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Abstract
In many dimensionality reduction tasks, we wish
to identify the constituent components that ex-
plain our observations. For manifold learning,
this can be formalized as factoring a Riemannian
product manifold. Recovering this factorization,
however, may suffer from certain difficulties in
practice, especially when data is sparse or noisy,
or when one factor is distorted by the other. To
address these limitations, we propose identifying
non-redundant coordinates on the product mani-
fold before applying product manifold learning to
identify which coordinates correspond to different
factor manifolds. We demonstrate our approach
on both synthetic and real-world data.

1. Introduction
Consider a high-dimensional dataset X = {x1, . . . , xN}
in Rp for some large number of features p. The task of di-
mensionality reduction is to map X to a lower-dimensional
space Rd where d ≪ p. In classical methods (e.g. PCA),
this has the added benefit of providing a set of coordinates
which reflects the underlying structure of the data. However,
in many cases the underlying data-generating process has
a nonlinear structure which linear methods like PCA fail
to capture. In these cases, one typically turns to manifold
learning, a class of geometric techniques which aims to
recover underlying geometric structure even in nonlinear
cases (Tenenbaum et al., 2000; Belkin & Niyogi, 2003; Coif-
man & Lafon, 2006; Fefferman et al., 2016). However, it
is not always obvious how to assign coordinates that reflect
the constituent underlying parameters of the data manifold.

To do so, we follow (Zhang et al., 2020) in considering
product manifolds, which we wish to factorize into their
constituent latent variables. Product manifolds appear in
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neural data, where grid cell activation is suggested to have
the structure of a torus T = S1 × S1 (Gardner et al., 2022),
and in cryo-electron microscopy where a subject molecule
may contain multiple rigid bodies that move independently
from each other (Nakane et al., 2018).

However, this method may suffer in practice, since spectral
embedding techniques are prone to redundant embedding
coordinates. That is, different eigenvectors may correspond
to the same direction on the manifold despite being orthog-
onal in the original Rp (Chen & Meilă, 2019; Dsilva et al.,
2015; Goldberg et al., 2008).

Related work has identified methods for non-redundant spec-
tral embeddings such as (Singer, 2006b) for spectral inde-
pendent component analysis; (Dsilva et al., 2015), based on
local linear regression; and (Koelle et al., 2021), which pro-
vides embedding coordinates with domain-specific meaning.
The work of (Kohli et al., 2021) pieces together local views
of a manifold into a global embedding with “tearing”, which
enables representing closed manifolds in their intrinsic di-
mensions, from which one could also analyze the constituent
features of a data manifold.

In this paper, we identify how the phenomenon of redun-
dant embedding coordinates impacts the quality of manifold
factorization given by the product manifold learning (PML)
method of (Zhang et al., 2020), as well as the phenomenon
of warped products, in which the geometry of one factor
is distorted as a function of the other. We then describe
a way to resolve this issue by leveraging the method of
(Chen & Meilă, 2019) to limit our potential factorization
coordinates to independent eigenvectors, which we will re-
fer to as independent coordinate product manifold learning
(IC-PML).

We will first discuss the theoretical background of mani-
fold learning in Section 2. We describe our contribution in
Sections 3 and 4, first identifying some of the difficulties
that may arise in manifold factorization in Section 3 before
describing in Section 4 how we augment the factorization al-
gorithm with independent coordinate selection. We provide
examples in Section 5 where our method, IC-PML, provides
better factorizations than PML. Finally, we offer concluding
remarks in Section 6.
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2. Background
We begin by describing spectral embedding methods in man-
ifold learning and the relationship between the graph Lapla-
cian and the Laplace-Beltrami operator on manifolds. We
then discuss the method of (Zhang et al., 2020) for product
manifold learning and the method of (Chen & Meilă, 2019)
for selecting independent spectral embedding coordinates.

2.1. The Laplacian and Spectral Embeddings

Both (Zhang et al., 2020) and (Chen & Meilă, 2019) are built
on spectral methods for manifold learning, as introduced
by (Belkin & Niyogi, 2003) and (Coifman & Lafon, 2006).
Consider a manifold M of dimension d embedded in Rp for
some p≫ d, and suppose we have a set X of N data points
x1, . . . , xN ∈ Rp sampled uniformly at random from M .
We wish to recover the underlying manifold M from our
dataset X by producing a new embedding (φ1, . . . , φq) :
M → Rq where d ≤ q ≪ p.

We begin by constructing a weighted graphG = (X,W ) on
the data points with edge weights given by the radial basis
function with bandwidth ε:

Wi,j = exp

(
−∥xj − xi∥2

ε

)
. (1)

Remark 2.1. In some cases, G is constructed as an r-radius
graph or a k-nearest neighbors graph, but we will consider
the fully connected case.

Then defining the degree matrix Di,i =
∑N

j=1Wij , we
can define the (symmetric normalized) Laplacian Lsym =
I −D−1/2WD−1/2, noting that it is positive semidefinite
and hence admits an eigendecomposition over R. Then, in
the limit as N →∞ and ε→ 0, it can be shown that Lsym
converges to the Laplace-Beltrami operator ∆M on M :

Theorem 2.2 (Belkin & Niyogi, 2003; Coifman & Lafon,
2006; Singer, 2006a). SupposeX = {x1, . . . , xn} is drawn
i.i.d uniformly at random from a compact manifoldM ⊆ Rp,
and constructLsym as before. Then as the number of samples
N →∞ and the bandwidth ε→ 0, the eigenvectors of Lsym

approach the Neumann eigenfunctions of ∆M .

We can also define the random walk matrix P = D−1W ,
whose eigenvalues are related to those of the Laplace-
Beltrami operator by the following result:

Theorem 2.3 (Coifman & Lafon, 2006). Let P be defined
as above and denote its eigenvalues by µk. Then denoting
by λk the eigenvalues of ∆M , we have

µk → exp
(
−ε
4
λk

)
(2)

as the number of samples N → ∞ and the bandwidth
ε→ 0.

We can also symmetrize P by defining a matrix Psym =
D1/2PD−1/2 = D−1/2WD−1/2, which is similar to P
(and hence has the same eigenvalues) and has the same
eigenvectors as Lsym, allowing us to leverage both Theo-
rems 2.2 and 2.3.

This approximation of ∆M and its eigenfunctions then al-
lows us to apply the following well-known theorem to obtain
an embedding of X which approximates M :
Theorem 2.4. Denote by fj the Neumann eigenfunctions
of ∆M and λj their corresponding eigenvalues. Then the
eigenvalues λj satisfy 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞, and
The eigenfunctions {fj}∞j=1 form a complete orthonormal
basis of L2(M).

Thus M can be embedded in L2(M) by its eigenfunctions,
and we can in turn approximate this embedding with the
eigenvectors of Lsym.

2.2. Product Manifold Learning

To formalize the notion of an underlying data manifold hav-
ing multiple constituent features, we use the notion of a
Riemannian product manifold, focusing on the case of a
product manifold with two factors. We also discuss the
behavior of the Laplace-Beltrami operator on products, jus-
tifying the algorithm for decomposing a product manifold
into its factors given by (Zhang et al., 2020).
Definition 2.5. The product of two Riemannian manifolds
(M1, g1) and (M2, g2) is the Cartesian product M1 ×M2

endowed with the metric g1 ⊕ g2.

The method is based on Proposition 2.6 (as well as its con-
verse), which states that the eigenfunctions of a Rieman-
nian product manifold can be written as the products of the
eigenfunctions on the factor manifolds; for a proof see, e.g.
Section 4.6 in (Canzani, 2013).
Proposition 2.6 (Zhang et al., 2020). Let f1 :M1 → R and
f2 : M2 → R be twice-differentiable functions such that
∆M1

f1 = λ1f1 and ∆M2
f2 = λ2f2. Take πi : M → Mi

to be the projection of M onto Mi for i = 1, 2, and define
gi = fi ◦ πi. Then ∆M (g1g2) = (λ1 + λ2)g1g2.
Example 2.7. Consider a strip M = M1 × M2 ⊆ R2

where M1 = [0, a] and M2 = [0, b]. Then denoting by x
the M1 coordinate and y the M2 coordinate, the Neumann
eigenfunctions of the Laplacian ∆M are

fk,ℓ(x, y) =
1

2
cos

(
πk

a
x

)
cos

(
πℓ

b
y

)
(3)

with corresponding eigenvalues

λk,ℓ = π2

(
k2

a2
+
ℓ2

b2

)
. (4)

The eigenfunctions are the products of the eigenfunctions
cos
(
πk
a x
)

on M1 = [0, a] and cos
(
πℓ
b y
)

on M2 = [0, b].
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The eigenvalues of M are the sums of the eigenvalues λk =
π2k2

a2 on M1 and λℓ = π2ℓ2

b2 on M2.

Here fi may be the constant eigenfunction, so successfully
factoring the eigenfunctions on M in terms of other eigen-
functions also gives a factorizationM1×M2. In the context
of data sampled fromM , the convergence of the constructed
graph Laplacian to the Laplace-Beltrami operator means
that we should also be able to find eigenvectors φi, φj , φk

satisfying φk ≈ φiφj (where φiφj is the elementwise prod-
uct). If one of φi or φj is the trivial constant eigenvector,
then φk is a factor; otherwise, φk is a product eigenvector.
Thus (Zhang et al., 2020) aims first to identify the product
and factor eigenvectors φk ≈ φiφj , and then to assign φi

to one of M1 or M2 and φj to the other.

To identify triples φk ≈ φiφj of nontrivial eigenvectors,
(Zhang et al., 2020) identify for each eigenvector φk which
eigenvectors φi, φj best match φk as defined by their abso-
lute cosine similarity

Sim(φk, φiφj) =
| ⟨φk, φiφj⟩ |
∥φk∥ ∥φiφj∥

. (5)

To avoid considering too many pairs φi, φj , the method em-
ploys two hyperparameters: an eigenvalue criterion δ and a
similarity criterion γ. Following Theorem 2.3, we take the
eigenvalues µk of Psym and compute λk = −4 log(µk)/ε

2.
Then following Proposition 2.6, we only compute the simi-
larity for triples (i, j, k) for which the corresponding eigen-
values λi, λj , λk satisfy |λi + λj − λk| < δ, and keep the
triples with Sim(φk, φiφj) > γ.

Once the triplets are identified, the factor eigenvectors are
assigned to the factor manifolds by constructing a separabil-
ity matrix Ci,j = Sim(φk, φiφj), symmetrizing by taking
C + C⊺, and using the MAX-CUT approximation given by
(Goemans & Williamson, 1995) to assign each φi to one of
M1 or M2 and φj to the other.

2.3. Independent Coordinate Selection

Chen & Meilă (2019) proposed to overcome the problem of
redundant eigenvectors and select independent coordinates
for embedding by examining the volume explained by a
set of embedding coordinates. The coordinate selection is
based on a criterion called the (regularized) rank quality,
which we will describe below.

Let φ = (φ1, . . . , φp) : M → Rp be an embedding of M ,
and at each data point xi letU(i) be a matrix whose columns
form a basis for the tangent space Tφ(xi)φ(M) at xi. We
wish to identify a subset S ⊆ {1, . . . , p} of size |S| ≪ p
such that φS = (φk)k∈S is also a smooth embedding of
M . To do so, consider the projection US(i) := U(i)[S, :]
and denote its columns by uSk (i), and with these define the
normalized projected volume at xi.

Definition 2.8. Let US(i) and uSk (i) be defined as above.
Then the normalized projected volume is the quantity

Volnorm(S, i) :=

√
det(US(i)⊺US(i))∏

k∈S

∥∥uSk (i)∥∥ . (6)

As described by (Chen & Meilă, 2019), Volnorm(S, i) is the
volume spanned by a set of unit vectors (not necessarily
orthogonal) in TφS(xi)φS(M), and should be 1 when the
embedding coordinates ϕk indexed by S are orthogonal and
0 when S fails to be full rank. Then the rank quality of S is
defined to be the average of log Volnorm(S, i) over each data
point xi, using the logarithm to increasingly penalize values
near zero. Finally, because S may contain eigenvectors of
high frequency, a regularization parameter ζ is introduced to
penalize high frequency eigenvectors, resulting in the final
criterion for S.

Definition 2.9. Let λk be the k-th eigenvalue of the graph
Laplacian Lsym, and Volnorm(S, i) defined as above for each
xi. The (regularized) rank quality of S

L(S; ζ) =
1

N

N∑
i=1

log Volnorm(S, i)− ζ
∑
k∈S

λk. (7)

We require 1 ∈ S, so coordinate selection becomes the
subset selection problem

S∗(ζ) = argmax
S,1∈S

L(S; ζ). (8)

We use the greedy approach given in Appendix D of (Chen
& Meilă, 2019), which also gives us an order for S.

3. Challenges in Product Manifold Learning
Having introduced the method of manifold factorization
in (Zhang et al., 2020), we identify three scenarios that
pose difficulties for this approach, and comment both on
how these affect Proposition 2.6 in theory and how they
affect the performance of the described method in practice.
We provide examples of each scenario and compare the
performance of (Zhang et al., 2020) with our augmented
method in Section 5.

3.1. Incorrect Factorizations

The first potential difficulty for the method given in Sec-
tion 2.2 is that a factorization φk ≈ φiφj may not neces-
sarily reflect the product structure of M , either because one
of the factor manifolds itself has a triple φk ≈ φiφj or
because one of the factors φi, φj is itself a product of two
other eigenvectors. In the first case, the method will erro-
neously assign φi to one factor manifold and φj to the other
factor manifold, even though all three eigenvectors belong
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to the same factor manifold. In the second case, the method
will erroneously assign φi to one factor manifold and φj

to the other, even though one or both of φi, φj belong to
neither of the factor manifolds.

To illustrate the first scenario, consider a cylinder M =
S1 × [0, 1] and notice that S1 has a triple of eigenvectors

1

2
sin(2θ) = cos(θ) sin(θ). (9)

To avoid erroneously assigning cos(θ) to one factor and
sin(θ) to another factor, one needs to select the eigenvalue
criterion δ to be less than 2. However, under some circum-
stances tightening the eigenvalue criteron may lead to a
faliure to find actual triples, for example when the data is
relatively sparse or noisy, or in the situations we will discuss
in Sections 3.2 and 3.3.

In the second scenario, it may be that a triple φk ≈ φiφj

contains a factor, say φi, which is also a product φi ≈ φpφq .
In this scenario, it does not make sense to assign φi to one of
the factors M1 or M2, so we check the identified triples and
remove any which contains a product as one of its factors.

3.2. Warped Product Manifolds

It may be that the underlying manifold M has the structure
of a product manifold but fails to be strictly a Riemannian
product. For example, some latent confounder may “stretch”
one factor as a function of the other, or the manifold may
be embedded in a way which reflects the product structure
topologically, but not geometrically. In such cases, we may
still wish to decompose the manifold into its factors, but the
assumption that the manifold is a Riemannian product is too
restrictive. Instead, we may describe such a product as a
warped product, as introduced in (Bishop & O’Neill, 1969).
Definition 3.1. Let (M1, g1), (M2, g2) be two Riemannian
manifolds, and w :M1 → (0,∞) a continuously differen-
tiable function. The warped product M = M1 ×w M2 is
the Cartesian product M1 ×M2 with the metric g1 ⊕ w2g2.

Under these conditions, Proposition 2.6 fails, and instead
∆M behaves according to Proposition 3.2 and Corollary 3.3.
Proposition 3.2 (Bishop & O’Neill, 1969). Let (M1, g1)
and (M2, g2) be Riemannian manifolds of dimensions n,m,
respectively, and letM =M1×wM2 with warping function
w. Then for any f ∈ C2(M,R),

∆Mf = ∆M1
f +

m

w
g1(∇f,∇w) +

1

w2
∆M2

f. (10)

Corollary 3.3 (Marrocos & Gomes, 2018). If f1 :M1 → R
and f2 : M2 → R are eigenfunctions of M1 and M2 with
eigenvalues λ1, λ2, and φi = fi ◦ πi for i = 1, 2, then

∆M (φ1φ2) =

(
λ1φ1 +

m

w
g1(∇φ1,∇w) +

λ2
w2

φ1

)
φ2.

(11)

Although Proposition 2.6 no longer holds in this setting,
(Zhang et al., 2020) demonstrate that their method is robust
to noise, suggesting that as long as the warping function w
is not too extreme, the factorization described in Section 2.2
may still produce the constituent factor manifolds of M .

This optimism also has a theoretical basis: for eigenvalues
µi of ∆M2

, define Lw
µi

by

Lw
µi
f = ∆M1

f +
m

w
g1(∇φ1,∇w) +

µi

w2
f. (12)

Then we have the following results from (Marrocos &
Gomes, 2018):
Proposition 3.4. If φµi is an eigenfunction of Lw

µi
and ψ is

an eigenfunction of ∆M2
, φµiψ is an eigenfunction of ∆M .

Corollary 3.5. The functions {φµi

j } form a basis of
L2(M1, w

2m/ng1), and the functions {φµiψ} form a ba-
sis of L2(M).

Proposition 3.4 tells us that factoring the eigenfunctions of
M can still recover the eigenfunctions ψ of M2 and associ-
ated eigenfunctions φµi of a warped copy (M1, w

2m/ng1)
of M1, and Corollary 3.5 tells us that these eigenfunctions
still provide embeddings as in the unwarped case. In prac-
tice, this means that the factorization method of (Zhang
et al., 2020) is still applicable, but we may need to loosen
the gateway criteria γ and δ to find appropriate triples.

3.3. Large Aspect Ratios

The final difficulty that we will discuss is when one factor
in M is much larger than the other, which we describe as
the product having a large aspect ratio. For example, a strip
[0, 1]× [0, t] has aspect ratio 1× t. In this case, the larger
the aspect ratio of the product manifold, the more of the
first several eigenvectors (ordered by their corresponding
eigenvalues) will be redundant, impacting the quality of the
factor coordinates identified by (Zhang et al., 2020).
Example 3.6. Consider an n × 1 strip [0, n] × [0, 1] for
a positive integer n. Then using a = n and b = 1 in
Example 2.7, the eigenfunctions are

fk,ℓ(x, y) =
1

2
cos

(
πk

n
x

)
cos (πℓy) (13)

with corresponding eigenvalues

λk,ℓ = π2

(
k2

n2
+ ℓ2

)
. (14)

Then the eigenvalues are ordered

0 = λ0,0 ≤ λ1,0 ≤ λ2,0 ≤ · · · ≤ λn,0 = λ0,1 ≤ · · · (15)

Because we need to examine more eigenvectors, each of
which has higher frequency, the factorization becomes sus-
ceptible to sampling noise. This ultimately results in mis-
classified eigenvectors or a lack of identified triples.
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4. Independent Product Manifold Coordinates
To address the potential problems in Section 3, notice that
when the underlying manifold M is a product manifold
(even a warped product), the coordinates corresponding
to each factor should be orthogonal. Thus by selecting
independent coordinates as described in Section 2.3, we
can reduce instances of factorizations that fail to reflect the
product structure of the manifold.

Algorithm 1 IC-PML

Input: Eigenvectors Φ = {φk}Nk=1 of Lsym, eigenvalues
Λ = {λk}Nk=1 of P , intrinsic dimension d, regular-
ization parameter ζ, eigenvalue criterion δ, similarity
criterion γ

Output: List of triples φk ≈ φiφj and similarity scores
1. S ← GREEDYINDEIGENSEARCH(Φ,Λ, d, ζ)

▷ Record the order of S
2. triplets← ∅
3. for k = 1, . . . , N do
4. Sim∗ ← max

i,j∈S
|λi+λj−λk|<δ

Sim(φk, φiφj)

5. i∗, j∗ ← argmax
i,j∈S

|λi+λj−λk|<δ

Sim(φk, φiφj)

6. if Sim∗ > γ then
7. triplets← triplets ∪ {(φk, φi∗ , φj∗)}
8. end if
9. end for

10. for (φk, φi, φj) in triplets do
11. if ∃ (φi, φp, φq) ∈ triplets or ∃ (φj , φp, φq) ∈

triplets then
12. triplets← triplets \ {(φk, φi, φj)}
13. end if
14. end for

We describe in Algorithm 1 our modification of the algo-
rithm for identifying individual factors (Algorithm 1, Zhang
et al., 2020) using the function GREEDYINDEIGENSEARCH
(Algorithm S4, Chen & Meilă, 2019). In contrast to (Chen
& Meilă, 2019), we allow S to be comparatively large,
since we require several eigenvectors to successfully iden-
tify triples as in (Zhang et al., 2020). The first key difference
between PML and IC-PML occurs in lines 4 and 5 where
we select i, j from S to prevent the situation in Section 3.1
where φi, φj represent the same direction in M , and hence
cannot possibly correspond to different factors. Normally,
the eigenvalue criterion would suffice to prevent this, but
as we have seen in Section 3.2, we may need to loosen the
eigenvalue criterion. We also order our factor embedding
coordinates by the greedy ordering based on the regularized
rank quality discussed in Section 2.3, which ensures that
our embeddings use the most relevant coordinates instead
of simply the lowest frequency coordinates as in (Zhang
et al., 2020), which orders the factor eigenvectors by their

eigenvalues. This is especially important with large aspect
ratios as in Section 3.3, where a lower frequency eigenvector
from the shorter factor may be erroneously assigned to the
longer factor. In this case, the greedy ordering will ensure
that we consider the correct eigenvector for the long fac-
tor first, even if it is of higher frequency. We also add the
step in lines 10-14 where we remove any factor eigenvector
which is itself a product of nontrivial eigenvectors, address-
ing the second scenario described in Section 3.1. We then
apply MAX-CUT as in (Zhang et al., 2020) to give the final
embedding coordinates for M1 and M2.

5. Experiments
In this section we provide examples illustrating some of the
scenarios in Section 3, using both synthetic and real data.
We demonstrate how our algorithm resolves limitations of
(Zhang et al., 2020) and identifies factor manifold coordi-
nates which represent the geometry of the data. We will
denote by φ(1)

i the eigenvectors assigned to factor M1 and
φ
(2)
j the eigenvectors assigned to factor M2, with the order

given by each method: for PML i, j are ordered by their cor-
responding eigenvalues, while for IC-PML they are ordered
by the greedy coordinate search described in Section 2.3.

Implementation. We implemented our method in Python
using numpy (Harris et al., 2020), SciPy (Virtanen et al.,
2020), and NetworkX (Hagberg et al., 2008), along with
original code from (Zhang et al., 2020; Chen & Meilă,
2019). Visualizations are generated using Matplotlib
(Hunter, 2007). For image data, we use scikit-learn
(Pedregosa et al., 2011) and sklearn-image (Van der
Walt et al., 2014) for preprocessing and feature extrac-
tion. Code is available at https://github.com/
he-jesse/ic-pml.

5.1. Synthetic Examples

We begin with comparisons of PML to IC-PML on synthetic
product manifolds with large aspect ratios, as discussed in
Section 3.3: an n× 1 strip for n = 6, 7, 8 (Figure 1) and a
cylinder with radius r = 2 and height h = 1 (Figure 2). In
both examples, we use the factorization M =M1 ×M2 to
reconstructM by using the first one or two coordinates from
M1 with the first coordinate of M2. We can see that inde-
pendent coordinate selection helps avoid the reconstructed
manifold being “collapsed” along its shorter factor.

We also give an example of a warped product in Figure 3.
We sample 5000 points uniformly at random from a warped
cylinder where the radius r increases with the height z by
r(z) = 1 + 2z. That is, the radius increases from r = 1
to r = 3 as z increases from 0 to 1. Because the eigen-
value criterion must be loose, as discussed in Section 3.2,
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Figure 1. Reconstruction of 1 × 6, 1 × 7, and 1 × 8 rectangles
with PML (left) and IC-PML (right). Each point is colored by its
ground truth coordinate along the short side of the rectangle. Each
example uses 2000 samples with δ = 1.0, γ = 0.6, and the right
uses ζ = 0.01.

Figure 2. Reconstruction of a cylinder of radius 2 and height 1
with PML (left) and IC-PML (right). using δ = 0.2, γ = 0.6, and
ζ = 0.001. Points are colored by ground truth height.

PML fails to distinguish between products which reflect
the manifold geometry and those which are simply results
of the S1 factor as discussed in Section 3.1. Our method,
however, successfully produces a circle in one factor, and in
the other successfully identifies the dominating eigenvector
associated with height.

5.2. Real Data

Rotating Puppets. We use 8100 video frames of two
puppets (Yoda and a bulldog) rotating at different rates from
(Lederman & Talmon, 2018), as shown in Figure 4. Because
the puppets are rotating at different rates, the underlying
manifold has the structure of a torus T = S1 × S1, where
each factor manifold S1 corresponds to the rotation of a
different puppet. The PML factorization does not capture
this structure, producing one topologically trivial factor
embedding. Our method, however, successfully produces a
closed curve when embedding both factor manifolds.

A Partially Plowed Field. We also illustrate the use of
factorization on a warped product structure, as discussed
in Section 3.2 using an image of a partially plowed field in
Figure 5. We embed the pixels of a downsampled segment
of the image, where each pixel is represented by its 5 × 5
surrounding patch flattened to a 25-dimensional vector for
the graph construction.

We can see that the underlying manifold is another warped
cylinder [a, b]×w S

1 with w(t) = r0+εt for some constant
r0. In this case, the periodicity of the furroughs gives rise
the the S1 factor, while the average intensity gives rise to
the interval factor. The warping w reflects the increased
contrast as the average intensity increases. In this example,
both algorithms give the same result, but the eigenvalue
criterion must be loosened to δ > 6.14.

6. Conclusions, Limitations, and Future Work
In this paper, we identify three potential difficulties in learn-
ing product manifold factorizations: incorrect factorizations,
warped products, and large aspect ratios. To address these
difficulties, we propose an algorithm which augments a prod-
uct manifold learning approach with independent coordinate
selection and show that this augmented method has the po-
tential to produce correct and higher quality factorizations.
In future work, we will optimize our framework in order to
provide an implementation which is more efficient in run-
time. An important application of product manifold learning
is that factorizing the structure of a product manifold into
separate factor manifolds lends itself to downstream analy-
sis, such as regression or decoding of observed signals from
the factor manifolds. We leave this to future work.
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(a) 5000 samples from a warped cylinder
colored by height.

(b) Reconstructions of the warped cylinder in (a) using the PML factorization (left)
and the IC-PML factorization (right).

(c) Factors of the warped cylinder in (a) computed by PML. Factor
1 (left) is colored by ground truth height z, while factor 2 (right) is
colored by x coordinate.

(d) Factors of the warped cylinder in (a) computed by IC-PML.
Factor 1 (left) is colored by ground truth height z, while factor 2
(right) is colored by x coordinate.

Figure 3. A warped cylinder [0, 1]×r S
1 with r(z) = 1 + 2z (a), as well as its reconstructions (b) and factorizations (c,d) using ε = 0.5,

δ = 2.0, γ = 0.6, and ζ = 0.02.

(a) Example of video frames of
rotating puppets from
(Lederman & Talmon, 2018).

(b) Factorizations of 8100 pictures of rotating figures using PML
(top) and IC-PML (bottom) with δ = 1.0, γ = 0.6, and ζ = 0.01
colored by the first (left) and third (right) principal components.

Figure 4. Video frames of rotating puppets (a) and representations of the factor manifolds (b).
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(a) A partially plowed field

(b) A downsampled portion of (a) converted to black and white. (c) Spectral embedding of 5× 5 pixel patches in (b).

(d) Factors of (c). Factor 1 corresponds to height, while Factor 2 is an annulus corresponding to
the warped radius along the height to form the truncated cone.

Figure 5. Image of a partially plowed field (a) and spectral embedding of image patches (c) with factorizations (d) computed using a
bandwidth of ε = 0.1 and parameters δ = 7, γ = 0.6. Points are colored by mean patch intensity.
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