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Abstract

AI-assisted solutions have recently proven suc-
cessful when applied to Mathematics and have
opened new possibilities for exploring unsolved
problems that have eluded traditional approaches
for years or even centuries. Following this direc-
tion, this paper presents an innovative approach
aiming at establishing correlations between equa-
tional properties of algebraic structures that can
be represented through graphs and specific sub-
portions of their topological representation. The
methodology incorporates the utilization of graph
neural architectures to validate theorems or con-
jectures, complemented by Explainability (XAI)
metrics that lend support to these statements. In
particular, we examine the distributive and mod-
ular properties of algebraic lattices, whose char-
acterization is well-known in universal algebra,
hence using these properties as an experimental
test bench. The findings of this study demon-
strate the effectiveness of the proposed approach
in identifying and retrieving established subpat-
terns that characterize the equational properties
under investigation. Moreover, the approach ex-
hibits the capability to generate novel and note-
worthy candidates as theorem suggesters, thereby
offering valuable prospects for further exploration
by mathematicians.

1. Introduction
From the early ‘60s, several fields of Mathematics
have benefited enormously from technology-based ap-
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proaches. While for now computational techniques and
data-generation tasks have been the most prominent appli-
cations of Computer Science to Mathematics, recent ad-
vancements in AI technologies have opened up new avenues
for researchers to tackle complex mathematical intractable
problems with classical approaches. Notably, these AI tech-
niques have facilitated the resolution of previously unsolved
problems (Lample & Charton, 2019) and the formulation of
fresh conjectures (Davies et al., 2021). This research line
represents an untapped frontier within the broader scope
of AI, holding great potential for profound impacts across
various mathematical fields.

Universal Algebra (UA) is recognized as a fundamental
discipline in contemporary mathematics, serving as a cor-
nerstone of mathematical studies. Despite its significance,
the intricate nature of abstract algebraic structures has pre-
sented challenges, impeding scientific advancement and
dissuading many scholars from delving into this field. UA
investigates algebraic structures from an abstract standpoint,
and it is intriguing to note that several theorems in this field
equivalently characterize algebraic properties using equa-
tions or graphs (Jipsen & Rose, 1992). Exploring univer-
sal algebra properties through graph representations could
leverage powerful AI architecture such as Graph Neural Net-
works (GNN, (Scarselli et al., 2008)), excelling in analyzing
graph-structured data. However, the limited transparency
and brittle nature of GNN explainability impedes the human
comprehension of their decision-making processes (Rudin,
2019), hindering mathematicians from employing these tech-
niques to empirically validate existing conjectures or formu-
late new ones.

On the other hand, our approach uses a graph-explaining
model to identify relevant sub-portions of the input graphs
responsible for a certain prediction. In UA this explanation
may correspond to a graph-pattern in an algebraic structure,
whose omission may characterize an algebraic variety hav-
ing a certain equational property. In the particular context
of our work, isolating the subgraphs that have a direct corre-
lation to the equational properties is pivotal in simplifying
the characterization of large and/or infinite algebras - which,
at that point, can be done just by looking at its structure.
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The main contributions of this paper are as follows:

• We propose the first AI-based approach to identify
graph-patterns responsible for well-known equational
properties in universal algebra.

• We present an explainable methodology for point out
theorem suggestions on graph-structured data.

• We release three hand-crafted datasets of lattices la-
belled as satisfying/violating the distributive and modu-
lar properties. The experiments show the effectiveness
of our approach on these datasets identifying known
graph-patterns in UA characterizing these properties.
As an extra step, we explore the quantitative metrics of
GCExplainer, namely completeness and purity scores.

The paper is organized as follows. In Section 2 we dis-
cuss related studies exploring the use of AI techniques for
mathematical problems and explainable AI graph neural
architectures. Section 3 provides an introduction to the fun-
damental concepts of universal algebra, which are essential
for the comprehension of the problem statement presented
in this paper, and the graph neural architectures that we
combine in Section 4 to define the pipeline of our approach
and the experimental setup. Finally, Section 5 discusses
the main findings of this paper, and Section 6 draws some
conclusion and future research directions.

2. Related Work
2.1. AI for Mathematics

Several studies have been proposed with the aim of harness-
ing AI-based techniques to address specific mathematical
questions or tasks: like the Erdős discrepancy problem,
solved in 2015 after 60 years thanks to deep learning (Eber-
hard, 2016). Lample and Charton (Lample & Charton, 2019)
demonstrated the power of neural networks at symbolic inte-
gration and solving differential equations, while Peifer et al.
(Peifer et al., 2020) used reinforcement learning to speed up
the calculations of polynomial equations. Wagner (Wagner,
2021) leveraged deep reinforcement learning to find con-
structions and counter-examples to several open conjectures
in combinatorics and graph theory. A long traditional line of
research focused on the study of automatic logic reasoning
and theorem proving (Loveland, 1986; Fitting, 2012; Love-
land, 2016) has more recently strongly deflected toward
the use of embedding representations and graph neural net-
works (Wang et al., 2017; Bansal et al., 2019; Paliwal et al.,
2020). Davies et al. (Davies et al., 2021) have proposed
a novel machine learning framework to discover patterns
and relations between mathematical objects. Moreover, AI
can be applied to gain novel insights on innovative con-
jectures that can drive research advancements in several

fields of mathematics. More similar to our approach, He
(He, 2022) has further provided a comparative study about
how AI is used for detecting the existence of mathematical
structures in fields of mathematics spanning from geometry
to representation theory. To the authors knowledge, our
work is one of the first attempts to apply AI models in open
research directions of universal algebra. Moreover, our ap-
proach differs from the mentioned methods, as we rely on
the combination of common GNNs architectures for graph
classification with the addition of a module highlighting the
relevant sub-portion of its input as a graphical explanation
for the prediction.

2.2. Graph Explanation

Explainable Artificial Intelligence (XAI) is the branch of AI
concerned with developing methods that justify, in a human-
understandable fashion, decisions made by a model. Most
AI algorithms are considered as a black-box - i.e. there is
no knowledge of the internal workings of the system, which
is not desirable under a risk-prevention and interpretability
point of view (Arrieta et al., 2019). Graph Neural Networks
(GNNs), as deep learning (DL) methods, possess complex
prediction processes that are not easily interpretable (van
der Velden et al., 2022). The challenges lie not only in
the DL nature of GNNs, but also in the representation of
data itself. Graphs are less intuitive compared to images
and texts, and the topology information on which GNNs
are based requires specialized features for which traditional
explainability methods are inadequate. There are two main
approaches to achieve explainability in GNNs (Holzinger
et al., 2022): instance-level methods and model-level meth-
ods. Instance-level methods aim to establish connections
between the model’s behavior and important input features
for prediction. On the other hand, model-level methods pro-
vide broader insights and a higher-level understanding of the
structure (graph type) of the model itself, rather than focus-
ing solely on the data. Among these approaches, GNNEx-
plainer (Ying et al., 2019), a perturbation-based explainer,
stands out as it can provide explanations for predictions
made by any GNN-based model across various Graph Ma-
chine Learning (GML) tasks. However, such explanations
are specific to individual instances and can be challenging
to reason about in the context of the entire class. To address
this limitation, we consider a concept-based explanation
method, Graph Concept Explainer (GCExplainer) (Magister
et al., 2021), aiming at offering explanations in the form of
concepts, which are small, higher-level units of information
readily accessible to humans.
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Figure 1: Examples of Hasse diagrams of the lattices N5 and
M3. N5 is an example of a non-modular non-distributive
lattice, while M3 is a modular non-distributive lattice.

3. Background
3.1. Universal Algebra

Universal Algebra (UA) considers the investigation of al-
gebras, which can be defined as mathematical structures
composed of a set of elements along with operations de-
fined on those elements. The operations may include binary
operations (such as addition or multiplication), unary op-
erations (such as negation or inversion), nullary operations
(like constants), and so forth.
Definition 1. An algebra A is a pair (A,F ) where A is
a non-empty set called universe and F is a set of finitary
operations on A.

Apart from the operations on A, an algebra is further defined
by axioms, that in the particular case of universal algebras
are in the form of identities. The objective of universal alge-
bra is to identify and explore the common algebraic prop-
erties that are shared among diverse mathematical systems,
often expressed as sets of equations. In particular, vari-
eties are classes of algebras which are models of equational
theories. By explicitly defining these equations, varieties
facilitate the classification and analysis of a wide class of
algebras according to their shared properties. For a compre-
hensive understanding of foundational concepts in UA, we
refer the reader to Burris & Sankappanavar (1981a).

3.1.1. LATTICES

A noteworthy variety of algebras are Lattices, which holds
significant relevance due to their association with logical
structures and their remarkable algebraic properties.
Definition 2. A partially ordered set L, i.e. a set L equipped
with a reflixive, antisymmetric, and transitive relation ≤L,
forms a lattice if and only if for every a, b ∈ L both supre-
mum and infimum of {a, b} exist in L with a ∨ b being the
supremum and a ∧ b the infimum.

As well known in the literature (Birkhoff, 1940), a lattice L
can be equivalently defined as an algebraic structure com-
posed by a non-empty set L and two binary operations ∨

and ∧ satisfying the axioms of commutativity, associativity,
idempotency, and absorption (see Appendix 2). Graphical
representations of lattices can be achieved using Hasse dia-
grams, which are undirected graphs representing the order
of a given lattice, see Figure 1 for two examples.

3.1.2. LATTICE VARIETIES AND LATTICES’ OMISSION

The field of lattice varieties emerged as a branch of inquiry
stemming from the investigation of general varieties. Foun-
dational contributions by Birkhoff (1935), Dedekind (1900),
and Jonnson (1967) show examples of results describing
lattice varieties characterized by the omission of a set of
lattices.

Definition 3. Let V be a variety of lattices. Then V omits a
lattice L if L is not a sublattice of any lattice in V .

In the field of universal algebra, a parallel line of research
aims to characterize lattices based on equational properties.
Notably, properties such as distributivity and modularity are
of particular interest in this regard.

Definition 4. Let L be a lattice. Then L is modular (dis-
tributive) if it satisfies the following:

(x ∧ y) ∨ (y ∧ z) ≈ ((x ∧ y) ∨ z) ∧ y (modularity)
x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z) (distributivity)

Obviously, a distributive lattice is also modular (Burris &
Sankappanavar, 1981a). On the other side, Figure 1 illus-
trates the non-modularity of N5 by considering the substi-
tution x = a, y = c, z = b, while the same substitution
demonstrates the non-distributivity of M3. These observa-
tions highlight that the classes of distributive and modular
lattices constitute distinct varieties, exemplifying a classical
instance of characterizing lattice varieties through lattice
omissions.

Theorem 1 ((Dedekind, 1900)). Let V be a lattice variety.
Then V is modular variety if and only if V omits N5.

Theorem 2 ((Birkhoff, 1935)). Let V be a lattice variety.
Then V is distributive variety if and only if V omits N5 and
M3.

Based on these foundational findings, the exploration of
lattice omissions and structural characterizations of class
of lattice has emerged as a flourishing and extensively in-
vestigated field. Notably, significant advancements have
been made in the form of general characterizations of lat-
tices that, when omitted, yield lattice varieties (Whitman,
1941). Additionally, extensive research has focused on char-
acterizing congruence lattices associated with algebraic va-
rieties (Aglianò et al., 2022; Kearnes & Kiss, 2013; Nation,
1974; Whitman, 1941). For a more in-depth exploration of
this subject, we refer the reader to Jipsen & Rose (1992).
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3.2. Graph Neural Methods

3.2.1. GRAPH NEURAL NETWORKS

In the experimental setting we evaluate our approach making
use of the following GNNs architectures.

SimpleGNN. SimpleGNN is a simple cascade of Graph
Convolutional Network (GCN) layers introduced by Kipf
and Welling (Kipf & Welling, 2016). For all nodes vi ∈ G
in a graph G, A GCN layer is formulated as

h(ℓ+1)
vi = σ

∑
j

1

cij
h(ℓ)
vj W

(ℓ)


where vj are the neighboring nodes of vi, cij is the nor-
malizing constant for the edge (vi, vj), W (ℓ) is the weight
matrix of the ℓ-th layer of the neural network and σ is the
non-linear activation function. cij corresponds to the ele-
ments of the symmetrically normalized adjacency matrix
D− 1

2AD− 1
2 , where A is the adjacency matrix and D is

the degree matrix of G. However, multiplication with A
makes use of the features of only the neighboring nodes,
and not that of the node itself. This is addressed by Kipf
and Welling (Kipf & Welling, 2016) by adding self-loops
to the adjacency matrix. As a result, cij are obtained from
D̃− 1

2 ÃD̃− 1
2 , where Ã = A+ I and D̃ is the corresponding

degree matrix.

GIN. A Graph Isomorphism Network (GIN) (Xu et al.,
2019) is a GNN implementation that generalizes the
Weisfeiler-Lehman test and hence achieves maximum dis-
criminative power among GNNs. Our GIN model consists
of 8 GINLayerswith the following message-passing equa-
tion:

h(k)
v = ϕ(h(k−1)

v , f(h(k−1)
u : u ∈ N (v)))

where ϕ is an MLP and h
(k)
v is the feature vector of node v

at the k-th layer.

3.2.2. GRAPH CONCEPT EXPLAINER

The Graph Concept Explainer (GCExplainer) (Magister
et al., 2021) is the first concept-based explainer for GNNs,
which discovers and extracts concept in a unsupervised,
post-hoc manner. GCExplainer leverages the observation
that GNNs cluster nodes with similar features and neighbor-
hoods in the activation space. Each of these clusters is anal-
ogous to a concept, which can be extracted by performing
k-Means clustering on the node embeddings and assigning
nodes membership to these clusters. The concepts can then
be represented by visualising the n-hop neighborhood of
the five node samples closest to each cluster centroid. Here,

n is bounded by the number of message passing layers to
align with the reasoning of the GNN.

The concepts extracted by this process can be quantitatively
evaluated by concept purity and completeness metrics. Pu-
rity score is calculated by computing graph edit distance,
which measures the number of operations such as node in-
sertion/deletion that must be performed to transform a graph
g1 to another graph g2. This is formulated as follows by
Abu-Aisheh et al. (Abu-Aisheh et al., 2015):

GED(g1, g2) = min
e1,...,ek∈γ(g1,g2)

k∑
i=1

c(ei)

where c is the cost function for an edit operation ei, γ(g1, g2)
is the set of edits that transforms g1 into g2, and k is the
number of clusters. If the purity score is 0, then the concept
is said to be pure.

Completeness score, as proposed by Yeh et al. (2020), is
equivalent to the accuracy of a classifier such as decision
tree, which takes concept c relating to a data point as input
and predicts an output label y.

4. Methodology and Experimental Setup
4.1. Model Pipeline

The aim of this paper is to identify correspondences be-
tween equational properties of lattices and subportions of
their graph representation. In particular, we focus our study
on distributivity and modularity (cfr. Definition 4), using
GNNs with a graph explainer. The overall pipeline de-
scribing our methodology is represented in Figure 2. Our
approach involves two main steps: (i) A classification-step,
utilizing GNN architectures to perform a classification task.
The objective is to learn from a given dataset whether a
lattice is modular or distributive. (ii) The node embeddings
obtained from the GNN are forwarded to the concept-based
graph explainer, namely GCExplainer. This explainer
leverages the embeddings to confirm the labeling of the
lattices and provide interpretability measures. Specifically,
GCExplainer generates similarity clusters based on the
original data, aggregating the embeddings by their centroids
using k-means. The classes serve to group together simi-
lar topological substructures, resulting in a categorization
that highlights the shared characteristics among them (as
described in Section 3.2.2). This approach allows to gain
insights into the reasons behind the classification results and
obtain a better understanding of the underlying factors con-
tributing to distributivity and modularity of the lattices. The
utilization of GCExplainer, being a human-in-the-loop
method, enables mathematicians to validate the accuracy
of the predictions by comparing the concepts labels with
those obtained through the GNN, corroborating mathemati-
cal statements via the explanations.
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Figure 2: Pipeline visualization. Given a dataset of labelled lattices, we use a GNN to process the data in order to: (i) obtain
class labels to check whether or not a lattice is modular/distributive, (ii) get node embeddings to be passed to GCExplainer,
hence verifying that the GNN is capable of identifying relevant substructures for the classified properties. We have two
procedures: the first is to use a GNN to directly obtain class labels to check whether or not a lattice is modular/distributive,
and the next part is to pass node embeddings inferred from the GNN to GCExplainer in order to verify that the GNN indeed
identifies relevant substructures for the classified.

4.2. Datasets

To experimentally evaluate our approach, both on the pre-
diction task of algebraic properties and on its capacity of
recovering known results of universal algebra about lattices’
omission, we realized a suitable collection of lattices. As
noted above, lattices are special graph structures, hence to
realize a dataset of lattices, we simply need to consider
common graphs up to a certain amount of nodes as candi-
dates, and then discard the ones not satisfying Definition
2. Then, each lattice is labelled as distributive/modular
depending on its satisfaction/violation of equations in Defi-
nition 4. In our experimental analysis, we employed three
distinct datasets, namely Sample_50, Sample_8 and
Sample_8_balanced. These datasets consist of lattices
with their respective graph representations in the form of
Hasse diagrams. The datasets include automatically cal-
culated labels regarding the modularity and distributivity
properties of the lattices.

• Sample_50 (1500 graphs with maximum cardinality
of 50) for SimpleGNN;

• Sample_8 (30000 graphs and maximum cardinality
of 8) for GIN;

• Sample_8_balanced (248 graphs for each class,
maximum cardinality of 8) for GIN;

Datasets Statistics. Splits between training, validation,
and test was set at 60% - 20% - 20%. Both datasets exhibit
a significant class imbalance concerning the satisfaction of
the algebraic properties. In the considered datasets, 17%
and 20% of all lattices in Sample_50 are distributive and
modular, respectively; in Sample_8, 16% and 19% are dis-

tributive and modular, respectively. Such an unbalance can
be detrimental to the performance of GNNs, so we experi-
ment with two different approaches to tackle this issue. We
simply oversample distributive and modular lattices (pos-
itive labels) while training SimpleGNN on Sample_50.
For a complete overview of all density concentration of
classes in all the splits, please refer to Figure 3. To handle
Sample_8’s highly unbalanced composition (Figure 3a),
we realized an additional dataset Sample_8_balanced
(Figure 3b) and use it with the same splits as above.

4.3. Experimented Models

SimpleGNN. In our experiments, we use 8 GCN layers
with ReLU activation functions in between and Sigmoid
function after the GCN cascade for classification. We use
an embedding size of 128 for all GCN layers, learning
rate of 0.001, and the model is trained for 1000 epochs.
SimpleGNN is trained and evaluated on Sample_50
dataset, and modular and distributive lattices are oversam-
pled by a factor of 4 to overcome the issue of unbalance.
Modularity and distributivity are handled separately, so that
the model performs graph-level binary classification.

GIN. This model is trained for 30 epochs and, con-
trary to SimpleGNN, it performs multi-class classifica-
tion. The classification space consists of the following
4 classes, which represent all possible combinations of
(non)modularity and/or (non)distributivity:
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Class 0 non-modular and non-distributive
Class 1 modular and distributive
Class 2 modular but non-distributive
Class 3 non-modular but distributive

Table 1: Classification accuracy for distributive and modular
properties on validation and test splits

(a) Unbalanced dataset (b) Balanced dataset

Figure 3: Visualization of the node embedding spaces ob-
tained by GIN with dimensionality reduction technique t-
SNE. (a): Unbalanced case, class 0 is “not modular and
not distributive”, class 1 is “modular and distributive”, and
class 2 is “modular but not distributive”. Class 0 is clearly
dominating the sample space. (b): In the balanced version
all classes are represented uniformly.

5. Results
5.1. Experiments on SimpleGNN

5.1.1. GNN CLASSIFICATION PERFORMANCE

Validation Test
Distributive 97.9 ± 0.99 97.3 ± 0.64
Modular 93.3 ± 2.27 92.3 ± 2.50

Table 2: Classification accuracy for distributive and modular
properties on validation and test splits

We report the binary classification accuracy of SimpleGNN
on distributivity and modularity properties in Table 4. Even
this simple architecture can provide strong performance on
classifying distributive lattices, and a slightly worse but still
competitive performance on modular lattices. This indicates
that by using GNNs we are able to correctly check the
satisfaction of an equational property for a (potentially very
large) lattice with a simple prediction step of the network
with a cubic complexity with respect to the lattice dimension.
However, the main strength of our approach relies on its
capability of pointing out graph patterns considered relevant
from the GNN to classify the predicted properties. For
instance, the next section shows that GNN has also been able
to identify the existence/omission of N5 and M3 lattices.
We explore this possibility in the following sections with
the help of GCExplainer.

(a) Distributivity dataset (b) Modularity dataset

Figure 4: Visualization of the combined (validation + test)
node embedding spaces obtained by SimpleGNN wth di-
mensionality reduction technique t-SNE. The plots visualize
the scale of unbalance in the datasets.

5.1.2. GCEXPLAINER QUALITATIVE RESULTS

Figure 4 visualises the node embeddings’ distribution ex-
tracted by SimpleGNN and reduced to two dimensions by
t-SNE algorithm. Each point in the scatter plot represents
a graph in the respective dataset split, and the colors corre-
spond to their true labels. We expect node embeddings to
be separately clustered for different classes, which is mostly
the case as seen in the plots. This provides a qualitative
support to the discriminative power of the GNN.

An important insight on how the GNN determines whether
or not a lattice is distributive, non-distributive, modular or
non-modular is shown in Figure 5. These visualizations
are obtained by GCExplainer, which groups the node em-
beddings to a user-controlled number of clusters, and plots
k-hop neighborhoods of nodes in a given cluster. In this
experiment, we divide the embedding space into 12 clusters
and calculate 3-hop neighborhood of nodes. We expect to
see substructures N5 and M3 when the label is 0, indicating
that a lattice is non-distributive or non-modular. In fact, we
observe N5 substructure in Figure 5a, and M3 substructure
in Figure 5b. This matches Theorem 2, which states that a
lattice that omits both N5 and M3 is distributive. In these
examples, they do not omit either N5 or M3, hence they are
non-distributive and correctly labeled as 0. Similarly, the
lattices in Figure 5c do not omit N5 so they are non-modular
by Theorem 1.

Figure 8 in Appendix B visualizes the decision trees ob-
tained from the embedding spaces of validation splits of
distributive and modular datasets. Since we have only one
feature per node, only x[0] is relevant for making deci-
sions.
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(a) A non-distributive case
where N5 is not omitted

(b) A non-distributive case
where M3 is not omitted

(c) A non-modular case where N5 is not omitted

Figure 5: Example visualizations of 3-hop neighborhoods
containing relevant substructures extracted by GCExplainer.
The examples are taken from the clusters of validation sets.

5.1.3. GCEXPLAINER QUANTITATIVE RESULTS

Purity (↓) Completeness (↑)
Distributive 2.57 ± 0.89 75.0 ± 1.82
Modular 1.44 ± 0.66 72.1 ± 1.56

Table 3: Purity and completeness scores of concepts ex-
tracted from the combined validation and test embeddings
for both properties. (↓): lower is better. (↑): higher is better.

Table 3 presents the quantitative metrics of GCExplainer
applied on combined validation and test embedding spaces
obtained from SimpleGNN. We obtain around 72-75% for
completeness scores, which suggests that the concept spaces
obtained by SimpleGNN are consistent with the ground
truth labels. We note that even though these results are con-
siderably lower than the actual classification results shown
in Table 4, we do not employ any oversampling strategy
to balance the concept spaces that are fed into the decision
tree. This shows that the GNN produces disentangled rep-
resentations such that the resulting concept spaces can be
accurately mapped to the ground truth labels even in the
presence of heavily unbalanced datasets.

Purity scores are quite low considering that Sample_50
has lattices with very high number of nodes, indicating that
the concepts belonging to a class are quite similar to each
other. We note, however, that the graph edit distance is
extremely computationally expensive, so we only include
graphs with a maximum number of 10 nodes in the calcula-
tion. Otherwise, computation of the purity score becomes
practically intractable. This constraint limits the exploration
of purity in datasets with large number of nodes.

(a) Class 0: non modular non
distributive (both N5 and M3

present)

(b) Class 1: modular and dis-
tributive (neither N5 nor M3

present)

(c) Class 2: modular but non distributive (no N5 but
M3 is present)

Figure 6: Examples of 3-hop neighborhoods containing
relevant substructures extracted by GCExplainer with GIN.

Overall, the combination of low purity and high complete-
ness scores provides evidence that even vanilla GNN can
be significantly expressive to identify interesting universal
algebra properties. The visualizations of the highlighted sub-
patterns that are extracted by the node embeddings further
support the reliability of GNNs for their potential applica-
tions in mathematics.

5.2. Experiments on GIN

5.2.1. GNN CLASSIFICATION PERFORMANCE

The experimental analysis with GIN has been carried out on
three different datasets: the unbalanced dataset Sample_8,
the unbalanced dataset Sample_8_balanced, and a
dataset One_class_at_time consisting of representa-
tives of only one class (three runs in total, one per class).
For all the three datasets we report the following validation
and test accuracies:

Datasets Validation Test
Sample_8 98.96 ± 0.53 98.5 ± 0.49
Sample_8_balanced 99.0 ± 0.61 96.5 ± 0.32
One_class_at_time 98.46 ± 0.66 98.53 ± 0.26

Table 4: Classification accuracy in test and validation splits
for all datasets described in 5.2.1

5.2.2. GCEXPLAINER QUALITATIVE RESULTS

The test embeddings (Figure 3) retrieved from
GCExplainer were calculated with a clusteriza-
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Figure 7: Decision tree.

tion hyperparameter k = 10 with a k-means hop of
3. Since the clusterisation regime is an upper bounded
function (Magister et al., 2021) - i.e. it does not improve
infinitely, instead it plateaus after a certain threshold - by
using binary search is easy to find the ideal interval/value
for it - in this case 10. As depicted in Figures 6a, 6b,
and 6c, the explainer shows that in both Sample_8
and Sample_8_balanced experiments, the concepts
retrieved are consistent with the definitions of our classes
and the classification done by the GNN.

5.2.3. GCEXPLAINER QUANTITATIVE RESULTS

As an extra quality assurance, we computed two additional
measures: the completeness and purity calculations. In both
cases we have that the number of leaves in the decision trees
are equal to the number of concepts as we were expecting
(num_leaves = 10 = k) and by starting at the head and
going down by tracking the hyperparameters in the box, it
is possible to map the GNN output to its concept. Table
5 reports the completeness and purity scores for both the
unbalanced and balanced datasets on the test embeddings.
The unbalanced dataset exhibits lower purity due to the large
number of data entries. In contrast, the balanced dataset dis-
plays higher purity as all classes are uniformly represented,
resulting in a reduced variance within the dataset.

Datasets Purity (↓) Completeness (↑)
Unbalanced dataset 3.04 ± 0.67 96.6 ± 2.03
Balanced dataset 3.59 ± 0.45 56.3 ± 1.77

Table 5: Completeness and purity scores of test embeddings
for both datasets. (↓): lower is better. (↑): higher is better.

We also provide an explainable decision-making process
that could be backtracked in order to ascertain the course
that lead to the decision. In particular, this is done through
decision trees obtained from the embedding spaces of valida-
tion splits of the datasets. In Figure 7, each leaf corresponds
to a possible concept representing the data. Starting from
the initial feature and depending on its value, at each step
the explainer makes a prediction based on the likelihood

of the value up until it gets assigned to a concept - i.e. up
until it reaches the leaves. A more extensive example can
be found in the Appendix B.

Limitations

This paper primarily investigates established theorems in
the field of universal algebra, specifically concerning the
equivalence between algebraic and topological definitions
of distributive and modular lattices. We believe that our
approach represents an initial step towards systematically
studying various equational properties of lattice varieties,
and their potential connection with graph-pattern identifica-
tion. Moreover, it is important to note that our methodology
is specifically designed for finite lattices, and therefore may
not encompass all relevant aspects related to infinite alge-
braic structures. However, the insights and understanding
gained from our explanations based on finite lattices can pro-
vide valuable contributions to specific problems, although
there may be limitations in terms of generalization.

6. Conclusion and Future Work
This paper introduces an innovative approach that lever-
ages established AI techniques to investigate equational and
topological theorems in the domain of universal algebra. It
aims to identify graph-patterns associated with well-known
equational properties in universal algebra and presents a
transparent methodology to validate theorems using graph-
structured data. Following this methodology, we were able
to empirically corroborate the theorems on distributive and
modular lattices proposed by Dedekind (Dedekind, 1900)
and Birkhoff (Birkhoff, 1935), respectively, by recovering
pertinent lattices. We provide two datasets of labelled lat-
tices, specifically categorized as either satisfying or vio-
lating the distributive and modular properties. Through
our experiments, we demonstrate the effectiveness of our
approach on these datasets by successfully identifying well-
known graph patterns that characterize these properties in
the field of universal algebra. Additionally, we investigate
the quantitative metrics of GCExplainer, particularly the

8
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completeness and purity scores, to gain further insights into
the interpretability and performance of our methodology.
Our approach can be readily extended to investigate various
structural properties of lattices, including the characteriza-
tion of congruence lattices of algebraic varieties (Aglianò
et al., 2022; Kearnes & Kiss, 2013; Nation, 1974; Whitman,
1941). Given that universal algebra serves as a foundational
branch of modern mathematics, any contribution to this field
carries significant implications for various mathematical dis-
ciplines.

Acknowledgements
This work was supported by TAILOR and by HumanE-
AI-Net projects, which are funded by EU Horizon 2020
research and innovation programme under GA No 952215
and No 952026, respectively.

References
Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., and Martineau,

P. An exact graph edit distance algorithm for solving
pattern recognition problems. In 4th International Con-
ference on Pattern Recognition Applications and Methods
2015, 2015.
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A. Algebra definitions
A.1. Formal definitions for Universal Algebra

Universal algebra is the field of mathematics that studies algebraic structures, which are defined as a set A along with its
own collection of operations. An n-ary operation on A is a function that takes n elements of A and returns a single element
from the set. More formally (Burris & Sankappanavar, 1981b; Jonnson, 1967; Day, 1969):

Definition 5. For A non-empty set and n nonnegative integer we define A0 = {∅} and, for n > 0, An is the set of n-tuples
of elements from A. An n-ary operation (or function) on A is any function f from An to A; n is the arity (or rank) of f . An
operation f on A is called an n-ary operation if its arity is n.

Definition 6. An algebra A is a pair ⟨A,F ⟩ where A is a non-empty set called universe and F is a set of finitary operations
on A.

Apart from the operations on A, an algebra is further defined by axioms, that in the particular case of universal algebras are
often of the form of identities. The collection of algebraic structures defined by equational laws are called varieties. (Hyland
& Power, 2007)

Definition 7. A nonempty class K of algebras of type F is called a variety if it is closed under subalgebras, homomorphic
images, and direct products.

Definition 8. A lattice L is an algebraic structure composed by a non-empty set L and two binary operations ∨ and ∧
satisfying the following axioms and their duals obtained exchanging ∨ and ∧:

x ∨ y ≈ y ∨ x (commutativity)
x ∨ (y ∨ z) ≈ (x ∨ y) (associativity)
x ∨ x ≈ x (idempotency)
x ≈ x ∨ (x ∧ y) (absorption)

Theorem 3 ((Birkhoff, 1940)). Definition 2 and Definition 8 are equivalent.

Congruence lattices of algebraic structures are partially ordered sets such that every pair of elements has unique supremum
and infimum determined by the underlying algebra. This object is important relatively to algebraic structures’ properties,
many of which can be described by omission or admission of certain subpatterns in a graph.

Definition 9. Congruence Lattice
For every algebra A on the set A, the identity relation on A, and A×A are trivial congruences. An algebra with no other
congruences is called simple. Let Con(A) be the set of congruences on the algebra A. Because congruences are closed
under intersection, we can define a meet operation: ∧ : Con(A)× Con(A) → Con(A) by simply taking the intersection
of the congruences E1 ∧ E2 = E1 ∩ E2. Congruences are not closed under union, however we can define the closure
operator of any binary relation E, with respect to a fixed algebra A, such that it is a congruence, in the following way:
⟨E⟩A =

⋂
{F ∈ Con(A) | E ⊆ F}. Note that the closure of a binary relation is a congruence and thus depends on the

operations in A, not just on the carrier set. Now define ∨ : Con(A)×Con(A) → Con(A) as E1 ∨E2 = ⟨E1 ∪E2⟩A. For
every algebra A, (Con(A),∧,∨) with the two operations defined above forms a lattice, called the congruence lattice of A.

Definition 10. Let A and B be two algebras of the same type. Then B is a subalgebra of A if B ⊆ A and every fundamental
operation of B is the restriction of the corresponding operation of A, i.e., for each function symbol f , fB is fA restricted to
B.

Definition 11. Suppose A and B are two algebras of the same type F . A mapping α : A → B is called a homomorphism
from A to B if

αfA(a1, . . . , an) = fB(αa1, . . . , αan)

for each n-ary f in F and each sequence a1, . . . , an from A. If, in addition, the mapping α is onto then B is said to be a
homomorphic image of A.
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Definition 12. Let A1 and A2 be two algebras of the same type F . We define the direct product A1 ×A2 to be the algebra
whose universe is the set A1 ×A2, and such that for f ∈ F and ai ∈ A1, a′i ∈ A2, 1 ≤ i ≤ n,

fA1×A2(⟨a1, a′1⟩, . . . , ⟨an, a′n) = ⟨fA1(a1, . . . , an), f
A2(a′1, . . . , a

′
n)⟩

B. Decision Trees by GCExplainer

Figure 8: Decision trees of distributive (left) and modularity (right) datasets extracted by SimpleGNN + GCExplainer.
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