
One-Shot Neural Network Pruning via Spectral Graph Sparsification

Steinar Laenen 1

Abstract
Neural network pruning has gained significant at-
tention for its potential to reduce computational
resources required for training and inference. A
large body of research has shown that networks
can be pruned both after training and at initiali-
sation, while maintaining competitive accuracy
compared to dense networks. However, current
methods rely on iteratively pruning or repairing
the network to avoid over-pruning and layer col-
lapse. Recent work has found that by treating
neural networks as a sequence of bipartite graphs,
pruning can be studied through the lens of spec-
tral graph theory. Therefore, in this work, we
propose a novel pruning approach using spectral
sparsification, which aims to preserve meaningful
properties of a dense graph with a sparse sub-
graph, by preserving the spectrum of the dense
graph’s adjacency matrix. We empirically vali-
date and investigate our method, and show that
one-shot pruning using spectral sparsification pre-
serves performance at higher levels of sparsity
compared to its one-shot counterparts. Addition-
ally, we theoretically analyse our method with
respect to local and global connectivity.

1. Introduction
Deep neural networks (DNNs) have significantly impacted
research and practical applications, but their high parame-
ter count and computational demand present deployment
challenges on low-memory devices like mobile phones or
smart devices (Huang et al., 2019). Consequently, exten-
sive research is dedicated to improving DNN efficiency, one
such direction being neural network pruning (Blalock et al.,
2020), which compresses neural networks by removing pa-

1School of Informatics, University of Edinburgh,
United Kingdom. Correspondence to: Steinar Laenen
<steinar.laenen@ed.ac.uk>.

Proceedings of the 2nd Annual Workshop on Topology, Algebra,
and Geometry in Machine Learning (TAG-ML) at the 40 th In-
ternational Conference on Machine Learning, Honolulu, Hawaii,
USA. 2023. Copyright 2023 by the author(s).

rameters.

Several works analyse neural network pruning from a proba-
bilistic perspective (Malach et al., 2020), or a gradient-flow
perspective (Evci et al., 2022). Recent work (Hoang et al.,
2023; Pal et al., 2022) has shown that neural network prun-
ing strategies can be looked at through the lens of spectral
graph theory, which studies the relationship between the
eigenvalues and eigenvectors of a graph’s adjacency matrix
and the properties of the graph itself. Spectral methods have
proven very useful for analysing large graphs that are too
complex to be understood by other methods. In particular,
the eigenvalues of the graph can be used to determine impor-
tant properties of the graph, such as its connectivity (Alon,
1986).

Hoang et al. (2023) and Pal et al. (2022) study neural net-
works by treating them as a sequence of bipartite graphs. By
looking at the spectra of the adjacency matrices of these bi-
partite graphs, they show that ‘good’ lottery tickets (Frankle
& Carbin, 2018) exhibit high graph expansion, i.e., these
pruned neural networks are sparse yet highly connected.
Inspired by their work, we further investigate neural net-
work pruning from a graph connectivity perspective. We
start with the observation that many neural network prun-
ing algorithms follow the same high-level algorithm of (i)
training a neural network; (ii) producing a score for every
edge in the neural network, which quantifies its importance;
(iii) retaining p% of the weights with the highest score. In
this work, we focus on the second step of this process. For
most scoring methods there is no theoretical guarantee that
the network is still connected after greedily selecting the
weights with the highest score. Therefore, many approaches
take an iterative pruning approach by repeating the three
steps above (Frankle & Carbin, 2018), or they repeat steps
(ii) and (iii) (de Jorge et al., 2021; Tanaka et al., 2020). In
this work we will focus on one-shot pruning.

In our method, rather than ‘greedily’ choosing the weights
with the highest score, we aim to generate a pruning mask
in one-shot which maintains most of the weights with the
highest score, while simultaneously maximising the con-
nectivity. In order to do so, we propose to prune neural
networks with spectral sparsification. Spectral sparsifica-
tion (Spielman & Teng, 2011) studies the edge sparsification
of graphs while maintaining meaningful properties of the

1



One-Shot Neural Network Pruning via Spectral Graph Sparsification

spectra of the graph matrices. In particular, by preserving
the eigenvalues corresponding to graph matrices, such as
the adjacency or Laplacian matrix, one also preserves the
overall connectivity patterns across a graph. This observa-
tion motivates us to use spectral sparsification for neural
network pruning, and we list our contributions below:

Our Contributions

• We prove that spectrally sparsifying the bipartite graphs
associated with each layer of the neural network is
equivalent to spectrally sparsifying the graph asso-
ciated on the whole neural network; effectively this
means that a layerwise pruning approach is provably
equivalent to a global pruning approach, which is cru-
cial to achieve efficient running times for spectral spar-
sification on neural networks.

• We therefore propose a layerwise one-shot pruning
algorithm for neural networks, either at initialisation
or after pre-training, which spectrally sparsifies each
layer of the neural network. To the best of our knowl-
edge, this is the first work that uses spectral graph
sparsification for neural network pruning.

• We conduct extensive experiments to show that gen-
erating masks using spectral sparsification produces
better masks than greedy sampling, both in terms of
performance and connectivity.

Overview of the Paper In Section 2 we introduce the
background on neural network pruning and spectral spar-
sification. In Section 3 we introduce our method, and in
Section 4 we show our experiments. In Section 5 we discuss
related work and we conclude the paper in Section 6.

2. Background & Method
This section summarises the background knowledge used
in our paper. In Section 2.1 we discuss neural network
pruning. In Section 2.2 we introduce basic notations and
facts related to spectral graph theory, and in Section 2.3 we
formally introduce spectral sparsification of graphs. Finally,
in Section 2.4 we explain how we construct graphs from
neural network architectures.

2.1. Background on Neural Network Pruning

We will give a brief overview of neural network pruning,
and we adopt the notation from (Blalock et al., 2020). We
define neural network architectures as a family of functions
f(x, :), where we include convolution shapes, activation
functions, batch normalisation etc. Example architectures
are the LeNet (LeCun et al., 1998), VGG (Simonyan &
Zisserman, 2014) and ResNet architectures (He et al., 2016).

We let the neural network model be an instantiation of a
neural network after training, and we denote it by f(x,W ),
where W are the model parameters. We set the weights to
W (0) at initialisation. With B ∈ {0, 1}|W | we denote the
mask of a network, which is used to remove weights from a
model. We denote a pruned neural network by f(x,W⊙B),
where ⊙ is the element-wise product operator.

In general, most works on neural network pruning adopt the
following high-level algorithm:

1. A neural network f(x,W ) is trained to convergence.

2. An algorithm produces a score for every edge weight,
which quantifies the overall importance of each weight.
The weights with the ‘worst’ score are pruned from the
network, which produces a mask B ∈ {0, 1}|W | such
that the pruned network f(x,W ⊙B) is obtained.

3. The pruned network is then fine-tuned by retraining the
network only on the unpruned weights, where either
the original weights W after training are kept, or they
are reinitialised to W (0).

Some works perform this high-level technique once, which
is called one-shot pruning (Liu et al., 2018). Other methods
perform this method iteratively, by sampling a fraction of
the weights and retraining over several iterations. These are
called iterative-based pruning methods (Frankle & Carbin,
2018). Other methods skip the training step and instead
prune the network at initialisation (Lee et al., 2018). Al-
though in general iterative-based methods perform better
than one-shot methods, they are computationally more ex-
pensive as the network f(x,W ⊙ B) has to be trained re-
peatedly. Therefore, in this paper, we focus on one-shot
methods, both at initialization and after convergence.

Several methods have been proposed to ‘score’ the edges,
such as the absolute value of the weights (Han et al., 2015;
Frankle & Carbin, 2018), contribution to the gradient, or net-
work activations (Lee et al., 2018). Scores can be given with
respect to the whole network, or locally within a layer (Liu
et al., 2018). When the neural network is fine-tuned, ei-
ther the model weights that were used at initialisation are
re-used (Frankle & Carbin, 2018), or the network is reini-
tialised to an earlier state during training (Renda et al., 2019).
In this work we reset the model weights to those used at
initialisation.

2.2. Preliminaries on Spectral Graph Theory

We always assume that G = (V,E,w) is an undirected
graph with |V | = n vertices, |E| = m edges, and weight
function w : V ×V → R⩾0. For any edge e = {u, v} ∈ E,
we write we or wuv to express the weight of e. For a vertex
u ∈ V , we denote its degree by du ≜

∑
v∈V wuv. For

2



One-Shot Neural Network Pruning via Spectral Graph Sparsification

a graph G = (V,E,w), let D ∈ Rn×n be the diagonal
matrix defined by Duu = du for all u ∈ V . We denote by
A ∈ Rn×n the adjacency matrix of G, where Auv = wuv

for all u, v ∈ V . We then define the Laplacian matrix as
LG = D − A. The normalised Laplacian matrix of G is
defined as L ≜ I −D−1/2AD−1/2, where I is the n × n
identity matrix. For any input graph G = (V,E,w) and any
S ⊂ V , let the conductance of S in G be

ΦG(S) ≜
w(S, V \ S)

vol(S)
,

where w(S, T ) ≜
∑

e∈E(S,T ) we is the cut value of (S, T )
and vol(S) ≜

∑
u∈S du is the volume of the set S. We

define the conductance of G by

ΦG ≜ min
S⊂V

vol(S)⩽vol(V )/2

ΦG(S).

Many well-known properties of graphs and their random
walks are understood through the spectra of Laplacians. See
e.g. Chung (1997) for details. A celebrated example of this
is the Cheeger inequality:
Lemma 2.1 (Cheeger Inequality, (Alon, 1986)). It holds for
any graph G that

λ2

2
⩽ ΦG ⩽

√
2λ2.

Here, λ2 is the second eigenvalue of the normalised Lapla-
cian LG. At a high-level, the Cheeger inequality states that
if λ2 is small, then the graph expansion, i.e. its connectivity,
is also low. On the other hand, if λ2 is large, then its connec-
tivity is high. In our setting, it will be useful to consider λ2

as a measure of the connectivity of a graph/neural network.

2.3. Spectral Sparsification

Graph sparsification studies an effective representation of an
undirected graph G by a sparse subgraph H of G, such that
meaningful properties of G are preserved in H . Since most
graph algorithms run faster on sparser graphs, this problem
has received great interest in recent years. Our focus will be
on spectral sparsification. In this setting, we are interested
in preserving the spectral properties with respect to the
Laplacian LG. We formally define spectral sparsification
below.
Definition 2.2 (Spectral Sparsification). Given a weighted,
undirected graph G = (V,E,w), and an error parameter
ε ∈ (0, 1), we say that a weighted subgraph H = (V, Ẽ, w̃),
Ẽ ⊂ E, is an ε-sparsifier of G if for all x ∈ Rn we have
that

(1− ε) · x⊺LGx ⩽ x⊺LHx ⩽ (1 + ε) · x⊺LGx,

where LG and LH are the Laplacian matrices of G and H
respectively.

A well-known fact in spectral graph theory is that spec-
tral sparsifiers preserve eigenvalues related to the Laplacian
matrix. One can readily show by the Courant-Fisher charac-
terisation of eigenvalues, that

(1− ε) · λk(LG) ⩽ λk(LH) ⩽ (1 + ε) · λk(LG),

for all 1 ⩽ k ⩽ n, where λk ∈ R is the k-th largest eigen-
value of either LH or LG. Therefore, by approximately
preserving the eigenvalues of the normalised Laplacian, we
also approximately preserve the graph expansion, i.e., its
connectivity. There are several works that present algo-
rithms for constructing ε-spectral sparsifiers (Batson et al.,
2012; Lee & Sun, 2018; Spielman & Srivastava, 2011; Spiel-
man & Teng, 2011). In this paper, we will focus on spectral
sparsification by effective resistances (Spielman & Srivas-
tava, 2011).

Spectral sparsification by effective resistances is one of the
simplest sparsification algorithms. We formally describe it
in Algorithm 1. At a high level, sparsification by effective
resistances works by treating a graph G as an electrical
network. We then define the effective resistance over an
edge e = {u, v} ∈ E(G) as

Reff(u, v) ≜ (δu − δv)
⊺L†

G(δu − δv),

where δu ∈ {0, 1}n is the indicator vertex of u, and L†
G is

the pseudo-inverse of LG. Effective resistances are then a
measure of how difficult it is for electrical current to flow
between two nodes in a graph. To sparsify G, we visit every
edge e ∈ E(G) and include it in the sparsified graph G with
probability proportional to ℓ(e) ≜ Reff(e) · we.

Algorithm 1 Sparsification by Effective Resistances
(SpecSpar)

1: Input: a weighted graph G = (V,E,w) & sparsifica-
tion parameter ε ∈ R+.

2: n = |V |
3: Output: A sparsified graph H = (V, Ẽ, w̃)
4: for e ∈ E do
5: let ℓe = w(e) · Reff(e)
6: let pe = min

(
1, 5 · log n · ℓe/ε2

)
7: end for
8: H = (V, ∅)
9: for e ∈ E do

10: with probability pe add edge e into H with weight
we/pe

11: end for
12: Return: H

The performance of their algorithm is summarised in the
following Theorem:

Theorem 2.3 (Spielman & Srivastava (2011)). Let G be
any undirected graph with n vertices. For any ε ∈ (0, 1),

3



One-Shot Neural Network Pruning via Spectral Graph Sparsification

Algorithm 1 produces a (1+ ε)-spectral sparsifier of G with
O(n log n/ε2) edges.

We remark that other algorithms exist that run faster, and
produce sparsifiers with fewer edges (Batson et al., 2012;
Lee & Sun, 2018). However, these algorithms use com-
plicated subroutines which are difficult to implement (e.g.,
semidefinite programming), and therefore we choose to
work with spectral sparsification by effective resistances.

To explain the intuition behind Algorithm 1, if both Reff(e)
and we are high/low, then we include the edge with high/low
probability. Now consider the case where w(e) is high
but Reff(e) is low. This means that the edge e does not
contribute much to the overall connectivity of the network,
and therefore is sampled with lower probability even if w(e)
is high. On the other hand, in the case where w(e) is low but
Reff(e) is high, it means that e is important to the network
connectivity, even if w(e) is low. We illustrate in Figure 1
a small example of a neural network that is being pruned
by either choosing edges with the highest weight, or being
sparsified by Algorithm 1.

2.4. Characterising Neural Networks as Graphs

Before we introduce our method, we first explain how to
construct bipartite graphs from neural network layers, which
we adopt from (Pal et al., 2022). For a linear/fully-connected
layer Wi ∈ Rκi×κi+1 , we simply construct the bipartite
graph G = (L ∪ R,E,w) with |L| = κi, |R| = κi+1, and
the weight w(e) for e = {u, v} ∈ E is determined by the
corresponding entry in the score matrix Si(u, v).

For a convolutional layer with parameters kernel height Kh,
kernel width Kw, output channels Cout and input channels
Cin, we construct the corresponding bipartite graph G =
(L∪R,E,w) by unfolding the input parameters to get Wi ∈
R|L|×|R| such that |L| = Kh ×Kw × Cin and |R| = Cout,
and the weight w(e) for e = {u, v} ∈ E is determined by
the corresponding entry in the score matrix Si(u, v).

Given a neural network f(x,W ) with ℓ layers and scores
S = {S1, . . . Sℓ}, we then construct the bipartite graph for
each layer, and get a set of ℓ graphs G = {G1, . . . Gℓ}.

3. Algorithm and Analysis
Consider a neural network f(x,W ) with ℓ layers G =
{G1, . . . Gℓ}, where for simplicity we assume that each
layer is fully-connected. Given Algorithm 1, a natural first
approach to prune the full network f(x,W ) would be to
construct the full ℓ-partite graph Gfull =

⋃ℓ
i=1 Gi, and run

Algorithm 1 directly on Gfull. Unfortunately, this is compu-
tationally too expensive. The computation of the effective
resistances Reff(e) in line 1 of Algorithm 1 increases at
least polynomially in the number of nodes. This is due to

the computation of the pseudoinverse L†
Gmax

, which takes
O(nω) time, where n = |V (Gfull)| and ω is the matrix mul-
tiplication constant (Alman & Williams, 2021). As modern
neural network architectures (e.g., VGG, ResNet) are very
large, containing 10, 000s of nodes/neurons, this means that
Algorithm 1 is too slow for the purpose of neural network
pruning, which we empirically verify in Section 4.

3.1. Our Proposed Algorithm

Therefore, to circumvent this issue, we propose an algo-
rithm (Sparsify) to prune neural networks in a layerwise
fashion. At a high-level, Sparsify first computes the scores
{S1, . . . , Sℓ} using the score function θ for all the edges
in every layer. The score functions that we will consider
are (i) magnitude (Frankle & Carbin, 2018), (ii) SNIP (Lee
et al., 2018), and (iii) SynFlow (Tanaka et al., 2020). Next,
Sparsify loops through every layer of the network Si, and
constructs the graph Gi based on the layer structure and
scores. We perform spectral sparsification on Gi to obtain
Hi, which is then converted into a mask B. Finally, we re-
turn the pruned network f(x,W ⊙B). A formal description
of Sparsify can be found in Algorithm 2.

Algorithm 2 Pruning with Spectral Sparsification
(Sparsify)

1: Input: a NN f(x,W ), sparsification parameter ε ∈
R+, score function θ.

2: Output: A pruned NN f(x,W ⊙B)
3: ℓ← |W |
4: {S1, . . . Sℓ} ← θ(W ) {Compute edge scores}
5: B ← ∅ {Initialize mask}
6: for i ∈ {1, . . . , ℓ} do
7: Construct graph Gi from score Si

8: Hi ← SpecSpar(Gi, ε) {Spectrally sparsify Gi}
9: Create mask Bi from graph Hi

10: B ← B ∪Bi

11: end for
12: Return: f(x,W ⊙B)

We first highlight that the running time for Algorithm 2 is
O(ℓ · nω

max), where nmax ≜ maxi |V (Gi)| is the largest
number of nodes in a single layer, and ℓ is the number of
layers. This is significantly faster than Algorithm 1, as
modern neural network architectures typically contain many
layers, with a limited number of neurons in each layer, e.g.,
ResNets (He et al., 2016).

3.2. Theoretical Analysis

As mentioned at the beginning of this section, ideally, we
would sparsify the graph G constructed from the whole net-
work at once, in order to preserve the connectivity patterns
of the entire neural network. It has been shown that global

4



One-Shot Neural Network Pruning via Spectral Graph Sparsification

(b) (c)(a)

Figure 1. Examples of small neural networks, where the density of
an edge corresponds to the score it was given, e.g. magnitude. (a)
is the network that is being pruned. (b) shows a pruned network
where 12 weights with the highest score were chosen, disconnect-
ing the network. (c) shows a pruned network where edges were
chosen using spectral sparsification. The two edges with low edge
weight crossing the two highly connected parts of the network
have high effective resistance in this network.

pruning methods in general perform better performance-
wise than layerwise pruning methods (Blalock et al., 2020).

However, we show that our layerwise pruning approach
is equivalent to a global one. Due to the nice properties
of spectral sparsification, we prove that if we compute an
ε-sparsifier Hi for every layer Gi ∈ G, then the resulting lay-
erwise sparsified graph H =

⋃ℓ
i Hi over the entire network

is an ε-sparsifier of G. Crucially, this means that by locally
preserving the connectivity structure, we also preserve the
connectivity structure of the whole graph. We can there-
fore sparsify each Gi individually, which is computationally
more efficient than pruning G in one go, and it motivates
our design of Algorithm 2. We prove the following Lemma.

Lemma 3.1. Let G = (V,E,w) be the graph such that
G =

⋃ℓ
i Gi represents a neural network f(x,W ), and for

every 1 ⩽ i ⩽ ℓ let Hi be an ε-sparsifier of Gi. Then it
holds that H =

⋃ℓ
i Hi is an ε-sparsifier of G.

Proof. Notice that we can write the Laplacian matrix of H
by summing together the Laplacian matrices of every Hi

for 1 ⩽ i ⩽ ℓ, i.e.,

LH = L̃H1
+ . . .+ L̃Hℓ

,

where each L̃Hi ∈ Rn×n is the Laplacian LHi of Hi, with
added zero columns & vectors for the vertices u ∈ G such
that u /∈ Hi. Let x ∈ Rn be a vector. Then we compute

x⊺LHx = x⊺
(
L̃H1

+ . . .+ L̃Hℓ

)
x

= x⊺L̃H1
x+ . . .+ x⊺L̃Hℓ

x

= x⊺
H1

L̃H1
xH1

+ . . .+ x⊺
Hℓ

L̃Hℓ
xHℓ

, (1)

where xHi
is the vector x restricted to the vertices V (Hi),

i.e. we set xu = 0 for u /∈ V (Hi). Because LHi
is an

ε-sparsifier of Gi it holds that x⊺
Hi

L̃HixHi ⩽ (1 + ε) ·

x⊺
Gi
L̃Gi

xGi
. From (1) we therefore have that

x⊺LHx ⩽ (1 + ε) ·
(
x⊺
G1

L̃G1
xG1

+ . . .+ x⊺
Gℓ

L̃Gℓ
xGℓ

)
= (1 + ε) · x⊺

(
L̃G1

+ . . .+ L̃Gℓ

)
x

= (1 + ε) · x⊺LGx.

Similarly, we can show that x⊺LHx ⩾ (1 − ε) · x⊺LGx.
This completes the proof that H is an ε-sparsifier of G.

Time Complexity Let nmax = V (Gmax) be the number
of vertices in the largest graph Gmax ∈ G corresponding
to each layer in the neural network. The running time of
Algorithm 2 is dominated by the computation of the effec-
tive resistances Reff(e) in line 1 of Algorithm 1, due to
the computation of the pseudoinverse L†

Gmax
. Computing

the pseudoinverse takes O(nω) time, where ω is the matrix
multiplication constant (Alman & Williams, 2021). One
can also get approximate values for the effective resistances
in faster running time (Kyng & Sachdeva, 2016), however,
these algorithms are quite involved to implement compared
to directly using solvers from Python libraries.

Given this, by sequentially sparsifying the layers of the
neural network as done in Algorithm 2, we can upper bound
the running time as O(ℓ · nω

max), where ℓ is the number of
layers/bipartite graphs in G. This is how we implemented
the algorithm, however, given enough memory, one could
speed up the algorithm by sparsifying each layer in parallel,
such that the factor of ℓ drops in the running time.

3.3. Comparison to Previous Work

Compared to previous work on neural network pruning/LTH
using spectral graph theoretic techniques, we first highlight
that Hoang et al. (2023) introduce a connectivity measure
based on the third largest eigenvalue, and do not provide
any algorithm for pruning at initialisation. On the other
hand, Pal et al. (2022) propose an adjustment to the iterative
pruning algorithm to ensure that each layer in the pruned
network still has high connectivity. They introduce a ter-
mination criterion: pruning for a layer is halted once the
spectral gap between the first and second eigenvalue of the
adjacency matrix for Gi drops below a predetermined value.
However, this limits how much a network can be pruned,
because stopping the pruning of specific layers prevents the
algorithm from reaching arbitrary sparsity. Furthermore,
the spectral gap might decrease drastically due to the naive
greedy method of retaining the top p% highest weights in
a layer. Lastly, their method does not work in the one-shot
setting; if a network is only pruned once, it is not possible
to check which layers have lost their Ramanujan property.
Our proposed algorithm improves upon theirs in all these
aspects: it is one-shot, prunes every layer up to arbitrary
sparsity, and maximises connectivity.

5



One-Shot Neural Network Pruning via Spectral Graph Sparsification

Finally, we remark that Hoang et al. (2023) and Pal et al.
(2022) only analysed the spectral properties of each bipar-
tite layer separately. Our analysis is the first to show that
layerwise pruning is equivalent to global pruning.

4. Experiments
In Section 4.1 we verify that Algorithm 2 (Sparsify) is
significantly faster than Algorithm 1, while achieving sim-
ilar pruning results. In Section 4.2 we empirically evalu-
ate Sparsify, and compare it on several computer vision
classification benchmarks, across architectures and datasets.
Section 4.3 investigates the sparsity of every layer as mea-
sured by the second eigenvalue of the normalised Laplacian
matrix.

We will follow standard experimental procedures in the liter-
ature (Blalock et al., 2020). The image datasets that will be
used for model evaluation are CIFAR-10/100 (Krizhevsky
& Hinton, 2009), and tinyImageNet (Le & Yang, 2015).
The neural network architectures that will be tested are vari-
ants of ResNet (He et al., 2016) and VGG (Simonyan &
Zisserman, 2014). In particular, we consider the following
architecture/dataset combinations: VGG-11 (on CIFAR-10),
VGG-16 (on CIFAR-100), ResNet-20 (on CIFAR-10), and
ResNet-18 (on tinyImageNet). A detailed description of
benchmarks, architectures and choice of hyperparameters is
deferred to the Appendix.

4.1. Layerwise vs Global Spectral Sparsification

To empirically justify the benefit of doing layerwise prun-
ing using spectral sparsification, we look at the pruning at
initialisation setting for CIFAR100, trained using VGG16
where we use the edge magnitudes as a score function. We
then generate a 1% density pruning mask using both Algo-
rithm 1 on the ℓ-partite graph corresponding to the entire
neural network with ℓ layers, and Algorithm 2 which prunes
the neural network in a layerwise fashion. We perform the
same comparison on a ResNet20 trained on CIFAR-10, but
where we sample 3% of the edges. Results can be found
in Table 1. For both comparisons, the layerwise and global
pruning approaches achieve similar accuracies. However,
the layerwise pruning approaches are significantly faster
than the global pruning approaches.

4.2. Pruning at Initialisation

We now evaluate our algorithm in the pruning at initiali-
sation setting. We compare our algorithm against a modi-
fication of Algorithm 2. Instead of spectral sparsification
for every layer (line 8 of Algorithm 2), we instead keep the
edges that correspond to the p% highest scores. This is the
same method that (Pal et al., 2022) compare against. We
call this adjustment Greedy. We report the results for all

Pruning Method Pruning Time Accuracy
VGG-16 CIFAR-100

Layerwise 321 seconds 59.81± 0.21
Global 4321 seconds 59.62± 0.32

ResNet20 CIFAR-10

Layerwise 61 seconds 77.21± 0.21
Global 1620 seconds 77.49± 0.39

Table 1. Running time and accuracy comparisons between Algo-
rithm 1 (global) and Algorithm 2 (layerwise) in the pruning at
initialisation setting for VGG-16 trained on CIFAR-100, pruned
up to 1%, and Resnet20 trained on CIFAR-10 pruned up to 3%.

the aforementioned architecture/dataset combinations, and
they are reported in Figure 2.

We see that Sparsify in general performs better than
Greedy across all scoring methods. For magnitude based
pruning on all datasets, the greedy approach performs simi-
larly at high densities, but worse at high levels of sparsity.
In general, for SNIP100, layer collapse occurs, and it does
not perform well. On all the tinyImageNet results we see
that Greedy performs better than Sparsify at extreme spar-
sities; this might be because layerwise collapse might still
occur at high very high sparsity levels, where the spectral
sparsification guarantees of Theorem 2.3 no longer apply.

We also observe that the scores from the SynFlow method
generally perform best across dataset/architecture combina-
tions. A possible explanation might be that the combination
of our proposed algorithm and the SynFlow scores is good
at preserving connectivity in the network, because the scores
generated by SynFlow are computed to maximise synaptic
connectivity.

4.3. Layer connectivity

Next, we investigate whether spectral sparsification indeed
preserves layerwise connectivity. Instead of evaluating mod-
els with pruning at initialisation, we look at one-shot pruning
after pretraining. Even though sparse lottery tickets should
exist at initialisation, after convergence the structure in the
network might exhibit more higher-order patterns that spec-
tral sparsification might preserve. In particular, we compare
pruned models trained on CIFAR-10 with the VGG11 ar-
chitecture. Since SynFlow and SNIP100 are specifically
designed for pruning at initialisation, we only investigate
scores based on the weight magnitudes.

We compare our algorithm using weight magnitudes as the
score function (Sparsify) against the greedy algorithm us-
ing magnitudes as the score function (MagPrune). Results
are reported in Figure 3. In the left figure, we report the

6



One-Shot Neural Network Pruning via Spectral Graph Sparsification
M

ag
ni

tu
de

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

25

50

75

100
T

es
t

A
cc

u
ra

cy
(%

)
CIFAR10 VGG11

Sparsify

Greedy

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

25

50

75

100

T
es

t
A

cc
u

ra
cy

(%
)

CIFAR10 ResNet20

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

20

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

CIFAR100 VGG16

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

0

20

40

60

T
es

t
A

cc
u

ra
cy

(%
)

TinyImagenet ResNet18

S
N

IP

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

25

50

75

100

T
es

t
A

cc
u

ra
cy

(%
)

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

25

50

75

100

T
es

t
A

cc
u

ra
cy

(%
)

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

20

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

0

20

40

60

T
es

t
A

cc
u

ra
cy

(%
)

S
yn

Fl
ow

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

25

50

75

100

T
es

t
A

cc
u

ra
cy

(%
)

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

20

40

60

80

T
es

t
A

cc
u

ra
cy

(%
)

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

25

50

75

100

T
es

t
A

cc
u

ra
cy

(%
)

0.
1

0.
3

1.
0

3.
0

10
.0

30
.0

10
0.

0

Density (%)

0

20

40

60

T
es

t
A

cc
u

ra
cy

(%
)

Figure 2. Results for pruning at initialisation. Every row corresponds to a scoring method: Magnitude, SNIP or SynFlow. Every column
corresponds to an architecture + dataset combination: CIFAR10 + VGG11, CIFAR10 + ResNet20, CIFAR100 + VGG16, ResNet18 +
TinyImagenet. Our method Sparsify corresponds to the blue lines, and the Greedy edge selection method corresponds to the orange lines.
For more details see Section 4.2

accuracy at different densities. In the right figure, we plot
the value of λ2, the second eigenvalue of the normalised
Laplacian. Note that at higher sparsity levels the graphs
become disconnected, and therefore we report λ2 for the
largest connected component in the layer. We see that for
both methods connectivity decreases as the network be-
comes sparser, which is expected. However, we can observe
that the greedy pruning approach ‘collapses’ layer 10, lead-
ing to collapse in the accuracy. On the other hand, this
does not happen for our method, and hence we manage
to retain a higher level of performance at higher sparsity
levels. We emphasise that our layerwise pruning method
outperforms/matches the performance of the global pruning
approach, and outperforms them at high sparsity levels.

We refer to Appendix B for a visualisation of all the layers
for Figure 3.

5. Related Work
Neural network pruning aims to reduce unnecessary pa-
rameters/components in neural networks, thereby lessening
the memory demand during training or deployment (Fran-
kle & Carbin, 2018; Han et al., 2015; LeCun et al., 1989;
Molchanov et al., 2017; Mozer & Smolensky, 1989). As

neural networks grow in size, research focuses on find-
ing efficient networks either before training (pruning at
initialisation) or one-shot post-training. SNIP was among
the first to prune at initialisation, introducing a connec-
tion sensitivity-based saliency criterion to identify and re-
move non-essential parameters before training (Lee et al.,
2018). Several works (Sreenivasan et al., 2022; Tanaka et al.,
2020; Wang et al., 2020) introduced different pruning crite-
ria/methods for identifying high-importance weights, with
Wang et al. (2020) maximising gradient flow and Tanaka
et al. (2020) introducing a synaptic flow-based saliency cri-
teria. Alizadeh et al. (2022) proposed meta-gradients for
initialisation pruning. An extensive comparison by Frankle
et al. (2021) revealed these methods generally underperform
those training post-pruning. Meanwhile, Miao et al. (2021)
employed stochastic Frank-Wolfe optimisation for one-shot
pruning without retraining. Chen et al. (2021) developed a
DNN compression framework by partitioning DNN param-
eters into zero-invariant groups and promoting zero groups
via structured-sparsity optimisation.

Graph theory techniques are increasingly applied in
analysing and constructing neural networks. You et al.
(2020) analysed neural networks’ predictive properties using
relational subgraphs, while Mocanu et al. (2018) and Evci

7



One-Shot Neural Network Pruning via Spectral Graph Sparsification

0.1 0.3 1.0 3.0 10.0 30.0 100.0
Density (%)

20

40

60

80

100

T
es

t
A

cc
u

ra
cy

(%
)

Sparsify

MagPrune

0.3 1.0 3.0 10.0 30.0 100.0
Density (%)

0.0

0.2

0.4

0.6

0.8

1.0

λ
2

L2 - Sparsify

L2 - MagPrune

L5 - Sparsify

L5 - MagPrune

L10 - Sparsify

L10 - MagPrune

Figure 3. In the left figure, we plot the accuracy of VGG-11 trained
on CIFAR-10 at different densities. We compare single-shot mag-
nitude pruning (MagPrune) to Sparsify, using magnitudes as the
score function. In the right figure we plot the value of λ2, for
different layers in each of the methods. Here, colors represent
layers and dotted lines correspond to MagPrune vs solid lines
which correspond to Sparsify.

et al. (2020) utilized Paul Erdős-Réyni graphs to adjust score
distribution between layers. Vooturi et al. (2021) introduced
Ramanujan bipartite graph products for layer construction to
optimise density and connectivity while improving running
time. Stewart et al. (2023) recently improved on this work
by proposing stronger models that generate better expanders
to perform data-free pruning at initialisation. The relation-
ship between network graph topology and skip connections
was studied by Bhardwaj et al. (2021).

Our work is mainly influenced by the recent studies by Pal
et al. (2022) and Hoang et al. (2023), who explored both
the Lottery Ticket Hypothesis (Frankle & Carbin, 2018)
and pruning at initialisation with spectral graph theory.
They used Ramanujan graphs and corresponding eigenvalue
bounds to propose criteria assessing the ’connectivity’ of the
pruned subnetwork. Their findings highlighted that success-
ful lottery tickets and high-performing subnetworks exhibit
Ramanujan graph properties. Our work differs primarily
by: (i) relaxing the spectral constraints and just consider-
ing λ2 of the Laplacian as a graph connectivity measure
instead of strict Ramanujan bounds; (ii) proposing an algo-
rithmic framework using this relaxed constraint to locate
sparse networks inside densely initialised ones, maintain-
ing high accuracy at high sparsity levels. In their work,
Pal et al. (2022) only propose a stopping criteria for prun-
ing, and Hoang et al. (2023) do not have any algorithmic
contribution.

6. Conclusion
In this work, we have shown that spectral sparsification is
a suitable method for choosing masks in one-shot neural
network pruning, confirming prior work which found a rela-
tionship between graph spectra and pruned neural network
performance. In particular, we have shown empirically that
in the one-shot setting our proposed algorithm outperforms
the widely-used method of choosing the p% highest weights

in the network. Moreover, and perhaps as expected, we
found that our method preserves the spectral properties of
the Laplacian matrices of neural network layers. Beyond the
context of this work, we believe that our new mask selection
approach and its insights might have impact in the design of
future neural network pruning algorithms.

References
Alizadeh, M., Tailor, S. A., Zintgraf, L. M., van Amers-

foort, J., Farquhar, S., Lane, N. D., and Gal, Y. Prospect
pruning: Finding trainable weights at initialization using
meta-gradients. In International Conference on Learning
Representations (ICLR’22), 2022.

Alman, J. and Williams, V. V. A refined laser method and
faster matrix multiplication. In 32st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’21), 2021.

Alon, N. Eigenvalues and expanders. Combinatorica, 6(2):
83–96, 1986.

Batson, J., Spielman, D. A., and Srivastava, N. Twice-
ramanujan sparsifiers. SIAM Journal on Computing, 41
(6):1704–1721, 2012.

Bhardwaj, K., Li, G., and Marculescu, R. How does topol-
ogy influence gradient propagation and model perfor-
mance of deep networks with densenet-type skip con-
nections? In Proceedings of the IEEE International
Conference on Computer Vision, pp. 13498–13507, 2021.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the state of neural network pruning? Proceedings
of machine learning and systems, 2:129–146, 2020.

Chen, T., Ji, B., Ding, T., Fang, B., Wang, G., Zhu, Z.,
Liang, L., Shi, Y., Yi, S., and Tu, X. Only train once: A
one-shot neural network training and pruning framework.
In Advances in Neural Information Processing Systems
34 (NeurIPS’21), 2021.

Chung, F. R. K. Spectral Graph Theory. American Mathe-
matical Society, 1997.

de Jorge, P., Sanyal, A., Behl, H. S., Torr, P. H., Rogez,
G., and Dokania, P. K. Progressive skeletonization:
Trimming more fat from a network at initialization. In
International Conference on Learning Representations
(ICLR’21), 2021.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen, E.
Rigging the lottery: Making all tickets winners. In 37th In-
ternational Conference on Machine Learning (ICML’20),
2020.

Evci, U., Ioannou, Y., Keskin, C., and Dauphin, Y. Gradient
flow in sparse neural networks and how lottery tickets

8



One-Shot Neural Network Pruning via Spectral Graph Sparsification

win. In 36th AAAI Conference on Artificial Intelligence
(AAAI’22), 2022.

Frankle, J. Openlth: A frame-
work for lottery tickets and beyond.
https://github.com/facebookresearch/open_lth#openlth-
a-framework-for-lottery-tickets-and-beyond, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. In
International Conference on Learning Representations
(ICLR’18), 2018.

Frankle, J., Dziugaite, G. K., Roy, D., and Carbin, M. Prun-
ing neural networks at initialization: Why are we missing
the mark? In International Conference on Learning
Representations (ICLR’21), 2021.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural networks. In
Advances in Neural Information Processing Systems 28
(NeurIPS’15), 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Hoang, D. N., Liu, S., Marculescu, R., and Wang, Z. Revisit-
ing pruning at initialization through the lens of ramanujan
graph. In International Conference on Learning Repre-
sentations (ICLR’23), 2023.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in Neural Information Processing
Systems 32 (NeurIPS’19), 2019.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 2009.

Kyng, R. and Sachdeva, S. Approximate gaussian elimi-
nation for laplacians-fast, sparse, and simple. In 57th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS’16), pp. 573–582. IEEE, 2016.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
In Advances in Neural Information Processing Systems 2
(NeurIPS’89), 1989.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, N., Ajanthan, T., and Torr, P. Snip: Single-shot
network pruning based on connection sensitivity. In
International Conference on Learning Representations
(ICLR’18), 2018.

Lee, Y. T. and Sun, H. Constructing linear-sized spectral
sparsification in almost-linear time. SIAM Journal on
Computing, 47(6):2315–2336, 2018.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. In International
Conference on Learning Representations (ICLR’18),
2018.

Malach, E., Yehudai, G., Shalev-Schwartz, S., and Shamir,
O. Proving the lottery ticket hypothesis: Pruning is all
you need. In 37th International Conference on Machine
Learning (ICML’20), 2020.

Miao, L., Luo, X., Chen, T., Chen, W., Liu, D., and
Wang, Z. Learning pruning-friendly networks via frank-
wolfe: One-shot, any-sparsity, and no retraining. In
International Conference on Learning Representations
(ICLR’21), 2021.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9
(1):2383, 2018.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.
Pruning convolutional neural networks for resource effi-
cient inference. In International Conference on Learning
Representations (ICLR’17), 2017.

Mozer, M. C. and Smolensky, P. Using relevance to reduce
network size automatically. Connection Science, 1(1):
3–16, 1989.

Pal, B., Biswas, A., Kolay, S., Mitra, P., and Basu, B. A
study on the ramanujan graph property of winning lottery
tickets. In 39th International Conference on Machine
Learning (ICML’22), 2022.

Renda, A., Frankle, J., and Carbin, M. Comparing rewind-
ing and fine-tuning in neural network pruning. In In-
ternational Conference on Learning Representations
(ICLR’19), 2019.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Spielman, D. A. and Srivastava, N. Graph sparsification by
effective resistances. SIAM Journal on Computing, 40(6):
1913–1926, 2011.

9



One-Shot Neural Network Pruning via Spectral Graph Sparsification

Spielman, D. A. and Teng, S.-H. Spectral sparsification of
graphs. SIAM Journal on Computing, 40(4):981–1025,
2011.

Sreenivasan, K., Sohn, J.-y., Yang, L., Grinde, M., Nagle,
A., Wang, H., Lee, K., and Papailiopoulos, D. Rare gems:
Finding lottery tickets at initialization. In Advances in
Neural Information Processing Systems 36 (NeurIPS’22),
2022.

Stewart, J., Michieli, U., and Ozay, M. Data-free model
pruning at initialization via expanders. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4518–4523, 2023.

Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Prun-
ing neural networks without any data by iteratively con-
serving synaptic flow. In Advances in Neural Information
Processing Systems 33 (NeurIPS’20), 2020.

Vooturi, D. T., Varma, G., and Kothapalli, K. Ramanujan
bipartite graph products for efficient block sparse neural
networks. Concurrency and Computation: Practice and
Experience, pp. 6363, 2021.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. In
International Conference on Learning Representations
(ICLR’20), 2020.

You, J., Leskovec, J., He, K., and Xie, S. Graph structure
of neural networks. In 37th International Conference on
Machine Learning (ICML’20), pp. 10881–10891, 2020.

10



One-Shot Neural Network Pruning via Spectral Graph Sparsification

A. Omitted Experiment Details
Training Details We adopt the hyperparameters found in Frankle et al. (2021). For CIFAR-10 and CIFAR-100, we train
all models for 160 epochs, with initial learning rate 0.1; we decrease the learning rate by a factor of 10 at epoch 80 and
120. Weight decay was set to 1× 10−4 and the batch size was 256. We augment training data by normalizing per channel,
randomly flipping horizontally, and randomly shifting by up to four pixels in any direction. For tinyImageNet we train for
200 epochs, with initial learning rate 0.2, and we decrease the learning rate by a factor of 10 at epoch 100 and 150. We train
with a batch size of 256, and we augment it by normalizing per channel, selecting a patch with random aspect ratio between
0.8 and 1.25, and random scale between 0.1 and 1, cropping to 64× 64 and randomly flipping horizontally.

All experiments were ran on a single 8GB NVIDIA GeForce RTX 2080. We repeat experiments three times with different
seeds and report the average result over three runs and the confidence interval. We used the OpenLTH package for
implementing methods and running experiments (Frankle, 2020).

Implementation details In order to prune networks to arbitrary sparsity, we slightly adjust the sampling probability in
line 1 of Algorithm 1 to be pe = min (1, 5 · log n · ℓe · ε). This way we can keep decreasing ε, rather than having ε = 1 be
a lower bound for our sampling probability. Even though this effects the theoretical guarantees of Algorithm 1, we still find
that our algorithm performs well in practice. Moreover, if a specific target sparsity q is stated for Algorithm 1, we choose
epsilon such that the number of edges sampled is slightly below q, and then we randomly choose a number of edges such
that the sparsity of the network is exactly q. For SynFlow we set the number of pruning iterations to 100. For SNIP we set
the number sampled used to 100. We refer to Tanaka et al. (2020) and Lee et al. (2018) for implementation details.

B. Additional Results Layerwise Connectivity

0.3 1.0 3.0 10.0 30.0 100.0
Density (%)

0.0

0.2

0.4

0.6

0.8

1.0

λ
2

L0 - Sparsify

L0 - MagPrune

L2 - Sparsify

L2 - MagPrune

L4 - Sparsify

L4 - MagPrune

0.3 1.0 3.0 10.0 30.0 100.0
Density (%)

0.0

0.2

0.4

0.6

0.8

1.0

λ
2

L5 - Sparsify

L5 - MagPrune

L7 - Sparsify

L7 - MagPrune

L8 - Sparsify

L8 - MagPrune

0.3 1.0 3.0 10.0 30.0 100.0
Density (%)

0.0

0.2

0.4

0.6

0.8

1.0

λ
2

L10 - Sparsify

L10 - MagPrune

L11 - Sparsify

L11 - MagPrune

Figure 4. Additional visualisation of second eigenvalue of the Laplacian λ2 in VGG-11 trained on CIFAR10. See Section 4 for more
detail.

11


