0.281 / 0.279 0.258 / 0.261 0.247 / 0.257 0.213 / 0.252

Sparse message passing (K = 1)

L
=

1 Parameters 465 1333 3201 57781
RW-Concat 0.321 / 0.321 0.398 / 0.399 0.271 / 0.271 0.242 / 0.257
RW-Tensor 0.296 / 0.294 0.276 / 0.276 0.27 / 0.27 0.242 / 0.256

L
=

4 Parameters 561 1549 3585 59725
RW-Concat 0.294 / 0.291 0.275 / 0.276 0.264 / 0.268 0.229 / 0.252
RW-Tensor 0.3 / 0.299 0.272 / 0.272 0.268 / 0.269 0.228 / 0.251

No message passing

L
=

0 Parameters 433 1261 3073 57133
RW-Concat 0.64 / 0.643 0.64 / 0.642 0.527 / 0.528 0.352 / 0.351
RW-Tensor 0.302 / 0.299 0.401 / 0.401 0.272 / 0.274 0.248 / 0.26

significantly when using tensor encodings without losing
much performance, e.g. multiple models with only a few
thousand parameters are able to perform almost on par with
the 500K parameter model. This supports the claim that, for
this task, structural encoding could be sufficient to leverage
the graph structure, and that tensor encodings are signifi-
cantly more able to capture this information well in sparse
and shallow regimes.

Similarly, when doing sparse message passing, we observe
that the effect of reducing the number of layers or hidden di-

mensions has a much more significant negative effect when
the encodings are formed through concatenation than when
they are formed through tensor encodings. Finally, again
when no message passing is used at all, the tensor encodings
are much more robust in the low-parameter regimes.

Is the choice of geometric encoding important? The re-
sults obtained on ZINC as well as those on Peptides would
highlight that when using the full message-passing layer,
it seems that there is no significant difference in terms of

7



Can strong structural encoding reduce the importance of Message Passing?

performance between either of the two, despite the two ap-
proaches being geometrically very different. This brings
up the question of what the message-passing is actually
learning based on the structural information, and to what
extent the message-passing layer is actually needed. Our
investigation supports the idea that the tensor-product en-
coding is significantly more resilient to the reduction of the
number of parameters in the MPNN, or in fact the removal
of the MPNN all together, in contrast to the concatenation
approach where instead eliminating the message-passing
leads to serious performance degradation. We speculate that
one reason for the robustness of the tensor product to the
‘size’ (or presence) of the message-passing as opposed to
the concatenation operation, resides in its ability to model
more complex and high-dimensional entangled representa-
tion which can then be leveraged by an MLP without the
usage of the graph.

5. Discussion
Conclusion and future research. In this work, the effect
of the topologically informed node encodings in MPNNs
and the role of message passing have been explored. For
this, we have proposed a tensor based encoding and com-
pared this against the standard encoding done through con-
catenation. Moreover, we have looked at the effect of re-
ducing the weights in the MPNN layers or removing the
message-passing step all-together, investigating such ap-
proaches across different MPNN architectures.

Our results indicate that when no MPNN layers are included
in the model, tensor encodings are able to better learn on
graphs in general, and even able to perform on par with mod-
els with MPNN layers in some tasks. Moreover, since tensor
encodings are almost always at least on par with using stan-
dard concatenation, we conclude that tensor encodings form
a promising new approach for learning on graphs with struc-
tural information. For future research, a natural question is
to see if tensor encodings can also improve graph-agnostic
architectures such as transformers.

Moreover, we observe that in the cases where excluding all
MPNN layers led to a significant reduction in performance,
much of that performance could also be obtained using
very sparse weight matrices. This suggests that the role
of MPNN layers in these structural tasks is minimal. An
interesting avenue to explore relating to this result is to study
what MPNNs learn, and whether it is possible to reduce the
parameters in MPNN layer.

References
Bapst, V., Keck, T., Grabska-Barwińska, A., Donner, C.,

Cubuk, E. D., Schoenholz, S. S., Obika, A., Nelson,
A. W., Back, T., Hassabis, D., et al. Unveiling the predic-

tive power of static structure in glassy systems. Nature
Physics, 16(4):448–454, 2020.

Black, M., Nayyeri, A., Wan, Z., and Wang, Y. Understand-
ing oversquashing in gnns through the lens of effective
resistance. arXiv preprint arXiv:2302.06835, 2023.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montúfar, G. F.,
Lió, P., and Bronstein, M. M. Weisfeiler and lehman
go topological: Message passing simplicial networks.
In International Conference on Machine Learning, pp.
1026–1037, 2021.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein, M.
Improving graph neural network expressivity via sub-
graph isomorphism counting. 2022.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and locally connected networks on graphs. In
International Conference on Learning Representations,
2014.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? Advances in neural
information processing systems, 33:10383–10395, 2020.

Chung, F. R. and Graham, F. C. Spectral graph theory.
American Mathematical Soc., 1997.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. In Advances in neural information pro-
cessing systems, volume 29, 2016.

DeZoort, G., Battaglia, P. W., Biscarat, C., and Vlimant,
J.-R. Graph neural networks at the large hadron collider.
Nature Reviews Physics, pp. 1–23, 2023.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio,
P., and Bronstein, M. On over-squashing in message
passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine
Learning, 2023.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y.,
and Bresson, X. Benchmarking graph neural networks.
abs/2003.00982, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. 2021.

Geerts, F. and Reutter, J. L. Expressiveness and approx-
imation properties of graph neural networks. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=wIzUeM3TAU.

8

https://openreview.net/forum?id=wIzUeM3TAU
https://openreview.net/forum?id=wIzUeM3TAU


Can strong structural encoding reduce the importance of Message Passing?

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272. PMLR, 2017.

Goller, C. and Kuchler, A. Learning task-dependent
distributed representations by backpropagation through
structure. In Proceedings of International Conference
on Neural Networks (ICNN’96), volume 1, pp. 347–352.
IEEE, 1996.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., volume 2, pp. 729–734. IEEE, 2005.

Gutteridge, B., Dong, X., Bronstein, M., and Di Giovanni, F.
Drew: Dynamically rewired message passing with delay.
arXiv preprint arXiv:2305.08018, 2023.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Advances in
Neural Information Processing Systems, pp. 1025–1035,
2017.

Keriven, N. and Peyré, G. Universal invariant and equivari-
ant graph neural networks. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Kipf, T. N. and Welling, M. Semi-Supervised Classification
with Graph Convolutional Networks. In International
Conference on Learning Representations, 2017.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. In Advances in Neural Information Processing
Systems, volume 34, pp. 21618–21629, 2021.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance en-
coding: Design provably more powerful neural networks
for graph representation learning. Advances in Neural
Information Processing Systems, 33:4465–4478, 2020.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. 2018.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W.,
Songhori, E., Wang, S., Lee, Y.-J., Johnson, E., Pathak,
O., Nazi, A., et al. A graph placement methodology for
fast chip design. Nature, 594(7862):207–212, 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. In AAAI
Conference on Artificial Intelligence, pp. 4602–4609.
AAAI Press, 2019.

Rampasek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. In Advances in Neural Informa-
tion Processing Systems, 2022.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Sperduti, A. Encoding labeled graphs by labeling raam.
In Advances in Neural Information Processing Systems,
volume 6, 1993.

Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-
Ruiz, A., Donghia, N. M., MacNair, C. R., French, S.,
Carfrae, L. A., Bloom-Ackermann, Z., et al. A deep
learning approach to antibiotic discovery. Cell, 180(4):
688–702, 2020.

Weisfeiler, B. and Leman, A. The reduction of a graph to
canonical form and the algebra which appears therein. nti,
Series, 2(9):12–16, 1968.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference
on Learning Representations, 2019.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do transformers really perform badly for
graph representation? In Advances in Neural Information
Processing Systems, volume 34, pp. 28877–28888, 2021.

9



Can strong structural encoding reduce the importance of Message Passing?

A. Detailed results

Table 4. Test results of main experiments reported with standard deviation. All results are averaged over 3 runs with different seeds.

Test performance with standard deviation

State Type Layer full K = 10 K = 1 no MP

Pe
pt

id
es

–S
tr

uc
t RW-Concat gcn 0.255± 0.007 0.255± 0.001 0.251± 0.006 0.643± 0.000

RW-Tensor gcn 0.252± 0.001 0.254± 0.001 0.249± 0.001 0.268± 0.002
RW-Concat gin 0.290± 0.244 0.555± 0.000 0.252± 0.006 0.643± 0.000
RW-Tensor gin 0.257± 0.005 0.309± 0.045 0.249± 0.001 0.266± 0.001
RW-Concat sage 0.254± 0.004 0.256± 0.010 0.251± 0.003 0.643± 0.000
RW-Tensor sage 0.253± 0.002 0.253± 0.003 0.250± 0.001 0.267± 0.002

Pe
pt

id
es

-F
un

c RW-Concat gcn 0.613± 0.001 0.598± 0.014 0.606± 0.009 0.468± 0.028
RW-Tensor gcn 0.607± 0.013 0.595± 0.010 0.593± 0.006 0.586± 0.008
RW-Concat gin 0.577± 0.44 0.328± 0.000 0.596± 0.016 0.490± 0.033
RW-Tensor gin 0.611± 0.008 0.601± 0.003 0.606± 0.014 0.582± 0.006
RW-Concat sage 0.607± 0.010 0.594± 0.013 0.596± 0.009 0.501± 0.022
RW-Tensor sage 0.616± 0.014 0.607± 0.005 0.601± 0.007 0.579± 0.007

Z
in

c

RW-Concat gcn 0.207± 0.010 0.233± 0.008 0.24± 0.001 0.607± 0.003
RW-Tensor gcn 0.209± 0.002 0.220± 0.001 0.219± 0.010 0.527± 0.003
RW-Concat gin 0.263± 0.010 0.281± 0.005 0.279± 0.008 0.609± 0.014
RW-Tensor gin 0.242± 0.008 0.249± 0.008 0.252± 0.005 0.538± 0.008
RW-Concat sage 0.192± 0.003 0.176± 0.014 0.193± 0.004 0.614± 0.005
RW-Tensor sage 0.201± 0.003 0.177± 0.007 0.205 ±0.002 0.552± 0.006

10


