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Abstract
Few Shot Class Incremental Learning (FSCIL)
with few examples per class for each incremental
session is the realistic setting of continual learn-
ing since obtaining large number of annotated
samples is not feasible and cost effective. We
present the framework MASIL as a step towards
learning the maximal separable classifier. It ad-
dresses the common problem i.e forgetting of old
classes and over-fitting to novel classes by learn-
ing the classifier weights to be maximally separa-
ble between classes forming a simplex Equiangu-
lar Tight Frame. We propose the idea of concept
factorization explaining the collapsed features for
base session classes in terms of concept basis and
use these to induce classifier simplex for few shot
classes. We further adds fine tuning to reduce any
error occurred during factorization and train the
classifier jointly on base and novel classes without
retaining any base class samples in memory. Ex-
perimental results on miniImageNet, CIFAR-100
and CUB-200 demonstrate that MASIL outper-
forms all the benchmarks.

1. Introduction
The success of Convolutional Neural Networks (CNN) in
wide range of computer vision tasks (Krizhevsky et al.,
2012; He et al., 2016; Ren et al., 2015; Liu et al., 2017;
Ma et al., 2019; Li et al., 2020) relies on the fact that the
training requires large scale image datasets (Deng et al.,
2009) and the train and test distributions are almost iden-
tical (Krizhevsky et al., 2017). However, when deploying
them in real world environments it requires that these mod-
els to quickly adapt to changing streams of data and hence
can recognize the novel classes emerged over a period of
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time. But the underlying bottleneck for this adaptation is
that CNN requires large amount of data to be collected for
each of the novel classes, this takes lot of human effort to
annotate them which is infeasible. However, annotating
only a few samples seems reasonable, we term this ability
to adapt to novel classes (with only few examples) without
forgetting the old classes as the few shot class incremental
learning (FSCIL). Fine-tuning the pre-trained network with
limited number of training examples of only novel classes
cause the model to forget old classes (catastrophic forget-
ting) and overfitting on recent novel classes (French, 1999;
Huang et al., 2022; Tao et al., 2020b; Dong et al., 2021).
Large amount of studies has been conducted to solve the
problem of catastrophic forgetting (Goodfellow et al., 2013).
This includes approaches based on: constraining the weight
changes (Kirkpatrick et al., 2017; Zenke et al., 2017; Dhar
et al., 2019; Aljundi et al., 2018; Li & Hoiem, 2017), re-
taining the samples from previous data in a memory (Parisi
et al., 2019; De Lange et al., 2019; Castro et al., 2018; Shin
et al., 2017; Aljundi et al., 2018) data augmentation (Yu
et al., 2020; Zhu et al., 2021a; 2022; Xiang et al., 2019), dy-
namic expansion based architectures (DEA) which expands
the network for each new incoming task id while the weights
of the base network are frozen for learning keeping both old
and new information (Fernando et al., 2017; Golkar et al.,
2019; Hung et al., 2019; Yan et al., 2021; Douillard et al.,
2020; Li et al., 2021). All these approaches are broadly
categorised into two main themes i.e. multi-task and multi-
class. Multi-task approaches like DEA requires resolving
the task id during inference, which is typically unavailable.
Multi-class scenario refers to learning a single classifier
with a aim to recognize the base and novel classes in a sin-
gle task. In this paper we study the FSCIL problem under
multi-class scenario, since it is more realistic and practical.
Recent approaches (Zhang et al., 2021; Hersche et al., 2022;
Akyürek et al., 2021) have proposed to learn the backbone
network as feature extractor using data of base classes, and
then use this frozen feature extractor to learn the classifier
prototypes for novel classes incrementally. But this does not
guarantee the maximum separability between the classifier
prototypes for base and novel classes and hence can lead
to the confusion between the old and new classes resulting
in limited performance. Other approaches (Chen & Lee,
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2020; Akyürek et al., 2021; Hersche et al., 2022), which
uses custom loss functions and regularizers to learn the clas-
sifier prototypes for novel classes along with preventing
forgetting on base classes, are also limited by performance
because of misalignment between fixed features of base
classes and classifier. Recent work NC-FSCIL(Yang et al.,
2023) proposed the use of neural collapse to learn the maxi-
mally separable classifier. They proposed to learn the two
layer classifier with pre-fixed simplex weights for base and
each incremental sessions. The two layer classifier training
with pre-fixed weights for few shot novel classes will not be
able to generalize well and hence results in overfitted class
representation. Opposed to them we proposed to learn itself
the maximum separable class representation using Neural
Collapse properties, but we used concept factorization on
backbone network to be able to represent any class in gen-
eral and hence obtain the generalized classifier for novel
few shot classes.

In this work, we address this problem of misalignment be-
tween fixed features of backbone network (feature extractor)
and classifier prototypes to prevent forgetting of base class.
Towards that we attempt to learn the maximal separable
classifier to avoid confusion between base and novel classes
in each incremental session. Our work is inspired from two
main studies: 1) Neural Collapse (NC) for imbalanced data
(Dang et al., 2023; Papyan et al., 2020) and, 2) Concept
Factorization (Fel et al., 2022; Kalayeh et al., 2014). Neural
collapse is the phenomenon where the network when trained
beyond zero error towards zero loss, results in collapsing the
last layer features of backbone network to form an Equian-
gular Tight Frame (ETF). The vertices of this frame denotes
the feature vector representing the class and aligned with
classifier prototype of the corresponding class (Papyan et al.,
2020). This guarantees a maximal separable classifier since
ETF is a geometric structure forming a simplex where the
within class variance is minimized (because of collapse to
a single vector) and between class variance is maximized
lying at equal angles from each other. However, with pre-
fixed simplex for base classes, the feature extractor is easy
to train since the sufficient data is available for each of the
class in base session (t = 0) resulting in collapse but for
any incremental session t ≥ 1 with few labelled samples
learning the collapsed features for novel classes is challeng-
ing since with few samples (as much as 5 samples for a
class) the fixed feature extractor is not able to align well
with the novel class prototype. To resolve that we introduce
the mechanism of concept factorization, where we dissect
the collapsed feature extractor on base session to identify
the concept basis in the input images. Once the concept
basis (”concept bank”) is identified from base session, we
recognize them as the building block from which the in-
cremental session classifier simplex is induced and hence
the new set of coefficients can be learnt for inducing the

simplex with novel classes. This is additionally fine-tuned
along with base class simplex to further align this with few
shot instances to reduce any irreducible error occurred dur-
ing calculating optimal coefficients for the ”concept bank”.
This has been illustrated in Fig.1. To summarize, our main
contributions are as follows:

• We introduce a novel framework MASIL as an attempt
to learn the maximal separable classifier for FSCIL.

• We identified the mechanism where the base session
collapsed features (obtained as per Neural Collapse
properties) can further be dissected in terms of ”con-
cept bank”, which forms the basis for building clas-
sifier prototype of novel classes encountered during
incremental session.

• Evaluation on three popular FSCIL benchmarks
datasets demonstrating state-of-the-art performance.
Extensive ablation study has been done to analyze the
importance of loss function introduced using Neural
collapse properties and the advantage of simplex fine-
tuning to reduce the irreducible error.

2. Related Work
2.1. Few Shot Learning

The idea of few shot learning (FSL) is to adapt the model
on novel classes (with only few labelled instances) without
caring for the performance on base classes. Most of the
works uses meta-learning (Sung et al., 2018; Finn et al.,
2017; Sun et al., 2019; Snell et al., 2017) or metric learning
(Snell et al., 2017; Vinyals et al., 2016; Sung et al., 2018).
Recently, the approaches (Gidaris & Komodakis, 2018; Ren
et al., 2019) have demonstrated the use of meta learning
to recognize the base and novel classes both, by sampling
”fake” few shot classification task from base classes to learn
a classifier for novel classes. Finally, the learned classifier
weights are combined to jointly recognize the base and
novel classes. Some of the works (Ren et al., 2019) regard
this as sort of incremental learning. Contrastively, FSCIL
setting is much more realistic where the base dataset is not
accessible during the incremental stage and we have to adapt
the model for novel classes without catastrophic forgetting
(Tao et al., 2020b; Dong et al., 2021). Metric learning
approaches focus on learning a strong backbone network for
learning transferable features across the tasks, on top which
the similarity function (like k-nearest neighbours in (Vinyals
et al., 2016), non linear distance metric in (Sung et al., 2018)
) is learnt to demonstrate the ability to classify the novel
classes with transferable features. However, this requires
to train the as much similarity function as the number of
incremental sessions in FSCIL but the aim of FSCIL is to
train one unified classifier for the base and novel classes.
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We will discuss in the next section how existing works have
dealt the problem of FSCIL different from FSL.

2.2. Few Shot Class Incremental Learning

Class Incremental Learning (CIL): We start by first dis-
cussing the idea of Class Incremental Learning (CIL), it
aims to learn a classifier that manages to continuously up-
date itself to recognize all the novel classes without forget-
ting the base classes (Rebuffi et al., 2017; Cauwenberghs
& Poggio, 2000; Li & Hoiem, 2017). To overcome this
forgetting mechanism CIL studies has been categorized into
three broad categories: regularization based (Kirkpatrick
et al., 2017; Li & Hoiem, 2017; Dhar et al., 2019), rehearsal
based (Parisi et al., 2019; De Lange et al., 2019; Aljundi
et al., 2018; Castro et al., 2018), and knowledge distillation
(Rebuffi et al., 2017; Hou et al., 2019; Wu et al., 2019). Reg-
ularization based methods constraint the weight changes on
the novel classes thereby keeping the information previously
learnt for base classes, this causes these methods to suffer
for generalization on novel classes because of small allowed
change in weights. Rehearsal based methods in which the
model is continually be refreshed using old data reserve so
that it maintains to learn the novel classes along with old
classes. This is limited by the amount of old data it can
retain in memory, and the how the instances from old data
to be selected for maximal information with minimum mem-
ory requirements. These methods are not scalable to large
number of classes because of the limited memory. For exam-
ple, iCaRL(Rebuffi et al., 2017) learns the nearest neighbour
classifier for novel classes while maintaining the memory of
exemplars from base session. Knowledge Distillation based
methods requires the use of large teacher model to guide the
learning of small student model (Yang et al., 2022; Hinton
et al., 2015). It works by distilling the previously learned
information to new model with novel classes, so as to avoid
forgetting of base classes. Recent studies (Dhar et al., 2019;
Douillard et al., 2020; Hou et al., 2019) conducted the distil-
lation on feature level rather than on output logit level at the
classifier. However, these solutions suffer from a problem
of distinguishing between base and novel classes leading to
limitation in the performance.

Few Shot Class Incremental Learning (FSCIL): Com-
pared to CIL setting, FSCIL aims to learns the novel classes
(along with base classes) with few labelled instances (Tao
et al., 2020b; Dong et al., 2021), which is much more real-
istic and hard, since learning from few instances of novel
classes causes over-fitting on novel classes (Snell et al.,
2017; Sung et al., 2018). In order to do this, some studies
have focused to align base and incremental session using
augmentation (Peng et al., 2022), searching for flat minima
(Shi et al., 2021). However, for avoiding over-fitting to novel
classes it is required that the classifier prototypes for novel
classes should be maximally separable from base classes.

Adjusting prototypes for base classes is not feasible since
that requires the use of base session data. However, these
studies (Zhang et al., 2021; Zhu et al., 2021b) have focused
on evolving prototypes for novel classes. Large number of
existing works have focused on building the custom loss
and regularizer (Ren et al., 2019; Hou et al., 2019; Tao et al.,
2020a; Joseph et al., 2022; Lu et al., 2022; Hersche et al.,
2022; Akyürek et al., 2021; Yang et al., 2022). However, the
same disadvantages we discussed in CIL for regularization
and custom loss functions applies in FSCIL as well. In this
work we focused on the optimal evolution of prototypes
for novel classes which is derived from the same function
using which base class prototypes have been developed and
ensuring the maximal separability between old and novel
classes.

3. Problem Statement and Context
In this section we will introduce the problem definition of
Few Shot Class Incremental Learning in Section 3.1 and
context in subsequent sections.

3.1. Few Shot Class Incremental Learning

Formally, we define Few Shot Class Incremental Learning
(FSCIL) as the stream of labelled data in time sequence
as D0, D1, ....., where Dt = {(xt

j , y
t
j)}

j=|Dt|
j=1 . Ct be the

number of classes in training set Dt, where ∀(i, j) Ci∩Cj =
∅. Specifically, we consider D0 as the base session with
large label space C0 with each class c ∈ C0 have sufficient
training images. For t > 0 each of the incremental session
Dt have only few labelled images for each novel classes.
FSCIL is defined as the time step incremental training of
model Θ on Dt ∀ t > 0 with no access to any of the previous
labelled set from D0 to Dt−1. For t > 0 Dt we denote the
setting as C classes with K training examples per class as
C-way K-Shot FSCIL where Ct∩C′

t = ∅ ∀t ̸= t′. After each
incremental session training with Dt, model Θ is evaluated
to recognize all the training classes encountered so far i.e.
∪i=t
i=0 Ci. Hence, FSCIL not only aims to recognize novel

classes but to avoid forgetting of the old classes and the
setting of learning of novel classes is highly imbalanced
and suffers from data scarcity problem as well. This makes
FSCIL setting more suited for real world applications.

Initialization: Assuming C0 as the number of base classes
and we have total T incremental session and each session
has k classes, so there will be total K = C0+Tk classes. To
be able to perform FSCIL, we denote the model trained on
base session consists of backbone feature extractor f(; θf )
and classifier W ∈ RK×d, which is a MLP classifier con-
sisting of L layers denoted as W = W1W2.....WL. For
input X we denote the features obtained from feature ex-
tractor as H = f(X, θf ) ∈ Rd×N , where N is the total
number of training instances. Similar to (Dang et al., 2023)
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Figure 1. MASIL: Illustrating the concept basis obtained from concept factorization of features after feature extractor and their relation
with input images. After base session training, classifier simplex for novel classes are induced from these concept basis. Implicit memory
(not shown) storing the feature mean of classes seen till current session. This is used to jointly updating the weights of classifier for both
base and novel classes during Simplex Finetuning.

we also consider last layer features H as freely optimiza-
tion variables. The optimization objective is then defined as
follows:

min
W,H

L(W,H) =
1

2N
||WH−Y||2F +

λW

2
||W||2F+

λH

2
||H||2F (1)

where Y ∈ RK×N , is the class label for each of the train-
ing instance in N instances and λW , λH are regularization
hyperparameters.

3.2. Neural Collapse

In recent works (Papyan et al., 2020; Dang et al., 2023)
which have studied the practice of training the DNN be-
yond zero error towards zero loss. This reveals the geo-
metric structure in the form of simplex equiangular tight
frame, formed by the last layer features along with classi-
fier weights. This has been demonstrated on the balanced
data and models with various popular architectures. Neural
Collapse as defined in (Papyan et al., 2020) consists of the
following four properties:

• (NC1) Variability Collapse: Last layer features of
the backbone network for a particular class collapse to
within-class mean.

• (NC2) Convergence: results in optimal class-means
which are equally and maximally pairwise separated
forming a simplex Equiangular Tight Frame (ETF).

• (NC3) Classifier Convergence: Optimal class means

forming ETF are aligned to the corresponding classifier
weights uptio rescaling.

• (NC4) Simplification to nearest class center When
(NC1)-(NC3) holds, the model prediction using logits
respects nearest class centers.

In addition to the balanced data, this (Dang et al., 2023)
have derived the geometrical analysis for the imbalanced
data given as:

Definition 1. Let (W*, H*) be the global optimizer of
equation 1, r = min(K, d) and W = UWSWV T

W be the
SVD factorization of W. Then the following holds for the
imbalanced data:

• (NC1) leads to collapse of features within the same
class H∗ = H

∗
Y, where H

∗
= [h∗

1,h
∗
2, ....h

∗
K ] ∈

Rd×K

• (NC3) leads to alignment between classifier
weights and corresponding class mean as

w∗
k =

√
nkλH

λW
h∗
k ∀k ∈ [K], where nk is the

number of instances of class k.

• (NC2) leads to optimal class means equally and max-
imally separated forming simplex Equiangular Tight
Frame (ETF) W∗W∗⊤ = diag {s2k}k=K

k=1 , where sk
are the singular values of W∗

Another approach i.e. Deep Simplex Classifier(Cevikalp
& Saribas, 2022), proposed the optimization problem as

4



MASIL: Towards Maximum Separable Class Representation for Few Shot Class Incremental Learning

minimization of features obtained from feature extractor to
the vertices of simplex as:

min
hi∈HT

1

n

n∑
i=1

||hi − syi||
2 (2)

where syi is vertex of simplex and is treated as the class
center for class yi.

4. MASIL
Overall framework of our proposed method is illustrated in
Fig. 1. FSCIL aims to learn the classifier weights WK×d

which works for all classes irrespective of whether they be-
longs to the base classes during t = 0 or few shot classes
during t > 0. Traditionally, this has been achieved by
first learning the classifier weights for C0 base classes and
then learn the weights for novel classes W (t) ∈ Rk×d with
the regularized constraint in the loss function that the old
weights W ∈ RC0+(t−1)k be preserved with little or no
updates. However, this leads to misalignment between the
classifier prototypes of old and novel classes causing old
new confusion(ONC) (Huang et al., 2022) and catastrophic
forgetting (Goodfellow et al., 2013). This causes drop in
performance of FSCIL classifier as the number of incremen-
tal session grows resulting in poor generalizability even in
recognizing the base classes. To mitigate this, in this work
we adopted the properties obtained from Neural Collapse
to learn maximally separable classifier along with concept
factorization to learn classifier weights (organized as sim-
plex) for novel classes with few samples. We restricted the
feature extractor from updates during incremental session
training and rely on concept factorization of the activations
obtained for base classes to obtain the basis of concepts
called ”concept bank”, using which we can represent maxi-
mally separable classifier weights i.e. simplex for few shot
classes. To represent the classifier simplex using ”concept
bank” it requires to solve only for the coefficient matrix
which can be done by just solving the Non Negative Least
Squares (NNLS).

4.1. Concept Factorization

The idea of concept factorization relates to the phenomena
of neural collapse, where it learns to maximally separate the
classes by forming the simplex at class level on both levels
of class features and classifier weights. In order to achieve
this it merge the activations (during forward pass) of the
same class until they all converge to the one hot class vector
at the logits layer as depicted in equation 2. This allows
the class wise feature vectors which are concentrated at
higher layers to be recursively broken into multiple concepts
moving from highest layer to lower layers tracing back to
the input images where it can be explained with regions as
concepts, combination of which makes it possible to be able

to classify it to particular class. We adopted NMF (Non
Negative Matrix Factorization) as in (Fel et al., 2022) of
activations obtained at the output of feature extractor given
as:

min
P≥0,Q≥0

1

2
||A−PQT ||2F (3)

where, ||.||F is the Frobenius norm, the activations A ∈
Rn×d obtained from crop of images Xi = τ(xi) Xi ∈
Xn×p with τ is a crop function. We take random crops (gov-
erned by τ ) of images, this results in unique concepts across
the categories to be able to build the bank of unique concept
vectors called ”concept bank”. Activations at the last layer
of feature extractor after global pooling for these random
crops is given as A = f(X, θf ) ∈ Rn×d. NMF is simply
the factorization of concept activations A into the ”concept
bank” Q ∈ Rv×d (where it follows low rank factorization
v ≪ min(n, p)) and coefficients P ∈ Rn×v denote the im-
portance of each of the concepts in explaining the activations
A. Once the ”concept bank” is precomputed, we can obtain
the coefficients P (x) for any input x using NNLS (Non-
Negative Least Squares) i.e. min

P≥0

1
2 ||f(x; θf )−P (x)QT ||2F .

Relating activation factorization in equation 3 and neural
collapse in equation 2, implies that the activations when
collapses to the mean features vector for each class forming
the class simplex vector which is composed of concept ba-
sis vectors and the corresponding coefficients, combining
for all classes which gives the overall basis called ”concept
bank”.

4.2. NMF Layer

During NMF factorization of equation 3, we keep the feature
extractor f(.; θf ) frozen. We approached the NMF problem
solution using ADMM (Alternating Direction Method of
Multipliers) (Boyd et al., 2011) since NMF is non-convex,
but however it can be made convex by fixing the value of
either of the two factors (P,Q) which requires alternating
update of either of two factors fixing one at a time, which is
equivalent to solving a Non-Negative Least Squares (NNLS)
problem making it convex. This alternating update mecha-
nism called as ADMM, formulated as:

Pt+1 = arg min
P≥0

1

2
||A−PQt

T ||2F (4)

Qt+1 = arg min
Q≥0

1

2
||A−PtQ

T ||2F (5)

It ensures global or local minimum since each of the NNLS
problem obeys Karush–Kuhn–Tucker (KKT) optimality con-
ditions (Karush, 2014; Kuhn & Tucker, 2014). Using
these conditions forming the implicit function (Griewank &
Walther, 2008) makes the implicit differentiation (Griewank
& Walther, 2008; Krantz & Parks, 2002; Bell & Burke,
2008) allows to compute the gradients (∂P∂A , ∂Q

∂A ), but how-
ever we have to relate the concepts with the input image
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regions we require to compute ( ∂P∂X , ∂Q
∂X ). This can be cal-

culated as:
∂P

∂X
=

∂A

∂X

∂P

∂A
,
∂Q

∂X
=

∂A

∂X

∂Q

∂A
(6)

Computation of ∂A
∂X is fairly straight word using Pytorch.

More details on implementation of combining gradients
from implicit differentiation in Jax (Huang et al., 2016;
Blondel et al., 2021) and gradient from Pytorch computation
is detailed in Section B. Once we precompute the ”concept
bank” for base classes using equation 5 and 6, we fixed the
Q and allows only to compute optimal coefficients P (x) for
any input x using NNLS

min
P≥0

1

2
||f(x; θf )− P (x)QT ||2F (7)

which give the optimal representation of activation for any
input x in terms concept basis vectors.

4.3. Classifier Simplex Representation

Equation 2 is optimizing the feature representation for each
class resulting in collapsed representation for class yi as syi .
Similarly, equation 1 results in simplex representation for
each class i.e. wyi

∈ W. So if we consider the normalized
simplex representation on a unit hypersphere (Cevikalp &
Saribas, 2022) of each class then:

wT
yi
syi

= 1 ∀ yi ∈ ∪j=t
j=0Cj (8)

which results in the modified loss function of equation 2 to:

min
hi

1

|Dj |
∑

(xi,yi)∈Dj

||wT
yi
hi − 1||2F (9)

s.t. wT
yi
syi

= 1 which is same as in equation 1 and hence
follow the neural collapse properties. Moreover, optimizing
equation 2, results in the collapsed feature representation for
all instances belonging to that class. Additionally, equation
3 computes the best approximation of collapsed feature
representation H ≈ PQT . For any input (xi, yi) belongs
to Dj , j > 0, then optimal hi obtained from equation 7 is
given as:

hi = P(xi)Q
T (10)

From (NC1), the collapsed feature representation of each
class converge to a unique vector e.g. for class yi the fea-
ture representation of all instances is denoted as Hyi

∈ H,
(NC1) implies covariance

∑
Hyi

−→ 0. i.e. the features
collapse to their corresponding class means i.e. h∗

yi
=∑nyi

i=1 hi, where nyi
is the number of instances for class

yi, and as per loss in equation 2, this is minimum when
syi

= h∗
yi

, then from equation 8 and 10:

ŵyi
=

1

|Dj |

 ∑
(xi,yi)∈Dj

P(xi)

QT ∀j > 0 (11)

where the coefficients P(xi) for each instance of class yi
are calculated using NNLS as per equation 7, additionally,
yi ∈ Cj , j > 0 are the few shot classes and classifier weights
are the optimal simplex representation for few shot classes.
For base session classes (j = 0) the classifier simplex repre-
sentation is simply ŵyi

= sTyi
. Since we implemented the

classifier using MLP with L = 2 layers, for each layer the
simplex representation is ŵl,yi = (ŵyi)

1/L.

4.4. Simplex Finetuning

In Section 4.3 we described the optimal simplex repre-
sentation for each class belongs to the few shot class
yi ∈ Cj , j > 0. But, however due to the the inherent ir-
reducible error to NNLS, we approach the optimal represen-
tation of simplex for few shot class by further fine-tuning the
classifier weights (keeping the feature extractor frozen) ini-
tialized using simplex representation as obtained in equation
11. To avoid deviating the weights to much from optimal
simplex representation we add a constraint to the loss in
equation 9 as:

min
wyi

L(wyi
) =

1

|Dj |
∑

(xi,yi)∈Dj

||wT
yi
hi − 1||2F+

α||wyi − ŵyi ||2F , α ∈ [0, 1] (12)

where yi ∈ Cj , j > 0 and feature extractor is frozen and
hence optimizing for the best wyi . Since base session train-
ing (i.e. j = 0 and dataset D0) is governed using the loss
function of equation 2 and hence results in collapsed rep-
resentation of features at the terminal layer for each class
yi ∈ C0. For the simplex representation for each class in
C0 to remain maximally separable with the ones obtained
for few shot class we utilized the collapsed representation
of features for each class to further fine tune the simplex
representation, but without keeping the image instances in
memory we memorized the collapsed representation (which
is the mean representation of instance features for each
class) in M given as:

Myi
=

1

nyi

nyi∑
i=1

hi,∀Myi
∈ M (13)

where, nyi is the number of instances of class yi. The
updated loss function during fine tuning stage include the
base session classes and few shot class is given as:

min
wyi

L(wyi) =
1

|Dj |
∑

(xi,yi)∈Dj

||wT
yi
hi − 1||2F+

1

|M|
∑

(Myi
,yi)∈M

||wT
yi
Myi

− 1||2F+

α||wyi
− ŵyi

||2F , α ∈ [0, 1] (14)
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Methods Session Accuracy (%) (↑) Average
Acc. (↑)

Relative
Improvement

0 1 2 3 4 5 6 7 8

iCaRL (Rebuffi et al., 2017) 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 33.29 +41.65
NCM (Hou et al., 2019) 61.31 47.80 39.30 31.90 25.70 21.40 18.70 17.20 14.17 30.83 +44.69
D-Cosine (Vinyals et al., 2016) 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 55.99 +13.23

TOPIC (Tao et al., 2020b) 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 +34.44
IDLVQ (Chen & Lee, 2020) 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 51.16 +17.02
Self-promoted (Zhu et al., 2021b) 61.45 63.80 59.53 55.53 52.50 52.50 46.69 43.79 41.92 52.76 +16.94
CEC (Zhang et al., 2021) 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.75 +11.23
LIMIT (Zhou et al., 2022b) 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19 59.06 +9.67
Regularizer (Akyürek et al., 2021) 80.37 74.68 69.39 65.51 62.38 59.03 56.36 53.95 51.73 63.71 +7.13
MetaFSCIL (Chi et al., 2022) 72.04 67.94 63.77 60.29 57.58 55.16 52.90 50.79 49.19 58.85 +9.67
C-FSCIL (Hersche et al., 2022) 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41 61.61 +7.45
Data-free Replay (Liu et al., 2022) 71.84 67.12 63.21 59.77 57.01 53.95 51.55 49.52 48.21 58.02 +10.65
ALICE (Peng et al., 2022) 80.60 70.60 67.40 64.50 62.50 60.00 57.80 56.80 55.70 63.99 +3.16
SSFE-Net (Pan et al., 2023) 72.06 66.17 62.25 59.74 56.36 53.85 51.96 49.55 47.73 57.74 +11.13
NC-FSCIL (Yang et al., 2023) 84.02 76.80 72.00 67.83 66.35 64.04 61.46 59.54 58.31 67.82 +0.55

MASIL(Ours) 85.15 77.00 72.20 67.92 66.60 64.2 61.50 59.60 58.86 68.11

Table 1. Performance comparison on miniImageNet with ResNet-18 as backbone architecture under 5-way 5-shot FSCIL setting. Table
denotes the accuracy in each session, average accuracy across sessions and ”Relative Improvement” denotes the improvement of our
method in the last session. Methods above separating line are CIL methods for FSCIL as in (Tao et al., 2020b) and (Zhang et al., 2021)

Methods Session Accuracy (%) (↑) Average
Acc. (↑)

Relative
Improvement

0 1 2 3 4 5 6 7 8

iCaRL (Rebuffi et al., 2017) 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 32.87 +42.42
NCM (Hou et al., 2019) 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 34.22 +42.61
D-Cosine (Vinyals et al., 2016) 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68 58.23 +8.47

TOPIC (Tao et al., 2020b) 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 42.62 26.78
Self-promoted (Chen & Lee, 2020) 64.10 65.86 61.36 57.45 53.69 50.75 48.58 45.66 43.25 54.52 +12.9
CEC (Zhang et al., 2021) 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53 +7.01
DSN (Chi et al., 2022) 73.00 68.83 64.82 62.64 59.36 56.96 54.04 51.57 50.00 60.14 +6.15
LIMIT (Zhou et al., 2022b) 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23 61.84 +4.92
MetaFSCIL (Akyürek et al., 2021) 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 60.79 +6.18
C-FSCIL (Hersche et al., 2022) 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47 61.64 +5.68
Data-free Replay (Liu et al., 2022) 74.40 70.20 66.54 62.51 59.71 56.58 54.52 52.39 50.14 60.78 +6.01
ALICE (Peng et al., 2022) 79.00 70.50 67.10 63.40 61.20 59.20 58.10 56.30 54.10 63.21 +2.05
NC-FSCIL (Yang et al., 2023) 82.52 76.82 73.34 69.68 66.19 62.85 60.96 59.02 56.11 67.50 +1.12

MASIL(Ours) 82.55 76.98 73.44 69.75 66.48 62.98 61.4 59.81 57.23 67.84

Table 2. Performance comparison on CIFAR-100 with ResNet-18 as backbone architecture under 5-way 5-shot FSCIL setting. Table
denotes the accuracy in each session, average accuracy across sessions and ”Relative Improvement” denotes the improvement of our
method in the last session. Methods above separating line are CIL methods for FSCIL as in (Tao et al., 2020b) and (Zhang et al., 2021)

where the constraint is now valid for base session classes
as well along with few shot classes with the fact that sim-
plex representation for each class should not deviate much
(depends on the contributing factor α) from the optimal sim-
plex representation. In each incremental session we train
our classifier network using this loss function after deriving
the simplex representation for each few shot classes from
equation 11.

5. Experiments
We prove the effectiveness of MASIL on three well known
FSCIL benchmark datasets described in Appendix A along
with their corresponding FSCIL setting. Training details
and hyper parameters are discussed in Appendix B.

5.1. Benchmark Evaluation

Performance comparison on miniImageNet, CIFAR-100 and
CUB-200 is demonstrated in Table 1, 2 and 5 (given in Ap-

pendix C due to space limitation) respectively. Our method
MASIL outperforms in all the methods in the last session
with relative improvement of +3.16%, +2.05% and +0.14%
on miniImageNet, CIFAR-100, CUB-200 respectively as
compared to strongest baseline ALICE (Peng et al., 2022).
Additionally, our method outperforms all the methods in all
the sessions (except on CUB-200 session 2). Moreover, on
average accuracy our method outperforms atleast by +1.79%
as compared to strongest baseline, collectively is an indica-
tor that our model helps in mitigating the forgetting issue in
a realistic setting of continual learning namely FSCIL.

5.2. Ablation Studies

We consider variations to base model (backbone network
i.e. ResNet-18 with classifier and memory as introduced in
equation 13) to validate the 1) effects of loss introduced in
equation 9 (ETF) as compared to cross-entropy (CE) loss
with and without neural collapse induced simplex classifier
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Models miniImageNet CIFAR-100 CUB-200

Final (↑) Average (↑) Final (↑) Average (↑) Final (↑) Average (↑)

Learnable + CE 50.04 61.30 52.13 62.68 50.38 59.58
NC + CE 56.66 68.23 54.42 64.00 56.83 65.51
NC + ETF Loss 58.31 67.82 56.11 67.50 59.44 67.28
NC + ETF Loss + CF 58.72 68.04 56.13 67.51 59.72 67.45

MASIL(Ours) 58.86 68.11 57.23 67.84 60.24 67.54

Table 3. Ablation Studies on three datasets investigating the effects of Simplex based loss, Concept Factorization and Simplex Fine Tuning

Figure 2. Average cosine similarities between different classes at each session for Train (Left) and Test (Right) on miniImageNet.
Calculation of cosine similarity is done for all the classes encountered so far after the model gets trained in current session.

prototypes, 2) effects of few shot simplex induced with con-
cept factorization and 3) effects of simplex fine tuning. To
validate the first effect there are two models. The first model
(Learnable + CE) uses a classifier with learning weights
from CE loss, which is the most common practice. Second
model (NC + CE) uses the CE loss with classifier weights
as per the neural collapse properties but uses the CE loss
instead of the loss in equation 9. To validate the second ef-
fect (third model i.e. NC + ETF Loss) we did not initialize
the classifier weights for few shot classes and train them
as per the loss in equation 9 with memory of base classes
as in equation 13. For third effect i.e. fourth model (NC
+ ETF Loss + CF) we reported the performance without
fine tuning and just use the classifier weights calculated
from concept factorization (CF) as in equation 11. Finally,
we reported performance of MASIL to compare among all
of them. As shown in Table 3, adopting the loss function
in equation 9 is definitely helps in mitigating performance
drop as compared to CE loss even with classifier weights
is assumed to be forming simplex, and it further mitigates
using the weight initialized with CF and further with fine
tuning. It indicates the success of CF along with neural
collapse towards optimal solution for FSCIL.

5.3. Analysing Classifier Weights

We further analysed the classifier weights alignment with
respect to the mean feature (collapsed feature) of each class.

We used the classifier weights and mean feature from each
of the models described in ablation studies to validate the
effect of MASIL in learning the maximal separable classifier,
where the separable property between classes is measured
by cosine similarity. Specifically, we plotted the average
cosine similarities between mean feature and the classifier
weights of different classes i.e. Avgk ̸=k′{hk · w′

k} for both
train and test datasets. We have illustrated this for mini-
ImageNet in Fig. 2. Clearly, on both the train and test the
similarity between different classes goes on increasing for
the ”Learnable + CE” model. While using the loss in equa-
tion 9 (as per Neural Collapse) have no increasing trend.
Incorporating concept factorization and simplex fine tuning
(in MASIL) further reduces the similarities as the session
grows on and hence mitigate the effect of forgetting and
confirming the maximum separability with MASIL.

6. Conclusion
In this paper we propose the novel framework MASIL as an
step towards learning the maximum separable classifier in
a competitive setting of continual learning i.e. FSCIL. We
propose to induce the simplex from concept factorization
helps in few shot cases. We introduced novel loss function
where the base and novel classes can be learnt together dur-
ing fine tuning to further mitigate forgetting and overfitting.
In experiments MASIL outperforms all the benchmarks with
sufficient margin on three datasets proving its efficiency.
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A. DATASET DETAILS
Following ALICE (Peng et al., 2022), we conduct evaluation of MASIL on three widely used benchmark datasets:

• CIFAR-100 (Krizhevsky et al., 2009) consists of 100 classes in total with color images of size 32× 32. Each class
consists of 500 images for training and 100 images for testing. The base session (t = 0) consists of 60 classes and the
rest 40 classes contributed for 8 incremental session with 5-way 5-shot setting (i.e. 5 images for each of the 5 classes)
for 1 ≤ t ≤ 8.

• miniImageNet (Russakovsky et al., 2015) is a variant of ImageNet() with color images of size 84×84. It also consits of
same number of classes as CIFAR-100 and same number of images in train and test, resulting in the same configuration
for base and incremental sessions.

• CUB-200 (Wah et al., 2011) consists of 11,788 images (size 224× 224) in total spanning across 200 classes. There
are 5,994 images in train and 5,794 images in test. Base session (t = 0) consists of 100 classes and rest 100 classes
contributed towards 10 incremental session (1 ≤ t ≤ 10) with 10-way 5-shot setting (5 images for 10 classes each).

Dataset Base Session Incremental Session

Epcohs Learning
Rate Iterations Learning

Rate

CIFAR-100 200 0.25 20-80 0.25
miniImageNet 500 0.25 120-190 0.025

CUB-200 80 0.025 80-150 0.05

Table 4. Training Details for Base and Incremental Session

B. IMPLEMENTATION DETAILS
Backbone Architecture: Existing works in FSCIL have leveraged ResNet-18, ResNet-12, ResNet-20 (He et al., 2016)
as the backbone network for feature extractor. Following ALICE (Peng et al., 2022), we use ResNet-18 as the backbone
network for feature extractor on top which the two layer MLP for projecting the features as the classification layer is trained
for base and incremental sessions.

Concept Factorization: We used low rank factorization variable v = 64 for CIFAR and miniImageNet, and v = 72 for
CUB-200. For τ function, it corresponds to randomly choosing 10 cropped patches of size 18 × 18 on CIFAR-100 and
miniImageNet and patch size of 64 × 64 for CUB-200. We didn’t use the scikit-learn implementation (Pedregosa et al.,
2011) of NMF, we leverage the work of (Fel et al., 2022; Huang et al., 2016), which uses Jax (Blondel et al., 2021; Pedregosa
et al., 2011) implementation of ADMM(Boyd et al., 2011) using Jaxopt library. We convert the Jax array to tensor array to
be able to combine with the tensor array obtained from Pytorch on the gradient ∂A

∂X and compute the gradient with respect to
input images i.e. ∂P

∂X , ∂Q
∂X .

Training Details: Data augmentation strategies like random crop, horizontal flip, rotation, brightness variation, cutout,
resizing, flipping and color jittering were all applied following the recent works (Peng et al., 2022; Tao et al., 2020b; Zhang
et al., 2021). Additionally, we adopted the standard data pre-processing as in (Peng et al., 2022). With a variation of number
of epochs and iterations for base and incremental session across three datasets we keep the batch size of 512 for base session
and 64 for incremental session during simplex finetuning as explained in Section 4.4. Dataset wise epochs/iterations and
learning rates for base and incremental session is given in Table 4. Additionally, we use SGDR (Loshchilov & Hutter,
2016) with momentum as optimizer which uses cosine annealing strategy to reduce learning rate. Our code will be publicly
available upon acceptance.

C. Additional Results
We continued summarising results for CUB-200 comparing various methods with MASIL. Although improvement in last
session is very small +0.14% as compared to strongest baseline ALICE (Peng et al., 2022). But we are consistently better
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Methods Session Accuracy (%) (↑) Average
Acc. (↑)

Relative
Improvement

0 1 2 3 4 5 6 7 8 9 10

iCaRL (Rebuffi et al., 2017) 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 36.67 +39.08
EEIL (Castro et al., 2018) 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 36.27 +38.13
NCM (Hou et al., 2019) 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 32.49 +40.37
Fixed classifier (Pernici et al., 2021) 68.47 51.00 45.42 40.76 35.90 33.18 27.23 24.24 21.18 17.34 16.20 34.63 +44.04
D-NegCosine (Liu et al., 2020) 74.96 70.57 66.62 61.32 60.09 56.06 55.03 52.78 51.50 50.08 48.47 58.86 +11.77
D-DeepEMD (Zhang et al., 2020) 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60 58.73 +12.64
D-Cosine (Vinyals et al., 2016) 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 59.36 +10.93
DeepInv (Yin et al., 2020) 75.90 70.21 65.36 60.14 58.79 55.88 53.21 51.27 49.38 47.11 45.67 57.54 +14.57

TOPIC (Tao et al., 2020b) 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 43.92 +33.96
IDLVQ (Chen & Lee, 2020) 77.37 74.72 70.28 67.13 65.34 63.52 62.10 61.54 59.04 58.68 57.81 65.23 +2.43
SPPR (Zhu et al., 2021b) 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.32 +22.91
(Cheraghian et al., 2021) 68.78 59.37 59.32 54.96 52.58 49.81 48.09 46.32 44.33 43.43 43.23 51.84 +17.01
CEC (Zhang et al., 2021) 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 +7.96
LIMIT (Zhou et al., 2022b) 76.32 74.18 72.68 69.19 68.79 65.64 63.57 62.69 61.47 60.44 58.45 66.67 +1.79
MgSvF (Zhao et al., 2021) 72.29 70.53 67.00 64.92 62.67 61.89 59.63 59.15 57.73 55.92 54.33 62.37 +5.91
MetaFSCIL (Chi et al., 2022) 75.9 72.41 68.78 64.78 62.96 59.99 58.3 56.85 54.78 53.82 52.64 61.93 +7.6
FACT (Zhou et al., 2022a) 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 64.42 +3.3
Data-free replay(Liu et al., 2022) 75.90 72.14 68.64 63.76 62.58 59.11 57.82 55.89 54.92 53.58 52.39 61.52 +7.85
ALICE (Peng et al., 2022) 77.40 72.70 70.60 67.20 65.90 63.40 62.90 61.90 60.50 60.60 60.10 65.75 +0.14
SSFE-Net (Pan et al., 2023) 76.38 72.11 68.82 64.77 63.59 60.56 59.84 58.93 57.33 56.23 54.28 62.98 +5.96
NC-FSCIL (Yang et al., 2023) 80.45 75.98 72.30 70.28 68.17 65.16 64.43 63.25 60.66 60.01 59.44 67.28 +0.8

MASIL(Ours) 80.50 76.02 72.25 70.30 68.85 65.72 64.45 63.28 60.80 60.60 60.24 67.54

Table 5. Performance comparison on CUB-200 with ResNet-18 as backbone architecture under 10-way 5-shot FSCIL setting. Table
denotes the accuracy in each session, average accuracy across sessions and ”Relative Improvement” denotes the improvement of our
method in the last session. Methods above separating line are CIL methods for FSCIL as in (Tao et al., 2020b) and (Zhang et al., 2021)

in average accuracy and session wise accuracy (except only two sessions 2 and 8). On average accuracy we outperform
ALICE (Peng et al., 2022) by +1.79% as shown in the Table 5. To further analyze the underlying reason for performance
improvement because of fine tuning of classifier weights obtained from concept basis, we calculated the average cosine
similarity of the concept basis ci with all cj , where j ̸= i for all the three datasets as given in the Table 6. Formally it is
calculated as:

1

K(K − 1)

K∑
i=1

K∑
j=1,j ̸=i

ci · cj (15)

Dataset Average Cosine Similarity

miniImageNet -5.22e-4
CIFAR-100 -8.78e-3
CUB-200 -4.54e-4

Table 6. Calculated cosine similarity among concept basis for each of the three benchmark datasets

These entries are almost close to zeros resulting in the concept basis which are non-overlapping and non-repetitive and hence
can induce the unique classifier weights correspond to novel classes, that can be represented in terms of their combination.
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