
Explaining Graph Neural Networks Using Interpretable Local Surrogates

Farzaneh Heidari 1 2 * Perouz Taslakian 3 * Guillaume Rabusseau 1 2 4

Abstract
We propose an interpretable local surrogate (ILS)
method for understanding the predictions of black-
box graph models. Explainability methods are
commonly employed to gain insights into black-
box models and, given the widespread adoption
of GNNs in diverse applications, understanding
the underlying reasoning behind their decision-
making processes becomes crucial. Our ILS
method approximates the behavior of a black-box
graph model by fitting a simple surrogate model in
the local neighborhood of a given input example.
Leveraging the interpretability of the surrogate,
ILS is able to identify the most relevant nodes con-
tributing to a specific prediction. To efficiently
identify these nodes, we utilize group sparse lin-
ear models as local surrogates. Through empiri-
cal evaluations on explainability benchmarks, our
method consistently outperforms state-of-the-art
graph explainability methods. This demonstrates
the effectiveness of our approach in providing
enhanced interpretability for GNN predictions.

1. Introduction
Graph Neural networks (GNNs) (Scarselli et al., 2008) are
neural architectures that are widely used for analyzing data
with complex relational structures. They are shown to be
effective for a range of applications such as traffic predic-
tion (Cui et al., 2019) and drug discovery (Zhu et al., 2022a).
However, understanding how GNNs make predictions re-
mains a challenge due to the multi-layer computations in the
GNN architecture and the graph-based nature of the input:
unlike images or text, graphs are not easily reasoned about
by humans. Explaining graph neural networks has thus
emerged as a field of study that is concerned with explain-
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ing why a given black-box GNN – whose inner architecture
is not readily available – predicts a specific output.

Graph Neural Network Explainability focuses on developing
methods to interpret GNNs, allowing users to trust and com-
prehend their outputs. Various techniques are employed,
including visualizing learned representations (Liu et al.,
2022), designing attribution methods (Sanchez-Lengeling
et al., 2020), and exploring adversarial attacks (Lucic et al.,
2022). These approaches enhance transparency, account-
ability, and fairness of the models.

Graph explainability methods fall into two general cat-
egories (Yuan et al., 2022): model-level (global), and
instance-level. Global explanation methods try to learn
a model of the data and output the global relationship be-
tween the variables (Fan et al., 2022; Finzel et al., 2022).
Instance-level explanations methods (Luo et al., 2020; Ying
et al., 2019) focus on explaining the prediction of the GNN
for a specific instance, which could be a node or a graph
depending on the task, and output a set of most relevant
nodes/edges or features. Both approaches improve trans-
parency of the black-box graph neural network models and
have various applications (Zhu et al., 2022b; Henderson
et al., 2021).

In this work, we propose an instance-level graph explainabil-
ity method named Interpretable Local Surrogates (ILS). ILS
approximates the graph black-box model in the local neigh-
bourhood of an instance with an interpretable surrogate that
can be probed to explain the prediction. Our method is flex-
ible in choice of surrogates, allowing us to select different
interpretable models tailored to the specific prediction expla-
nation requirements. Furthermore, our method can explain
any black-box graph model on both node-level, edge-level
and graph-level tasks. In this paper, we focus on the class
of sparse linear functions, and leverage group sparsity con-
straints to efficiently identify a set of the most relevant nodes
or features. To the best of our knowledge, our approach is
the first one that can at the same time handle node and
graph level models and do not require any knowledge of the
black-box model (such as intermediate node embeddings or
back-propagating through the original model).

We conduct comprehensive evaluations of our method on
both graph-level and node-level experiments, comparing its
performance against state-of-the-art explainability methods.

1



Explaining Graph Neural Networks Using Interpretable Local Surrogates

Across all datasets, our method consistently outperforms ex-
isting approaches or achieves comparable performance. For
graph regression, we introduce a novel synthetic dataset that
incorporates dependencies on both graph structure and node
labels. This unique dataset adds an additional layer of com-
plexity to the existing synthetic datasets commonly used for
graph explainability evaluations. By evaluating our method
in these diverse settings, we demonstrate its effectiveness in
addressing explainability challenges in graph-based tasks.

Summary of Contributions We propose a novel instance-
based graph explainability method that efficiently identifies
the set of nodes explaining the prediction of a black-box
model applied to a given input. Our method relies on the
simple idea of approximating the black-box function locally,
in the neighborhood of the input node or graph, with an
interpretable surrogate model. By choosing the class of
group-sparse linear models for the surrogate, our method
can identify the nodes that most impact the output of the
GNN locally. Our approach, which we call Explainability
with Interpretable Local Surrogate (ILS), has the following
key features:

• ILS can explain any black-box graph model, without
the need for further knowledge about the inner work-
ings of the model.

• ILS can provide instance-based explanations for both
node-level, edge-level and graph-level models.

• ILS relies on a local approximation, without the need
to globally distill the black-box model in a surrogate.
This implies, in particular, that the complexity of ex-
plaining the prediction of a node-level model on one
node is independent of the total number of nodes in
the graph (in contrast to the DnX (Pereira et al., 2023)
method, which requires distilling a linear GNN on the
entire set of nodes).

• ILS provides a general explainability framework com-
bining the fundamental ideas of local approximation
and interpretable surrogates. While in this paper we
solely use group sparse linear models as surrogates (al-
lowing ILS to provide a set of nodes as explanation),
any other interpretable surrogate can be used, depend-
ing on the nature of the desired explanation. This
makes ILS a very versatile and flexible explanation
method for black-box graph models.

1.1. Related Work

Gradient-based explainability methods The most
straight-forward way to approximate the importance of fea-
tures is by looking at the magnitude of the gradients or
hidden feature map values. This method has been widely
used for images, texts and graphs (Yuan et al., 2022). For

graph models, SA (Baldassarre & Azizpour, 2019) uses the
squared-norm of the gradients of the differentiable function
f to produce a saliency map of the input. Grad-CAM (Sel-
varaju et al., 2017) computes the gradients of the target
prediction with respect to the intermediate node embed-
ddings and then averages the scores of all the layers to find
the final scores. Note that Grad-CAM requires access to the
output of the intermediate layers of the deep neural network.

Perturbation-based explainability methods
Perturbation-based methods are widely used to ex-
plain deep image and graph models (Yuan et al., 2022). The
motivation is similar to gradient methods: the variations in
the output with respect to different input perturbations is
used to approximate feature importance. Perturbation-based
methods like GNNExplainer (Ying et al., 2019), PGEx-
plainer (Vu & Thai, 2020), CF-GNNExplainer (Lucic et al.,
2022), learn a node/edge or feature mask on the data by
maximizing various objective functions.

Surrogate methods Most relevant to our work are meth-
ods relying on surrogates. These methods approximate
the black-box model with a simple interpretable function,
either locally (around the instance to be explained) or glob-
ally (akin to distillation methods). This family of meth-
ods include PGM-Explainer (Vu & Thai, 2020), which lo-
cally fits a Bayesian network to identify relevant nodes,
GraphLIME (Huang et al., 2022), which uses sparse models
as local surrogates to identify the most important node fea-
tures, and DnX (Pereira et al., 2023), which globally distills
the black-box model into a linear GNN, named SGC.

Limitations of existing methods GNNExplainer (Ying
et al., 2019) and PGexplainer (Luo et al., 2020) assume
access to the Graph Neural Network (GNN) and rely on
intermediate node embeddings or back-propagation through
the GNN (Pereira et al., 2023). However, this assump-
tion limits their applicability as it requires modifying or
accessing specific parts of the model architecture, which
may not be feasible in practice. In an attempt to address
this limitation, DnX (Pereira et al., 2023) proposes a global
interpretable surrogate for GNNs. While DnX is fast and
demonstrates good performance, it encounters challenges
with large datasets as it needs to find a global surrogate
fitting all nodes in the graph, even when explanations are
only needed for a subset of nodes. Additionally, due to
the limited expressiveness of the global surrogate model
fitted on the entire dataset, DnX does not perform well on
graph-level tasks.
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2. Background
2.1. Notation

A graph G = (V,E) is given by a finite set of vertices V
and an edge set E ⊂ V × V . For attributed graphs, we use
X ∈ Rn×d to denote the feature matrix whose rows contain
the feature vectors xv ∈ Rd for each vertex v ∈ V . Given
a node v ∈ V , we use the notation N(v) for the set of its
neighbors in G. We use lower-case letters for vectors, upper-
case letters for matrices and calligraphic letters for higher-
order tensors. We denote the number of non-zero rows of a
matrix W by ∥W∥0 = |{i |W:,i ̸= 0}|, and use Xi,: (resp.
X:,j) to denote the ith row (resp. jth column) of X ∈ Rn×d.
Let [k] denote the set of integers from 1 to k. Given a subset
of row indices S ⊂ [n], we use XS,: ∈ R|S|×d to denote
the matrix X restricted to the rows in S. These notations
are straightforwardly extended to higher-order tensors. We
use vec(X) ∈ Rnd to denote the vectorization of a matrix
X ∈ Rn×d. The inner product of two matrices of the
same size A and B is defined by ⟨A,B⟩ = vec(A)⊤vec(B).
Given a tensor T ∈ Rd1×d2×d3 , we use T(1) ∈ Rd1×d2d3

to denote its mode-1 matricisation (Kolda & Bader, 2009),
which is the matrix with rows T:,i,j for i ∈ [d2], j ∈ [d3].

2.2. Graph Neural Networks

Let G = (V,E) be an undirected graph with nodes vi ∈ V
and edges (vi, vj) ∈ E, such that each node has a feature
vector xi. A GNN applied to G performs iterative message
passing and aggregation steps to learn representations of
the nodes (and/or edges) based on a given task. At each
layer t, the representation h

(t−1)
i of node vi is updated by

aggregating the representations of its neighboring nodes,
h
(t−1)
j , using an aggregation function

mt
N(vi)

= AGGREGATE(t)({h(t−1)
j ,∀j ∈ N(vi)∪{vi}})

(1)
where h

(0)
i = xi. The updated representation h

(t)
i is ob-

tained by combining the received messages from neighbor-
ing nodes using an update function.

h
(t)
i = UPDATE(t)(h

(t−1)
i ,mt

N(vi)
). (2)

3. Method
In this section we present our approach for extracting
instance-based explanations from black-box graph models.

Local approximation of black-box models. From a
bird’s eye view, to explain the prediction of an input black-
box model f on a given input x̂ our method solves the
following optimization:

min
g∈M

dx̂(f, g) (3)

whereM is a class of interpretable models and dx̂ is some
notion of distance between functions that depends on x̂.
Intuitively, dx̂(f, g) measures how similar f and g are in
the neighborhood of x̂. In this work, we use the ℓ2 distance
w.r.t. a Gaussian measure centered at x̂:

dx̂(f, g) =

∫
x

(f(x)− g(x))2 dµx̂(x)

where µx̂ = N (x̂, σ2) is the normal distribution with vari-
ance parameter σ2.

When the function to be explained is a graph model f , we
want to explain the prediction f(Ĝ, X̂) on a given input
instance consisting of a graph Ĝ and its feature matrix X̂ ∈
Rn×d. We first assume that f is a real-valued function, i.e.,
f(Ĝ, X̂) ∈ R (we will later discuss how our method can
be used for classification tasks). We propose to instantiate
Problem (3) w.r.t. the neighborhood of the node features
X̂ ∈ Rn×d, leading to the minimization problem

min
g∈M

∫
X

(f(Ĝ,X)− g(Ĝ,X))2 dµX̂(X) (4)

where µX̂ is the product measure defined by

µX̂(X) =

n∏
i=1

d∏
j=1

µi,j(Xi,j) (5)

with µi,j = N (X̂i,j , σ
2). This equality can be conveniently

rewritten as a risk minimization problem

min
g∈M

E
ξi,j∼N(0,σ2)

i∈[n],j∈[d]

(f(Ĝ, X̂ + ξ)− g(Ĝ, X̂ + ξ))2 (6)

whose solution can be approximated using the empirical risk
minimization principle. Concretely, we generate a dataset
of input-output examples using the black-box model,

X(t) = X̂ + ξ(t), Y (t) = f(Ĝ, X̂(t)) t = 1, · · · , N

where all the entries of the matrices ξ(t) are drawn i.i.d.
from N (0, σ2), and we solve the minimization problem

min
g∈M

1

N

N∑
t=1

(Y (t) − g(Ĝ,X(t)))2. (7)

The overall ILS explanation method is summarized in Algo-
rithm 1.

Group sparse linear models as surrogates. Now that
we have a tractable way to tackle Problem (3) for graph
black-box models, we discuss the choice of the class of
interpretable modelsM. Several choices forM are possible
depending on the nature of the desired explanations. In this
work, we focus on explanations consisting of a set of nodes
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that are most relevant for the prediction f(Ĝ, X̂), for which
group sparse linear models are well suited. In this context,
we define the class of group sparse linear models as linear
functions of the node features that rely on only a small
subset of the nodes. Formally, given a target number K of
nodes to be returned as an explanation, Problem (6) becomes

min
W∈Rn×d

1

N

N∑
t=1

(Y (t)−⟨W,X(t)⟩)2 subject to ∥W∥0 ≤ K

(8)
where we recall that ∥W∥0 denotes the number of non-zero
rows of the matrix W . Let Ŵ be a solution of this problem
and let i1, i2, · · · , iK ∈ [n] be the indices of the non-zero
rows of Ŵ . One can easily see that the function g computed
by the surrogate is given by

g(G,X) =

K∑
j=1

⟨Wij ,:, Xij ,:⟩,

for any node features X ∈ Rn×d. That is, g is a linear
function of the features of the nodes in the explanation set
S = {vi1 , vi2 , · · · , viK} ⊂ V (and these nodes only).

Problem (8) is a generalization of the well-known sparse
linear regression problem with structured sparsity (Natara-
jan, 1995; Yuan & Lin, 2006). While this problem is
NP-hard, the Group Orthogonal Matching Pursuit (OMP)
method (Swirszcz et al., 2009) can be used to efficiently
find an approximate solution. The Group OMP algorithm
used to fit the group sparse linear surrogate is described in
Algorithm 2.

Explaining node-level, edge-level and graph-level mod-
els. As described previously, ILS explains the prediction
of a black-box model taking graphs as input. While it is
straightforward to use ILS to explain predictions of models
trained for making predictions about entire graphs (graph-
level), one may wonder how to use it for node-level and
edge-level models. Let f be a black-box model trained for a
node level task, i.e., f : V → R. Even though f takes nodes
as input, the prediction f(v) for a given node v ∈ V will (al-
most always) depend on the graph structure and the nodes’
features. For example, in the case of a GNN, f(v) depends
on the graph structure and the features of the nodes in the
receptive field. It is thus natural to think of the prediction
f(v) as the output of the function fv : (G,X) 7→ f(v) (a
change in the node features or graph structure will likely
result in a change in the output of a node-level model). To
explain the prediction of a black-box node-level model f(v)
for a given node v ∈ V with attribute matrix X , we give the
function fv as input to ILS. ILS then locally approximates f
around the node features X by a group-sparse linear model
to identify the node explanation set. The case of edge-level
models can be handled in the exact same fashion.

Beyond real-valued black-box models. Until now, we
have assumed that the output of the black-box model is
a real value: f(G,X) ∈ R. This raises the question of
how to use ILS to explain classification models. While ILS
can only take a real-valued black-box model as input, it is
easy to extract relevant real-valued functions from models
trained on classification tasks. For example, for a GNN
trained on a binary classification task, one would consider
the function f : G,X 7→ P(Y = 1 | G,X) computed
by the output layer of the GNN. For a multi-class task, to
explain the class c predicted by the GNN on a given input
instance to be explained, one would consider the function
f : G,X 7→ P(Y = c | G,X). Note that in both cases,
one could consider using the log-probability as the output
rather than the probability itself, which may be more aligned
with the fact that ILS locally approximates f with a linear
model. While the class probability is a natural choice for the
function to feed into ILS, other choices could be considered,
e.g., the entropy of the class distribution, the difference
between the probabilities of the top 2 predicted classes, etc.

4. Experiments
We conduct experiments for explaining GNN models trained
on both graph-level and node-level tasks. For the graph-level
experiments, we propose a new explainability dataset; for
the node-level explainability task we rely on six datasets
that are widely used in other explainability literature. Code
can be found here 1.

4.1. Datasets

Graph-level dataset We consider graph level tasks where
the predictions of the model depend on the features of a
specific motif in the graph. Our main goal in this setting is
to evaluate our explainability method on a task where the
GNN finds both the important structure and a ground truth
function that maps the node features to the graph label. We
thus propose a new synthetic graph-level dataset called BA-
GraphR in which every sample is a Barabasi-Albert random
graph (BA) (Barabási & Albert, 1999) with a motif attached
to one of the nodes. Each motif is a subgraph of 5 nodes,
arranged in the shape of either a house or a wheel. For
regression, BA-GraphR consists of 1000 graphs of 40 nodes
each. The node features are sampled independently at ran-
dom from a standard normal distribution. The regression
label of each graph is equal to the sum of the node features
of the nodes in the motif, y =

∑
vi∈M

∑d
j=1[xvi ]j . The la-

bel of the graphs in this dataset depends on the node features
in the motif. We use the same dataset structure for the graph
classification task, but with 500 graphs with a house motif
and 500 graphs with a wheel motif. The task is a binary

1https://github.com/farzana0/GNNEXP_ILS
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Algorithm 1 ILS: Explainability with Interpretable Local Surrogates
Input: f (black-box model), G = (V,E), X ∈ Rn×d (instance to be explained), Ns (number of samples),M (class of

interpretable models), σ2 (variance parameter)
Output: g ∈M (an interpretable model explaining f(G,X))

1: for t = 1, · · ·Ns do
2: ξ

(t)
i,j ∼ N (0, σ2) for i = 1, · · · , n, j = 1, · · · , d

3: X(t) = X̂ + ξ(t)

4: Y (t) = f(Ĝ, X̂(t))
5: end for
6: Solve argming∈M

1
N

∑N
t=1(Y

(t) − g(Ĝ,X(t)))2 // E.g. using GOMP (Algorithm 2)
7: Return g

Algorithm 2 GOMP: Group Sparse Linear Surrogate with Orthogonal Matching Pursuit (Swirszcz et al., 2009)

Input: {(X(t), Y (t)}Nt=1 ⊂ Rn×d × R (training data), K (number of nodes in the explanation set / non-zero groups)
Output: W ∈ Rn×d an approx. solution to argminW∈Rn×d

1
N

∑N
t=1(Y

(t) − ⟨W,X(t)⟩)2 subject to ∥W∥0 ≤ K,
aaaaaS = {i1, · · · , iK} the indices of the non-zero groups (corresponding to the nodes in the explanation set)

1: Let the 3rd order tensor X ∈ RN×n×d be defined by Xt,:,: = X(t) for t = 1, · · ·N
2: Let y ∈ RN be defined by yt = Y (y) for t = 1, · · · , N
3: // Data whitening
4: for u = 1, · · · , n do
5: Perform SVD: X:,u,: = UDV ⊤

6: X:,u,: ← X:,u,:V
⊤D−1

7: end for
8: // Group Orthogonal Matching Pursuit
9: S ← ∅, W ← 0 ∈ Rn×d

10: for k = 1, · · · ,K do
11: ik ← argmaxj=1,··· ,n ∥X⊤

:,j,:(X(1)vec(W )− y)∥2
12: S ← S ∪ {ik}
13: WS,: ← argminM∈Rk×d ∥(X:,S,:)(1)vec(M)− y∥2
14: end for
15: Return W,S

classification of the house and wheel graphs.

Node-level dataset We use 6 synthetic dataset, widely
used in other explainability works (Pereira et al., 2023;
Ying et al., 2019). All these datasets are set up for node
classification, which we briefly describe below. More details
about the datasets can be found in Luo et al. (2020).

• BA-House: a random BA graph with 700 nodes where
80 house-shaped motifs of size 5 have been attached
with one edge to a randomly selected nodes.

• BA-Community: two BA-house graphs connected by
an edge between two randomly selected nodes.

• BA-Grids: a random BA graph with 1020 nodes where
80 grid-shaped motifs of size 9 have been attached to
randomly selected nodes.

• Tree-Cycles: a random tree graph with 991 nodes
where 80 cycle-shaped motifs each of size 6 have been

attached to randomly selected nodes.

• Tree-Grids: a random tree graph with 1231 nodes
where 80 grid-shaped motifs of size 9 have been at-
tached to randomly selected nodes.

• BA-Bottle: a random BA graph with 700 nodes where
80 bottles-shaped motifs of size 5 have been attached
to randomly selected nodes.

In all above datasets, the task is a multi-class node clas-
sification, where the nodes in the random BA graph have
the same label and the nodes in the motif have a label that
depends on their position in the motif. The node features
used in all of theses datasets is a vector of all-ones.

4.2. Baselines and Metrics

Naive Gradient Baseline We consider a simple baseline
identifying the most relevant nodes by sorting them accord-
ing to the magnitude of the corresponding directional deriva-
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Table 1. Graph-level Explainer Results

Method Classification Regression

Gradient 49.08 95.30
Gradient H1 30.69 87.11
Gradient H2 64.20 83.73
ILS 44.29 96.61
ILS H1 54.28 89.47
ILS H2 58.78 80.95
PGExplainer 30.01 85.67

Table 2. Node-level Explainer Results

Model BA-House BA-Community BA-Grids Tree-Cycles Tree-Grids BA-Bottle

ILS (ours) 98.7± NA 95.5± NA 98.3± NA 91.5± NA 90.0± NA 99.7± NA
Gradient 99.5± NA 92.1 ± NA 97.9± NA 92.2± NA 89.8± NA 99.8± NA
GNNExplainer 77.5 ± 1.2 64.7 ± 1.0 89.2 ± 2.0 77.2 ± 9.0 71.1 ± 1.0 73.3 ± 3.0
PGExplainer 95.0 ± 1.1 70.6 ± 2.0 86.2 ± 9.0 92.4 ± 5.2 76.7 ± 1.2 98.2 ± 3.0
PGM-Explainer 97.9 ± 0.9 92.2 ± 0.2 88.6 ± 0.9 94.1 ± 0.8 86.8 ± 2.0 97.5 ± 1.5
DnX 97.7 ± 0.2 94.6 ± 0.1 89.8 ± 0.1 83.3 ± 0.4 80.2 ± 0.1 99.6 ± 0.1
FastDnX 99.6 ± NA 95.4 ± NA 93.9 ± NA 87.3 ± NA 85.0 ± NA 99.8 ± NA

tives of the GNN function f : Rn×d → R (which we treat
as a function of the node feature matrix). More precisely,
we approximate the directional gradient in the direction of
each node feature vectors using finite differences:

su =
|f(X + εM (u))− f(X)|

ε
for u = 1, · · · , n

with a small ε and where M (u) ∈ Rn×d is the matrix full
of 0 except for its uth row which is filled with ones. This
baseline is similar to the method implemented in (Faber
et al., 2021) as node gradient, except that we estimate the
directional gradient with the simple approximation above
without requiring to open the black-box model.

Other baselines We compare our method against DnX
and FastDnX (Pereira et al., 2023), GNNExplainer (Ying
et al., 2019), PGExplainer (Luo et al., 2020), PGM-
Explainer (Vu & Thai, 2020) and the naive gradient method.
All baseline results in Table 2 (except for the gradient
method) are taken directly from (Pereira et al., 2023). In
the graph-level experiments, we used built-in function of
pytorch geometric explain (Fey & Lenssen, 2019) for PG-
Explainer with parameters as #epochs = 60, lr = 0.03 for
regression and lr = 0.00001 for the classification task and
the algorithm returns top 20 edges.

Evaluation metrics We evaluate our method on explana-
tion accuracy: the number of nodes predicted by the expla-
nation method that are also in the ground-truth explanation,

divided by the total number of nodes in the ground-truth
explanation. In our synthetic datasets, the ground-truth num-
ber of nodes is equal to the number of nodes in the motif.

4.3. Experiment Results

Graph-level experiments We train a GIN model (Xu
et al., 2019) on a BA-GraphR dataset consisting of 1000
graphs with 40 nodes each for the graph classification and
regression tasks. We run ILS on each of the 1000 graphs to
explain the prediction of the GIN model and report the aver-
age explanation accuracy in Table 1. In this table ILS is com-
pared with the gradient and PGExplainer baselines. Since
PGExplainer outputs edge explanation sets rather than node
explanation sets, we convert the edge-level explanations to
node level ones similarly to what was done in (Pereira et al.,
2023). We also use ILS on the function computed by the
GNN considering the hidden layers as inputs, which we de-
note with H1 and H2 for the gradient baseline and ILS (for
the 1st and 2nd hidden layers, respectively).

On the classification task, we observe that both the gradient
baseline and ILS outperform PGExplainer by a large margin.
Both methods perform better when they have access to
the internal hidden layer embedding. This latter point is
expected, as the hidden layers of the GNN likely encode the
structural information needed to perform the classification
task, which consists of identifying a motif in the graph. On
the regression task, both methods significantly outperform
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PGExplainer again. In this case, both methods perform
better when the function to explain is the one taking the node
features as input, rather than the hidden layers’ embeddings.
This is expected since, in this task, the output is a linear
function of the features of the nodes in the motif.

Node-level experiments In these experiments, we use the
trained GCN models used in previous work (Pereira et al.,
2023; Luo et al., 2020) as the black-box model. For each
graph, we run ILS to explain the prediction of the trained
GCN on each of the motif nodes and report the average
explanation accuracy in Table 2. Despite its simplicity, our
method is the best-performing method on all the datasets
except for Tree-Cycles and BA-House. Similar to (Faber
et al., 2021), we observe that the node gradient methods
have a reasonable performance for most of the datasets,
while being much faster than other approaches. To speed up
ILS, we limit the input to the nodes in the receptive field of
the GCN.

5. Discussion
Comparison with DnX (Pereira et al., 2023) The DnX
method consists of two steps: 1) distilling the black-box
model in a linear surrogate, a simple graph convolution net-
work (SGC) (Wu et al., 2019), on the whole dataset, and
2) find a sparse approximation of the surrogate to identify
nodes in the explanation set. The main difference between
DnX and ILS stems from the notions of local versus global
approximation. DnX requires the model to be well approxi-
mated globally, making it not well suited for tasks where a
simple GNN like SGC performs poorly, such as graph level
tasks (Wu et al., 2019; Huang et al., 2020). In contrast, ILS
only assumes that a sparse linear model can approximate
the black-box model locally in the neighborhood of an in-
put instance, making the linear nature of the surrogate less
restrictive. The global nature of the distillation step of DnX
also implies that to explain the prediction of a GNN on one
node, one first needs to distill the GNN into an SGC on the
whole set of nodes of the graph, making the time complex-
ity of the explanation process dependent on the number of
nodes in the graph. In contrast, since ILS only performs a
local approximation, its time complexity only depends on
the size of the GNN’s receptive field.

Comparison with GraphLIME (Huang et al., 2022)
GraphLime is based on the same assumption as ILS, that in
the local neighbourhood of an instance, a sparse model can
approximate the black-box model. However, GraphLIME
provides explanations at the feature level (the explanation
consists of a set of features rather than nodes) and the
model used for the approximation is non-linear. Moreover,
GraphLIME can only handle graph-level tasks while ILS
can handle both node-level and graph-level tasks.

Graph structure and surrogates While the group sparse
linear surrogate does not take the graph structure into ac-
count (its input is the feature matrix only), it can still identify
the most important nodes even in datasets where the task
does not directly depend on the node features. This is be-
cause the GNN function, which was used to generate the
datasets to fit the group sparse model, depends on the graph
structure. Moreover, ILS can explain models with both at-
tributed and non attributed graphs. In the experiments where
the label does not depend on the features and the features
are all ones, because of the sensitivity of the GNN func-
tion to the features of some of the nodes (important nodes),
adding noise to these arbitrary features affects the GNN’s
output. In graph classification tasks where the output does
not depend on the features and features are uniformly drawn
from normal distribution, we can instead use node embed-
dings (at different layers of the GNN) as the input to the
surrogate model (assuming the model being explained is not
black-box, but a given GNN).

Unknown node explanation set size Lastly, we point
out that in the case where the number of relevant nodes
is not known in advance, one could use the Group Lasso
algorithm (Natarajan, 1995) to fit the surrogate. The Group
Lasso algorithm solves a convex relaxation of the group
sparse linear problem, where the amount of sparsity is not
enforced as a hard constraint (as in the Group-OMP algo-
rithm), but encouraged smoothly through a regularization
term whose weight is controlled by a hyper-parmater λ.
One could use a validation set (generated in the same fash-
ion as for the surrogate training dataset, using the black-box
model) to select the best value of λ. This would result in ILS
being able to adaptively choose the size of the explanation
set.

6. Conclusion
We have introduced an instance-level graph explainability
method, referred to as ILS, which involves fitting inter-
pretable local surrogates in the neighborhood of a specific
example. By leveraging the interpretability of these simple
surrogates, ILS provides valuable insights into the behav-
ior of graph models within the local neighbourhood of an
instance. Notably, ILS is capable of accommodating black-
box graph models and efficiently identifies the most relevant
nodes for a given prediction through a group sparse opti-
mization approach. Through empirical evaluations, we have
demonstrated the effectiveness of our method and compared
it to state-of-the-art explainability methods.

Our future work involves examining the feature selection
capability of ILS and exploring different interpretable sur-
rogate functions. In particular, we believe using a similar
group sparse surrogate, but enforcing group sparsity at the
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feature level rather than at the node level, is a promising
direction to apply ILS when the interest is in feature level
explanations. Additionally, we plan to evaluate our method
on a broader range of datasets to further validate its perfor-
mance and generalizability. Lastly, we plan on studying
the theoretical properties of ILS. More specifically, we be-
lieve that ILS offers strong faithfulness and stability guaran-
tees (Agarwal et al., 2022), which we plan to demonstrate
formally.
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