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Abstract
Topology describes the essential structure of a
space, and in 4D, a larger variety of topologi-
cally distinct manifolds can be embedded ver-
sus 2D or 3D. The present study investigates an
end-to-end visual approach, which couples data
generation software and convolutional neural net-
works (CNNs) to estimate the topology of 4D
data. A synthetic 4D training data set is gener-
ated with the use of several manifolds, and then
labelled with their associated Betti numbers by
using techniques from algebraic topology. Seve-
ral approaches to implementing a 4D convolution
layer are compared. Experiments demonstrate
that already a basic CNN can be trained to provide
estimates for the Betti numbers associated with
the number of one-, two-, and three-dimensional
holes in the data. Some of the intricacies of topo-
logical data analysis in the 4D setting are also put
on view, including aspects of persistent homology.

1. Introduction
Convolutional neural networks (CNNs) share common fea-
tures with the human visual cortex (Nonaka et al., 2020; Xu
& Vaziri-Pashkam, 2021) and have shown superior perfor-
mance when compared to humans in many computer vision
tasks (Krizhevsky et al., 2012). The aim of the present
project is to demonstrate that CNNs can be trained to ‘see’
the topology of basic simulated data in four dimensions
(4D), similarly as humans can visually analyse the shape
and topology of basic objects in 3D.

4D data can occur, for example, if 2D or 3D data is equipped
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with other dimensions. It can also be the outcome of ma-
nifold learning, where high-dimensional data is reduced to
a low-dimensional representation that still contains all es-
sential information (Lee, 2000). According to the Poincaré-
Hopf theorem (Brasselet et al., 2009), there is an important
relationship between the global topology of manifolds and
the characteristics of dynamical systems on them. However,
the number of studies where non-trivial topological features
occur in 4D data is still low (Aziz et al., 2019; Carlsson
et al., 2008; Reimann et al., 2017). This is probably due
to a lack of labelled manifold data, and the limitations of
computational approaches used to analyse them.

For humans, one approach to visualising 3-dimensional
manifolds (3-manifolds), such as spheres and various tori,
in 4D is by slicing them into a sequence of 3D sections.
Figure 1 is a MATLAB (MATLAB, 2017) visualisation
of S1 × S1 × S1 in an (x, y, z, w)-system. A formula to
generate this 3-manifold is provided in Section 4.2, and
additional visualisations are included in Appendix A.

A better understanding and new computational tools to ad-
dress the rich topological structure of manifolds in 4D and
their associated dynamical systems has the potential to offer
new insights in physics and science, see for example (Hof-
mann et al., 2018; Scott et al., 2019; Sagristà et al., 2017).

2. Approach and potential applications
In this study, we consider 4D cubes (4D images), and use a
selection of fundamental 3-manifolds, such as spheres and
tori of potentially different topologies and shapes, to design
and introduce cavities into the cube. A 4D CNN is then
trained to estimate how many holes of different dimensions
occur in the cube. The task could be caricatured as counting
the various types of tunnels, bubbles, and cavities in a 4D
block of Swiss cheese. In algebraic topology, these essen-
tial features of the space can be captured by the concept of
homology, and more specifically, the Betti numbers (Edels-
brunner & Harer, 2010).

The intuition behind employing cubes with cavities follows
from data that arise in disciplines such as radiology and ma-
terial science, which can be construed as higher-dimensional
analogues of squares (2D images). Real-time ultrasound
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Figure 1. For visualising S1 × S1 × S1, 3D slices were taken along the w-axis, and ordered from left to right, with the central image
depicting the slice at w = 0 (see also Appendix A).

can be considered as 3D data, just as fMRI is an example of
how a 3D target can be captured over time to produce 4D
data. These images are often dense, in the sense that they
capture large regions of target material, in comparison to
empty space. For example, when radiography is used for
medical diagnosis, radiographic films generally detect hard
and soft tissue; regions that comprise predominately of fluid-
or air-filled cavities, such as within bladders and sinuses,
could then be taken as features of an image. In material sci-
ence, micro-tomography has been used in order to observe
the 4D structural evolution of cement paste in situ during a
hydration process (Zhang et al., 2022). Similarly, the prop-
erties of materials that possess cavities by design, such as
metallic and syntactic foams (Al-Sahlani et al., 2018; Duarte
et al., 2020), can be studied by observing how their structure
(topology) changes over time when exposed to a mechanical
force, temperature, or electrical current, or conversely, how
manufacturing processes affect their structure (Kassab et al.,
2022; Saadatfar et al., 2017; Ando et al., 2021). An analysis
of the topological characteristics of medical imaging is also
a research consideration (Loughrey et al., 2021; Kim et al.,
2019; Stolz et al., 2021).

Thus, we make a connection between computer vision, and
how it can be used to visually explore some of the topo-
logical aspects of materials as captured in data in the form
of higher dimensional images. It is in using these denser
formats that existing methods begin to exhibit complexity
issues in practice, and as we discuss in Section 5, this is dis-
tinct from exploring the topology of data that are presented
in the form of point clouds, or meshes and triangulations that
are constructed over point clouds. Practically, we propose
that once a dataset, which sufficiently models real data (Gao
et al., 2022), is generated, it may be possible to train a CNN
that is capable of estimating the Betti numbers of the data. In
order to focus our investigation and provide an introduction
to our approach, we restrict ourselves to simulated, single-
component, samples that are well-understood (Section 4.3),
and we implement only simple CNN arrangements (Section
6). The latter choice highlights the analogy of our approach
to 4D vision, and is supported by the relatively high brain
hierarchy score of simple CNNs (Nonaka et al., 2020).

3. Related work
Among the studies that combine machine learning and
persistent homology concepts are Som et al. (2020) and
Zhou et al. (2021), who propose the use of a functional
approximation of persistence diagrams, called persistence
images (Adams et al., 2017), and demonstrate how deep
learning can be applied to the task of inferring persistence
images. These works run parallel to the efforts of de Surrel
et al. (2022), who demonstrate the use of a network, called
RipsNet, to predict the persistence images and landscapes as-
sociated with 2D and 3D data; some basic synthetic datasets
are also considered.

The approach and data representation of our study was in-
spired by the work of Paul & Chalup (2019), who used 2D
and 3D simulated data cubes from which basic manifolds
were cut out. Standard 2D and 3D CNNs were trained to
predict the Betti numbers of this data, while the persistent
homology software javaPlex (Adams et al., 2014) experi-
enced complexity issues with increasing data size.

In the 4D data setting, CNNs have been applied to spatio-
temporal data (three spatial and one time dimension) (You
& Jiang, 2018; Zhang et al., 2020), and 4D fMRI time series
data (Noor et al., 2020). 4D CNN models have also been
used for CT image reconstruction (Clark & Badea, 2019)
and segmentation (Myronenko et al., 2019). You & Jiang
(2018) worked on human action recognition using calibrated
RGB-D data, which were then converted into sequences of
‘solid’ 3D representations. The models themselves were
based on 3D CNNs, and used recurrent neural networks to
aggregate temporal information; a true 4D CNN approach
was not used. In contrast, Zhang et al. (2020) used a 4D
convolution component in their networks, which captured
the dependencies between short clips that were sampled
from a video. The authors explain that the computing and
memory demands of 4D CNNs can be relatively high, and
chose to use k×k×1×1 and k×1×1×1 kernels only, in
order to reduce both the number of training parameters, and
the risk of overfitting. The choice could also be seen to be
reasonable, given the true (video) nature of their data. In our
study, we intend to employ true 4D kernels in which all di-
mensions are greater than 1. Gessert et al. (2020) considered
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a more efficient variant of ResNet4D, called facResNet4D,
that used factorisation to decompose the kernel into sepa-
rate spatial and temporal kernels. The authors explain that
this modification reduces the number of parameters, but
also reduces the representative power of the model. Choy
et al. (2019) generalised the sparse convolution (Graham,
2014; Graham & van der Maaten, 2017) and proposed a
4D application, called the Minkowski CNN. A sparse ten-
sor representation was used to encode only viable points
within a sample, and each of these points was attributed
a feature vector. Impressive results were demonstrated on
several spatio-temporal datasets, however, these consisted
mostly of scans of indoor and outdoor spaces, which are
often captured densely, but are inherently sparse.

It appears that 4D deep learning is still in its infancy, and
restricted to a small number of studies with specialised
CNNs that were designed or optimised for specific sparse
or temporal data applications. The present study proposes a
CNN (Section 6) that can be regarded as a 4D generalisation
from standard 2D or 3D CNNs. We also aimed at using
topologically more complex data than previous studies.

4. Data generation
A key component of our CNN-based computer vision ap-
proach towards topology recognition was the generation of
labelled 4D training data. Our data comprised of 4D cubes,
into which we introduced cavities by cutting out 4D balls,
that is, Bn = {x ∈ Rn; ||x|| ≤ 1} for n = 4, and var-
ious versions of tori that exist in 4D, including S1 × B3,
S2×B2, and S1×S1×B2 ; we did not consider their con-
nected sums. All four dimensions of these data were treated
equally, and one could indeed inspect these data from any
4D perspective, without necessarily assuming that they arise
from observing 3D phenomena evolving with time.

4.1. Homological results to obtain ground truth labels

Topology describes the essential properties of a space that
remain invariant under homeomorphic deformations. Mani-
folds can be regarded as the central topological spaces that
are investigated in much of topology and geometry (Lee,
2000). The classification of 2D compact manifolds is a clas-
sical result (Gallier & Xu, 2013), and says that all compact
2D manifolds are homeomorphic to the sphere S2, a con-
nected sum of tori, or a connected sum of projective spaces.
If only orientable surfaces are considered, then there exist
up to homeomorphism only the sphere and genus g sur-
faces (g-holed tori). A corresponding result for classifying
3-manifolds is much more involved (Bessieres et al., 2010).

The Betti numbers capture the essential structure given by
the holes of a manifold or topological space (Edelsbrunner
& Harer, 2010), and are a more fine-grained signature than

the more broadly known Euler characteristic χ. The kth

Betti number is often denoted with βk. In R4, only the first
four Betti numbers are relevant, and the relationship to the
Euler characteristic is given by χ = β0 − β1 + β2 − β3,
where β0 is the number of path-connected components, β1

is the number of 1D (circular) holes, or independent tunnels,
β2 is the number of 2D holes, cavities, or bubbles, and β3 is
the number of 3D holes.

Holes themselves are not technically part of a topological
space, however, they are an invariant feature. A crude way to
understand the dimension of a hole is to consider the dimen-
sion of the manifold that we find at the ‘boundary’ of a hole.
For example, suppose that our topological space is a 2D
plane I2. By removing the interior of a disc IntB2 from the
interior of the plane, we find a circular boundary S1, which
is a 1-manifold. In this case, we have introduced a 1D hole,
and β1 is incremented by 1. This intuition can be extended
to k-dimensional holes, and is formalised by homology,
where roughly speaking, a k-dimensional cycle is a closed
submanifold, a k-dimensional boundary is a cycle that is
also the boundary of a submanifold, and a k-dimensional ho-
mology class is an equivalence class of the group of cycles
modulo the group of boundaries Zk/Bk, otherwise known
as the kth homology group Hk. Any non-trivial homology
class represents a cycle that is not a boundary, or equiva-
lently, a k-dimensional hole. The kth Betti number βk can
be defined as the rank of Hk (Edelsbrunner & Harer, 2010).

Table 1. Betti numbers βi and the Euler characteristic χ of selected
low-dimensional manifolds. The manifolds involving a subtraction
from I4 were the most relevant to this work.

Manifold β0 β1 β2 β3 χ

Circle S1 1 1 0 0 0

2-Ball B2 1 0 0 0 1
2-Sphere S2 1 0 1 0 2
Torus T 2 = S1 × S1 1 2 1 0 0
S1 ×B2 1 1 0 0 0

3-Ball B3 1 0 0 0 1
3-Sphere S3 1 0 0 1 0
S1 × S2 1 1 1 1 0
S1 × S1 × S1 1 3 3 1 0

4-Ball B4 1 0 0 0 1
I4 −B4 1 0 0 1 0
S1 ×B3 1 1 0 0 0
I4 − (S1 ×B3) 1 0 1 1 1
S2 ×B2 1 0 1 0 2
I4 − (S2 ×B2) 1 1 0 1 -1
S1 × S1 ×B2 1 2 1 0 0
I4 − (S1 × S1 ×B2) 1 1 2 1 1

3



Learning to See Topological Properties in 4D

Some fundamental manifolds and their Betti numbers are
listed in Table 1. In order to calculate these Betti numbers,
we appealed to singular homology, and applied both the
Künneth theorem, which relates the homology groups of
two topological spaces to those of their product space, and
the Mayer-Vietoris Sequence, which relates the homology
groups of a space to those of its subspaces (Hatcher, 2002);
these theorems provide a means to handle operations cor-
responding to taking products and differences, respectively.
β0 is often interpreted as the number of connected com-
ponents, however, it would seem more consistent with the
higher dimensional Betti numbers if β0 = 1 implied the
existence of a ‘gap’ between two components. Addressing
this is the rationale behind reduced homology, and its appli-
cation can simplify some calculations. For this reason, we
employed the reduced Mayer-Vietoris Sequence in order to
find the isomorphism necessary to calculate the 0th homol-
ogy groups, and deduce their Betti numbers. More detail
about the Künneth theorem, the Mayer-Vietoris Sequence,
and reduced homology are provided in Appendix C.

We demonstrate an application of these ideas by calculating
the Betti numbers of I4 − (S1 × S1 × B2). Since the
homology groups of the factors of S1 × S1 × B2, and its
boundary S1×S1×S1, are well-known, it can be shown that
the Tor functor components in the Künneth theorem’s short
exact sequences are trivial, which implies the following
isomorphisms

Hn(S
1 × S1 ×B2) ∼=


Z n = 0, 2

Z2 n = 1

0 otherwise
(1)

Hn(S
1 × S1 × S1) ∼=


Z n = 0, 3

Z3 n = 1, 2

0 otherwise
. (2)

We then define an embedding φ : S1 × S1 × B2 → I4,
and let K = φ(S1 × S1 ×B2) and X = I4 −K. We also
define Y = K ∪ N(K), where N(K) is an open neigh-
bourhood of K, so that we have X ∪ Y = I4, and the
homotopy equivalence X ∩Y ≃ S1×S1×S1. The Mayer-
Vietoris Sequence is then applied using X and Y in light
of the isomorphism between the homology groups of ho-
motopy equivalent spaces in singular homology (Hatcher,
2002, Chapter 2). For the n = 0 case, we apply the reduced
Mayer-Vietoris sequence, and collectively, these results im-
ply that

Hn(I
4 − S1 × S1 ×B2) ∼=


Z n = 0, 1, 3

Z2 n = 2

0 otherwise
. (3)

Thus, βn = 1 for n = 0, 1, 3, β2 = 2, and all other Betti
numbers are 0.

The Betti numbers for the other examples in Table 1 were
obtained in a similar manner, and were aggregated to pro-
duce a label for the samples from which several of these
objects were cut out.

4.2. Implicit representation of topological objects

In order to describe the 4D objects of interest, we began by
deriving parametric equations to describe the 3-manifolds
that constituted their boundaries (Table 2). Note that while
S1 ×B3 and S2 ×B2 have homeomorphic boundaries, we
required distinct representations, and use the convention
that S1 × S2 is the boundary of S1 × B3, and S2 × S1

is the boundary of S2 × B2. The parametric equation for
the 3-sphere S3 is well known. The remaining equations
were derived trigonometrically, by rotating the second factor
around the first factor. For example, the parametric equation
for S1 × S2 was derived by rotating S2 around S1. For
S1 × S1 × S1, the torus S1 × S1 was rotated around S1.
Figure 1 is a visualisation of S1 × S1 × S1 with α = 0.

These equations were subsequently compressed into im-
plicit formulas (see Appendix D for an example). Then, by
replacing the equality in each formula with an inequality, as
shown in Table 2, we were able to describe a ‘solid’ object
that could be removed from the interior of a 4D cube.

4.3. Data generation software

Data generation software was implemented in Python using
data structures from the NumPy library (Harris et al., 2020).
Each sample began as a 4D tensor with each dimension
having an equal length I , and every entry set to 1; this repre-
sented an I4 toxel image, where ‘toxel’ refers to the 4D ana-
logue of a pixel, and may also be referred to as a 4D-voxel
or hyper-pixel in literature. A random number of cavities
were then introduced into a sample by setting the toxels
that represented the cavities to 0. This produced what could
then be seen as a 4D generalisation of a black-and-white
image. Each cavity took a form that was homeomorphic
to one of the objects in Table 2; the objects were randomly
scaled, oriented, and positioned, using standard rotation,
scaling, and translation operations. Since the Betti numbers
of each cavity within a sample were known, a label could
be produced by simply summing these Betti numbers over
their dimensions; using persistent homology software was
not necessary.

We restricted our experiments to samples comprising of
only one connected 4D toxel cube component (β0 = 1),
and did not allow tunnels to traverse to and from the cube’s
boundary, or allow divots to form at the boundaries; a cube’s
boundaries were never cut away. Furthermore, cavities were
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Table 2. Parametric equations in an (x, y, z, w)-system, and the implicit formulas that were used to produce 4D cavities from the manifolds
that are listed in row one.

S3 S1 × S2 S2 × S1 S1 × S1 × S1
a sin γ sin θ sinϕ

a sin γ sin θ cosϕ

a sin γ cos θ

a cos γ



(a cos θ + r) cos γ

(a cos θ + r) sin γ

a sin θ cosϕ

a sin θ sinϕ



(r + a cos γ) sin θ cosϕ

(r + a cos γ) sin θ sinϕ

(r + a cos γ) cos θ

a sin γ



(R−B(r + a cos θ) cosϕ+Aa sin θ) cos γ

(R−B(r + a cos θ) cosϕ+Aa sin θ) sin γ

(r + a cos θ) sinϕ

A(r + a cos θ) cosϕ+Ba sin θ



x2 + y2 + z2 + w2 ≤ a2 (
√

x2 + y2 − r)2 + z2 + w2 ≤ a2 (
√

x2 + y2 + z2 − r)2 + w2 ≤ a2

(
√

(−B(
√

x2 + y2 −R) +Aw)2 + z2 − r)2+

(A(
√

x2 + y2 −R) +Bw)2 ≤ a2,

where A = cosα and B = sinα

not allowed to intersect each other. In order to observe
these rules, a 1 toxel boundary and minimum 5 unit spacing
between cavities was implemented.

The design of the 4D dataset presented in this work was
the result of several iterations of variations. The cavity
parameters, namely, the minimum radii, were guided by
the observations discussed in Section 5 that allowed the
persistent homology software to run error free. Initially, a
164 cube was considered, however it was discovered to be
too small to fit the more expansive variations of S1 × S1 ×
B2, say when α = π/2. A 324 cube was large enough to fit
several instances of these objects, but small enough for our
network and hardware to cope with (see Sections 6 and 7).
An example is shown in Appendix B.

For humans, the skill of counting is straightforward in 2D
and even 3D. Many techniques may be employed to count or
track items. In smaller cases, we may even rely on the psy-
chological phenomenon, called subitizing, whereby one can
quickly, and accurately judge the number of items, rather
than explicitly counting them (Kaufman et al., 1949). For ex-
ample, it may be possible to subitize a random arrangement
of 1 to 6 dots. In larger examples, counting can become
challenging and time consuming, and one cannot generally
rely on subitizing in cases containing much more than 4 to 6
objects (Kaufman et al., 1949). Unfortunately, data are not
generally limited to such small problems, therefore, in order
to test the utility of CNNs, the introduction of up to 16 holes
into a sample was considered to be sufficiently challenging.

The parameters of the 4D dataset that we finally selected to
demonstrate our approach are summarised in Table 3. Note
that for S1 × S1 × B2, the parameter α is used to find A
and B, as defined in Section 4.2. This dataset was generated
in parallel on a High Performance Computing (HPC) Grid
in 1000-sample batches, over 32 nodes. An average of 2.43
hours was required for each batch, and the entire process
utilised approximately 77.69 HPC hours.

Additional earlier experiments, which employed less di-
verse datasets, did demonstrate that CNNs were capable of
estimating many more than 16 holes. A 3D CNN with a

very similar design to the 4D CNN described in Section 7
achieved >99% accuracy when performing inference on
samples with up to 16 2D holes alone, and up to 32 holes
of mixed dimension, which were introduced by cutting out
balls B3 and S1 ×B2. Pilot experiments that employed our
4D CNN also demonstrated that it was capable of estimating
β3 up to 16, with approximately 97% accuracy, when tested
on a dataset with only ball B4 cavities. Therefore, it is cer-
tainly possible that the potential of 4D CNNs is far greater.
The 16 hole restriction that we imposed was a consequence
of introducing more exotic, and expansive, cavities into a
324 toxel space, while taking the computational restrictions
of our hardware into account.

5. Persistent homology
Persistent homology is a computational approach to compu-
ting homology, and forms part of a larger tool set, known
as Topological Data Analysis (Edelsbrunner & Harer, 2010;
Otter et al., 2017). It can be applied in cases where the
dataset is a point cloud that is sampled from an underlying
manifold, and can create a filtration of simplicial complexes
from which an estimate of topological indices, such as the
Betti numbers of the underlying manifold, can be derived.
The computational complexity of the simplicial approxima-
tions grows significantly with the number of data points, and
hence scaling in applications in higher dimensions becomes
an issue (Edelsbrunner & Harer, 2010; Paul & Chalup, 2019;
Zhou et al., 2021; Zomorodian & Carlsson, 2005). While
persistent homology software provides topological insights,
it can also provide some geometrical information (Bubenik
et al., 2020). It would neither be appropriate to directly com-
pare persistent homology with our approach, nor provide
any detailed benchmarking, and so, we concern ourselves
specifically with the global topology of manifolds and the
estimation of Betti numbers, and only explore some of the
basic practical details of persistent homology software.

Otter et al. (2017) present a diverse set of benchmark exper-
iments using a collection of persistent homology software
packages, and real and synthetic data from a variety of fields,
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Table 3. The dataset parameters and the unit radius ranges for each factor of the manifolds that were used to produce 4D cavities; α is
expressed in radians.

Cube Parameters B4 S1 ×B3 S2 ×B2 S1 × S1 ×B2

324

32000 samples B4: 1.25 to 2 S1: 2.5 to 4 S2: 2.5 to 4 S1: 2.5 to 8
1 toxel boundary B3: 1.25 to 2 B2: 1.25 to 2 S1: 2.5 to 4

1 to 16 holes B2: 1.25 to 2
5 unit spacing α: 0 to π/2

including topology. Most of the datasets that were used
were 2D or 3D, however one 8D dataset was considered.
Ripser is regarded as one of the most memory and time effi-
cient implementations for computing persistent homology
of Vietoris-Rips complexes (Bauer, 2021; Otter et al., 2017).
Previously, Otter et al. (2017) also developed modifications
to the standard reduction algorithm, which made it possible
to parallelise persistent homology computations, and has
served as a foundation for implementations (Bauer et al.,
2014) such as Flagser (Lütgehetmann et al., 2020). GUDHI
(Maria et al., 2014) is another highly regarded package that
is available for both Python and C++, and is capable of
analysing data with a variety of complexes and filtrations.
Benchmarking suggests that GUDHI is well-suited for point
cloud data, when compared with other options (Otter et al.,
2017). Some other notable packages include DIPHA (Bauer
et al., 2014), and Cubical Ripser (Kaji et al., 2020).

Experiments were performed on an Alienware R11 work-
station, with an Intel i9 CPU, 64GB RAM, and an NVIDIA
GeForce RTX3090 24GB GPU, as well as an NVIDIA DGX
Station, with an Intel Xeon E5-2698 v4 CPU, 256GB RAM,
and four V100-32GB GPUs. By considering the toxel cube
as a point cloud with integral coordinates, it was appropriate
to use GUDHI to find suitable dataset parameters (Otter
et al., 2017). Vietoris-Rips, alpha, and cubical (both filtered
and single) (Wagner et al., 2012) complexes were consid-
ered, and were applied to a sample by using the subset of
toxels with value 1, since these were associated with the
cube, rather than a cavity. Execution times varied, and were
partially dependent on the collective number of included tox-
els. When operating over a single cubical complex, which
comprised only of cubical simplexes between contiguous
voxels with a value equal to 1, the cubical complex was
completely determined by the voxels themselves; in theory,
any persistent homology software would have applied the
algorithm to the same complex and yielded the same results.

We began with 84 toxel cubes, and then attempted to ana-
lyse 164, 324, 644, 964, and 1284 samples. Since the data
points possessed integral coordinates, GUDHI was capa-
ble of correctly detecting holes of any dimension, provided
that their diameter was greater than 2 units, or equivalently,
greater than the ‘distance’ between diagonal points of a 4D

unit cube (
√
4 units). Otherwise, Betti number calculations

would suffer as a result of there being insufficient resolution
to describe a hole with such a small radius. This afforded
the use of restrictions where appropriate, in order to support
the algorithm. For example, the dimension up to which the
algorithm was asked to analyse was capped at 4, and the in-
tegral coordinate structure meant that it was safe to assume
that the maximum edge length of the simplices necessary to
compute a correct result was 2 units.

We were unable to successfully analyse a 324 cube using
Vietoris-Rips or alpha complexes with the Alienware R11
workstation, however, it was possible to analyse a 3D 1283

cube, which we noted consisted of more points than the
324 cube. When completely describing a sample with a
single (unfiltered) cubical complex, which seemed to be
particularly well-suited to image-type data such as ours
(Otter et al., 2017), we were able to analyse a 644 cube, but
not one of size 964. The same experiments were performed
on the NVIDIA DGX Station, with which we were able to
analyse a 964 cube using a cubical complex, but not one of
size 1284. Thus, the limits of our hardware was found to be
somewhere between samples of sizes 964 and 1284. These
observations were most likely related to the requirements
of the persistent homology algorithm itself, the computing
resources required, and the complication of constructing,
and working with, exponentially growing 4D complexes.

In order to handle samples on which it was not feasible to
apply GUDHI directly, we experimented with firstly trans-
forming the sample, via downsampling or using the cube’s
complement, in order to reduce the number of points fed
into the algorithm. The first option caused issues stemming
from a loss of resolution necessary to accurately describe
holes. The second option required another step to undo the
complementation, which was not one-to-one.

6. Convolutional neural networks for 4D data
Neural networks were implemented using the PyTorch ma-
chine learning framework (Paszke et al., 2019), however it
was necessary to develop custom 4D CNN layers. We began
with the convolution layer. For a sample x, filter f , and out-
put channel cout ∈ Cout, the 4D convolution operation was
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taken as a sum of the convolutions over each input channel
cin ∈ Cin, as expressed in Equation 4.

Three approaches to implementing the 4D convolution were
investigated, each with user-definable kernel dimensions,
padding, stride length, and GPU acceleration compatibility.
An optional bias vector B was included, which contained a
bias bout for each output channel. Therefore, each approach
computed an operation to the effect of y[cout,m, n, o, p] +
bout.

• Naive approach: a direct application of the sum in
Equation 4, using several nested loops.

• Reformulation approach: achieved by reformatting the
sample and filter tensors into 2D matrices. The sample
x was ‘diced up’ into sub-cubes xi that each captured
a location of convolution. The xi were then vectorised,
with their channels xi,cin concatenated to form the ith
row [xT

i0 : xT
i1 : · · · : xT

i(|Cin|−1)] of the input matrix.
The filter f was similarly reformatted into a matrix,
with the jth column [fT

0j : · · · : fT
(|Cin|−1)j ]

T com-
prising of a vectorisation of the kernel associated with
the jth output channel. The convolution of the entire
sample was then computed as the product of these
two matrices (see Equation 5), and then appropriately
reshaped for output.

• Extension approach: an implementation over Py-
Torch’s native 3D convolution operation, similar to the
approach used by Gessert et al. (2020) and Zhang et al.
(2020). This approach is essentially a rearrangement
of Equation 4, which is afforded since the sum is finite
in practice. This modification results in a sum of 3D
convolutions over the remaining dimension (indexed
by l).

6.1. Convolution performance

We performed a series of pilot tests using the Alienware
R11 workstation, with an aim to gauge how useful each
implementation was. Relative speed and approximate batch
size were our main concerns. Chosen somewhat arbitrar-
ily, each implementation received an 8-channelled sample,
convolved over the sample with a 44 unit kernel, and then
output a 16-channelled result. Beginning with a random
84 4D tensor, a copy of this tensor was fed into each im-
plementation, and the execution time of each was recorded.
This was repeated with nine more random tensors, giving
a total of ten records per implementation, which were then
averaged to fill the first column of numbers in Table 4. The
same tests were attempted with 164, 324, and 644 tensors.
Not all tests were possible, and those that failed to execute,
or finish in a reasonable time (less than 5 minutes), are signi-
fied with a hyphen (-). The naive approach failed to operate
on larger samples, which was due to the inefficiencies of

nested loops. The reformulation approach was significantly
faster than the other two options, however, the trade-off
was that it required much more memory to handle the re-
formatted data. For example, over 100GB of GPU memory
was required to convolve a 644 sample. It also failed to
convolve over a batch of more than two 324 samples. The
extension approach was not the fastest, but demonstrated
a better capability to handle multi-channelled batches, and
was ultimately selected for our experiments.

Table 4. Summary of execution times (seconds). Tests that failed
to execute, or finish in a reasonable time (less than 5 minutes), are
signified with a hyphen (-).

Size 84 164 324 644

Naive 0.7374 36.452 - -

Reform 0.0004 0.0013 0.0064 -

Extension 0.0074 0.0114 0.0322 0.5624

The batch size that we employed for our full scale experi-
ments was dependent on available memory and the size of
our network, which is discussed further in Section 7.

6.2. Pooling layers

In light of the 4D convolution performance observations,
both 4D max pooling and average pooling layers were also
implemented over their 3D analogues. The mathematical
arguments allowing this were similar to the convolution
case. Each implementation preserved PyTorch’s default
stride length, which matched the dimensions of the pooling
kernel, however, these parameters were also user-definable.

7. Experiments and results
This project culminated in the design and training of a 4D
CNN that was capable of learning to estimate the Betti
numbers of our synthetic dataset. Our model was simple in
design, and reflected those used by Paul & Chalup (2019).
The CNN began with three iterations of a module consisting
of a 4D convolution layer, followed by a ReLU function,
and then a 4D max pooling layer.

Importantly, the first convolutional layer received the same
1-channelled data as GUDHI; the data was not downsampled
before training. The convolutional layers output 8, 16 and
32 channels, respectively, and each utilised a 54 kernel, and
a padding of 1 unit. The pooling kernel was 24 units. After
the three convolution modules, the result was flattened, and
then passed through two fully connected layers that were
separated by a ReLU operation. Finally, the result was
sparsely coded; one output neuron was reserved for each
possible value of Betti number n. Based on the design of
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y[cout,m, n, o, p] =
∑

cin∈Cin

∞∑
l=−∞

∞∑
k=−∞

∞∑
j=−∞

∞∑
i=−∞

x[cin, i, j, k, l] · f [cout, cin,m+ i, n+ j, o+ k, p+ l] (4)


xT
00 : xT

01 : · · · : xT
0(|Cin|−1)

...

xT
i0 : xT

i1 : · · · : xT
i(|Cin|−1)

...




f00 · · · f0(|Cout|−1)

...
...

...

f(|Cin|−1)0 · · · f(|Cin|−1)(|Cout|−1)

 (5)

our dataset, for Betti number 0, we accommodated for 0
and 1, and for Betti numbers 1 to 3, we accommodated for
0 to 8. Thus, the result was output to a vector of length
2 + 9 + 9 + 9 = 29.

While preliminary testing was performed on an Alienware
R11 workstation, we were fortunate to be able to deploy
our full-scale deep learning experiments on an NVIDIA
DGX Station. A multi-GPU arrangement with NVLink
provided 128GB of GPU memory (via four V100-32GB
GPUs), which accommodated the CNN, and allowed for a
128 sample batch size.

The dataset was randomly divided into 90% training, 5%
validation, and 5% test sets at the beginning of each experi-
ment. For each epoch, the samples were randomly rotated
in multiples of 90 degrees through a randomly selected co-
ordinate plane as they were fed into the Pytorch dataloader,
which offered twelve possible variations on each sample.
The Cross Entropy loss function was appropriately set up
to handle the four separate outputs for β0, β1, β2, and β3.
The Adam optimiser was initialised with a learning rate of
0.001, and a scheduler was employed to reduce the learning
rate by a factor of 10 at epochs 160 and 180 over a 200
epoch training schedule.

Table 5 presents the test set accuracy average µ and standard
deviation σ that were achieved in five repeats of the exper-
iment. These figures can be taken as a proof-of-concept
of the 4D CNN approach to Betti number estimation. We
highlight that each experiment utilised randomly selected
training, validation, and test sets, and required just over 4
days (approximately 97.5 hours) to complete each training
schedule. An average combined test set accuracy of 94.66%
was achieved.

It was observed that the number of epochs that were required
to achieve a reasonable accuracy increased as the dimension
of the Betti number increased. This was evident in full
scale experiments, trial runs, and preliminary experiments,
which employed CNNs that were trained to specialise in
estimating a single Betti number. Our observation could
be attributed to the diverse assortment of fundamental 3D
holes versus the set of fundamental 2D holes (formed by

Table 5. Summary of CNN test set accuracies

Run β0 β1 β2 β3 Combined

1 100 97.54 93.99 86.18 94.43
2 100 97.42 94.65 85.58 94.41
3 100 98.50 95.49 88.46 95.61
4 100 98.38 94.59 90.99 95.99
5 100 97.66 88.76 85.10 92.88

µ 100 97.90 93.50 87.26 94.66
σ 0 0.50 2.70 2.45 1.22

B3 and S1 × B2) and 1D holes (formed by B2). This
would suggest that training a network to estimate higher
dimensional Betti numbers may require larger datasets and
longer training schedules. It would also warrant the use of
CNNs that specialise in a subset of Betti numbers, when
only a subset are of interest.

While the CNN approach was not as precise as the deter-
ministic, and perhaps more general, persistent homology ap-
proach discussed in Section 5, the 4D CNN did demonstrate
a potential to accurately analyse larger samples. However,
since CNNs were inspired by, and model, our understanding
of the neuronal organisation of the visual cortex (Nonaka
et al., 2020; Xu & Vaziri-Pashkam, 2021), it is possible
that the CNN approach is subject to similar limitations that
humans face when using visual means to determine the ho-
mology of spaces with less than 4 dimensions, as opposed
to using combinatorial devices, such as simplices.

8. Conclusion
It is evident from the results that the implemented 4D CNNs
are capable of extracting patterns from our data to accurately
infer Betti numbers, and demonstrate that a computer vision
approach is robust enough, even when faced with the vari-
ability of cavity size, shape, and orientation seen in 4D. One
possible progression could be the application of connected
sums of objects and further homeomorphic deformations
to introduce more diversity. Our investigation and some
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existing literature (Paul & Chalup, 2019; Zhou et al., 2021)
suggest that if realistic synthetic data can be acquired, then
a computer vision approach may be a suitable alternative
in cases where using existing persistent homology software
may be infeasible.

It was apparent from our tests that GUDHI, and perhaps
persistent homology algorithms in general, did not tolerate
downsampling as a means to mitigate the limitation faced
when computing the Betti numbers of larger 4D samples.
While the present study was limited to basic simulated data
with low resolution to allow processing on our workstations
within a sensible timeframe, it should be possible to process
larger data samples or application data in the near future,
or with larger computers. Solomon et al. (2022) show that
subsampling methods can be effective when used to com-
pute an averaged persistence image, and indicate the various
intricacies of subsampling that may need to be covered. In
parallel work (Hannouch & Chalup, 2023a), our aim was
to extend the approach of the present paper to a dataset
consisting of 1284 samples with up to 48 holes of various
dimensions. Directly analysing this data with our hardware
was not possible due to the large memory and computational
demands of applying persistent homology and CNNs to data
of this size. Downscaling to a 324 resolution affected the
topology of the data samples. However, the 4D CNN could
still recover the topology of the original data with about
80% accuracy while GUDHI was not able to do so.

Finally, it could be asked if our CNNs have learned to see
topological properties, such as 1-, 2- or 3-dimensional holes
in 4D, similar to how a human can distinguish the topol-
ogy of a doughnut from that of an apple in 3D. While we
would like to leave the answer open, we note that for hu-
mans, it can already be a challenge to visually understand
the topology of complex structures in 3D. The ability to
visualise 3-manifolds in dimensions greater than 3 is a rare
skill that may be mostly reserved to well-trained geometric
topologists. Our brief excursion into algebraic topology in
Section 4.1 indicates the mathematical machinery required
to deal with some of the simplest objects. While persis-
tent homology seems to run into complexity issues, it is
quite astonishing to see what the basic CNN concept can
achieve in the 4D context. By scaling up data complexity
and training regimes, future 4D CNNs may become part of
a topological data analysis tool set, which may then allow
users to approach real-world applications with non-trivial
underlying manifolds in 4D.
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A. Visualising selected 3-manifolds
Visualisations of the basic 3-manifolds that were studied in this work were created with MATLAB (MATLAB, 2017) using
an (x, y, z, w)-system. 3D slices were taken along the w-axis, and ordered from left to right, with the central image depicting
the slice at w = 0. Just as we may see a circle, or pairs of circles, when taking 2D slices of S1 × S1, we may see a circle
inflate into a torus, which then splits into two tori that then collapse back into one torus, and then return to a circle when
using this approach to visualise S1 × S1 × S1 (as in Figure 1). A cut-away was used in Figures 4 and 5 in order to expose
the inner surface that would otherwise have been hidden by the outer enveloping surface. For example, Figure 5 depicts
S1 × S1 × S1, with α = π/2, which begins as a torus, and then splits into two concentric tori, before returning to a single
torus. Similarly, when depicting S2 × S1, we see a sphere that splits into two concentric spheres, which then join together
again (Figure 4).

Figure 2. Visualising S3 along the w-axis.

Figure 3. Visualising S1 × S2 along the w-axis.

Figure 4. Visualising S2 × S1 along the w-axis.

Figure 5. Visualising S1 × S1 × S1 with α = π/2 along the w-axis.
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B. Visualising the dataset
By inverting the toxel values (setting 0 to 1, and vice versa), we are able to visualise the cavities within a sample. In Figure 6,
we inspect a 324 sample by selecting 16 equally-spaced 3D slices while traversing along the w-axis. The slices are ordered
from left to right and top to bottom. In this particular sample, we can see at least one example of each cavity described
in Section 4.2. We begin to see S1 ×B3 in the second slice, followed by S1 × S1 ×B2 and a ball in the fourth slice. In
slice nine, we begin to see S2 ×B2. Note that these examples look quite different to the visualisations that are included in
Appendix A; what we see when visualising a 4D sample depends on how the cavities are oriented within the sample, and the
perspective that we decide to inspect the sample from. The associated label encodes β0 = 1, β1 = 2, β2 = 3, and β3 = 6. A
video showing all 32 slices is available from Hannouch & Chalup (2023b).

Figure 6. By inverting the toxel values (setting 0 to 1, and vice versa), we are able to visualise the cavities within a sample. Here, we
inspect a 324 sample by selecting 16 equally-spaced 3D slices while traversing along the w-axis. The slices are ordered from left to right
and top to bottom.

C. Notes on algebraic topology
A general introduction to algebraic topology that can serve as background to our approach can be found in the books of
Edelsbrunner & Harer (2010) and Hatcher (2002). In this section, we elaborate on some of the concepts that were referenced
in Section 4.1 of the paper.

14



Learning to See Topological Properties in 4D

C.1. Reduced Homology

In contrast to the higher dimensional Betti numbers, β0 is often interpreted as the number of connected components,
rather than some number of holes. It would seem more consistent if β0 = 1 implied the existence of a ‘gap’ between
two components; this is the rationale behind using reduced homology, and its application can simplify some calculations.
The modification is achieved by introducing an augmentation map into the chain complex that is used in the derivation
of homology theory, and the nth reduced homology group is often denoted H̃n. The pth reduced Betti number is denoted
β̃p, and is analogously defined as rankH̃p. The effect of these changes is that β̃p = βp for all p > 0, and β̃0 = β0 − 1, as
desired. The reader is directed to Hatcher (2002, Chapter 2) for more.

C.2. The Mayer-Vietoris sequence

We state two versions of the Mayer-Vietoris sequence in singular homology. A proof can be found in Edelsbrunner & Harer
(2010, Chapter 4.4), and more discussion can be found in Hatcher (2002, Chapter 2.2).

Let X be a topological space, and A and B be two subspaces whose interiors cover X; the interiors of A and B may
intersect. The Mayer-Vietoris sequence is a long exact sequence that relates the singular homology groups (with coefficient
group Z) of X , A, B, and A ∩B by

· · · → Hn+1(X)
∂n+1−−−→ Hn(A ∩B)

(in,jn)−−−−→ Hn(A)⊕Hn(B)
kn−ln−−−−→

Hn(X)
∂n−→ Hn−1(A ∩B) → · · · → H0(A)⊕H0(B)

k0−l0−−−−→ H0(X) → 0,
(6)

where i : A ∩B → A, j : A ∩B → B, k : A → X , and l : B → X are inclusion maps, ⊕ denotes the direct sum, and ∂n
denotes the nth boundary homomorphism.

Assuming that the intersection of A and B is not empty, the Mayer-Vietoris sequence for reduced homology is identical to
Equation 6 for n > 0, and ends with

· · · → H̃0(A ∩B)
(i0,j0)−−−−→ H̃0(A)⊕ H̃0(B)

k0−l0−−−−→ H̃0(X) → 0. (7)

C.3. The Künneth theorem

The classical statement of the Künneth theorem for principal ideal domains, such as any field F, or as in our case, the ring of
integers Z, relates the singular homology of two topological spaces X and Y with their product space X × Y . The reader
is directed to Hatcher (2002, Chapter 3.B) for a review of several versions of this theorem, and an explanation of the Tor
functor.

Given a principal ideal domain R, and any topological spaces X and Y , the Künneth theorem states that there are short
exact sequences, such that

0 →
⊕

i+j=k

Hi(X;R)⊗R Hj(Y ;R) → Hk(X × Y ;R) →
⊕

i+j=k−1

TorR1 (Hi(X;R), Hj(Y ;R)) → 0, (8)

where ⊗R denotes the tensor product.

D. Deriving an implicit formula
As explained in the paper, an implicit representation of S1 ×S1 ×S1 can be derived by rotating the torus S1 ×S1 about S1.
To demonstrate this, we begin with a parametric equation for the torus with an arm radius a, and a centre radius r (distance
from the origin to the centre of its arm)

(X,Y, Z) = ((r + a cos θ) cosϕ, (r + a cos θ) sinϕ, a sin θ). (9)

A rotation about the y-axis can be performed with the matrix

Ry(α) =


cosα 0 sinα

0 1 0

− sinα 0 cosα

 , (10)
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and if we let A = cosα and B = sinα, then applying Ry(α) to Equation 9 results in a ‘tilted’ torus described by
(AX +BZ, Y,−BX +AZ). By positioning this torus at (0, 0, R), and then rotating it about the xy-plane, we effectively
incorporate the remaining S1 factor to find the following parametric equation of S1 × S1 × S1,

(x, y, z, w) = ((R−BX +AZ) cos γ, (R−BX +AZ) sin γ, Y,AX +BZ). (11)

Since
√
x2 + y2 −R = −BX +AZ, and A2 +B2 = 1, it follows that√
(−B(

√
x2 + y2 −R) +Aw)2 + z2 − r =

√
(B2X −BAZ +A2X +BAZ)2 + Y 2 − r

=
√
((A2 +B2)X)2 + Y 2 − r =

√
X2 + Y 2 − r = a cos θ. (12)

Similarly, we find that

A(
√
x2 + y2 −R) +Bw = −ABX +A2Z +ABX +B2Z = (A2 +B2)Z = Z = a sin θ. (13)

Equations 12 and 13 imply that S1 × S1 × S1 can be described by

(

√
(−B(

√
x2 + y2 −R) +Aw)2 + z2 − r)2 + (A(

√
x2 + y2 −R) +Bw)2 = a2. (14)

The remaining formulas listed in Table 2 may be derived in a similar way.

E. Dataset description
A dataset supplement to this paper is available from Hannouch & Chalup (2023b). The repository provides a subset of data
data.zip for demonstration, as well as the full 192.3 MB dataset that was used in this work.

F. Guide to code
PyTorch (Paszke et al., 2019) implementations of the 4D convolution and pooling layers that were described in the paper
are available from Hannouch & Chalup (2023b), and can be found in the src folder, along with a script that trains our 4D
CNN using the dataset found in data.zip. We have also provided three pre-trained models, and a small random dataset
test_data.zip on which to demonstrate inference.

F.1. Specification of dependencies

The code is self-contained and executable, and should be run on a system with CUDA compatible GPUs. The Python
requirements can be found in the requirements.txt file, and may be installed using:

> pip3 install -r requirements.txt

F.2. Data preparation

The test_data.zip file can be extracted to a folder named test_data using the command:

> unzip test_data.zip -d test_data

The data.zip file can be extracted to a folder named data using:

> unzip data.zip -d data

F.3. Training code

The 4D CNN described in this paper is implemented in cnn4d.py, and may be trained with the dataset found in the data
folder using the following command. The GPUs that are employed for training are specified with the last argument, for
example "[0]".

> python3 train.py data "[0]"

The resulting model will be saved to the working directory as demo_saved_model_<accuracy>.
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F.4. Evaluation code

The following command loads a pre-trained model saved_model_1 found in the models folder, and performs inference
on the data found in the test_data folder.

> python3 eval.py test_data "[0]" saved_model_1

The output lists the accuracy with which the network has estimated Betti numbers 0 to 3.
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