
Deep Networks as Paths on the Manifold of Neural Representations

Richard D. Lange 1 Devin Kwok 2 Jordan Matelsky * 1 Xinyue Wang * 1 David Rolnick 2 Konrad P. Kording 1

Abstract
Deep neural networks implement a sequence of
layer-by-layer operations that are each relatively
easy to understand, but the resulting overall com-
putation is generally difficult to understand. An in-
tuitive hypothesis is that the role of each layer is to
reformat information to reduce the “distance” to
the desired outputs. With this spatial analogy, the
layer-wise computation implemented by a deep
neural network can be viewed as a path along a
high-dimensional manifold of neural representa-
tions. With this framework, each hidden layer
transforms its inputs by taking a step of a particu-
lar size and direction along the manifold, ideally
moving towards the desired network outputs. We
formalize this intuitive idea by leveraging recent
advances in metric representational similarity. We
extend existing representational distance methods
by defining and characterizing the manifold that
neural representations live on, allowing us to cal-
culate quantities like the shortest path or tangent
direction separating representations between hid-
den layers of a network or across different net-
works. We then demonstrate these tools by visu-
alizing and comparing the paths taken by a col-
lection of trained neural networks with a variety
of architectures, finding systematic relationships
between model depth and width, and properties
of their paths.

1. Introduction
A core design principle of modern neural networks is that
they progressively transform inputs through a series of lay-
ers until the information is in a format that is immediately
usable for some task (Rumelhart et al., 1988; LeCun et al.,

*Equal contribution 1Department of Neurobiology, University
of Pennsylvania, Philadelphia, USA 2Mila Québec AI Institute,
McGill Unviersity, Montréal, Canada. Correspondence to: Richard
D. Lange <rdlange@seas.upenn.edu>.

Proceedings of the 2nd Annual Workshop on Topology, Algebra,
and Geometry in Machine Learning (TAG-ML) at the 40 th In-
ternational Conference on Machine Learning, Honolulu, Hawaii,
USA. 2023. Copyright 2023 by the author(s).

2015). This idea of composing simple operations to gradu-
ally construct more complicated functions is both central to
artificial neural networks and how neuroscientists concep-
tualize various functions in the brain (Kriegeskorte, 2015;
Richards et al., 2019; Barrett et al., 2019).

Our work is motivated by a spatial analogy for such
information-processing: we imagine that outputs are “far”
from inputs if the mapping between them is complex, or
“close” if it is simple. In this spatial analogy, one layer of a
neural network contributes a single step, and the composi-
tion of many steps transports representations along a path
towards the desired target representation. This spatial anal-
ogy enables us to translate abstract deep learning concepts
into intuitions. Formalizing this intuition requires a method
to quantify if any two representations are “close” (similar)
or “far” (dissimilar). This is the purview of representational
similarity tools, which were developed to compare neural
representations across disparate systems such as fMRI scans
of human brains and hidden activity in a deep neural net-
work (Kriegeskorte, 2009; Kornblith et al., 2019). Recent
work introduced metrics for representational dissimilarity
(Williams et al., 2021; Shahbazi et al., 2021), which is an
important step towards the kind of spatial reasoning about
neural representations that we are interested in.

Embedding hidden-layers on a smooth manifold endows
every operation in the network with a sense of both distance
and direction. If a layer simply scales or rotates its inputs,
the length of the step it takes is zero. But, if a layer mean-
ingfully transforms its inputs, we can quantify both how
much and in what direction it was transformed. Further, the
manifold defines a theoretical shortest path or geodesic from
any layer of the network to any other layer, including the
target labels, and we can compare this to the path actually
taken by the model. Results of these sorts of analyses will in
general depend strongly on one’s choice of representational
dissimilarity metric and properties of manifold that it im-
plies, and in principle there are infinitely many metrics one
could choose from. Here, we build on previously proposed
dissimilarity metrics to showcase the methodology. Devel-
oping new representational dissimilarity metrics with their
geometric properties in mind will be an interesting avenue
for future work.

The main contributions of this paper are (1) We propose

1

Neural Networks as Paths

...
X1 X2 X3 X4 X10

Xl+1

Xl

progress

deviation

θ Xl+1Xl−1

Xl ϕ

0

π
2

A

B C

D E

Figure 1. Introduction using ResNet-20 model trained on CIFAR-
10, evaluated using Angular CKA (section 2.4). A) Schematic
of model architecture with color-coded layers. Gray boxes cor-
respond to residual blocks. B) Pairwise distance between layers
shows that adjacent layers are “nearby” while inputs and outputs
are “far apart” on the manifold. C) Low-dimensional visualization
of the network’s path on the 2-sphere. We used spherical multi-
dimensional scaling (MDS) to embed distances in B on a 20D
hypersphere, followed by spherical PCA to reduce to 2D. We addi-
tionally calculated embedding positions for input images (black
square), target class labels (purple star), and fifteen points calcu-
lated from the geodesic between input and labels (black dashed
line). D) Visualization of the tangent space of the manifold, with
which we can compare directions from one layer’s representation
to another. For residual networks, we treat each residual block
as a single “step” (red lines). We refer to θ as interior angle of
the path at layer l, and ϕ angle as the target angle comparing the
direction from layer l to l+ 1 to the direction pointing towards the
targets. E) Visualization of projecting a point onto the geodesic
spanning two other points, decomposing neural network opera-
tions into progress in the direction of the targets and deviation in
orthogonal directions.

and quantitatively evaluate a spatial “path” analogy for deep
neural networks; (2) We extend recently proposed represen-
tational distance metrics by analyzing geometric properties
of the manifold implied by these metrics; (3) We provide
these tools in an open-source toolbox;1 (4) We empirically

1https://github.com/wrongu/repsim

compare paths taken by different models, different datasets,
and changes over training.

2. Preliminaries
2.1. Related Work

One motivation for thinking of neural networks as paths
is that it provides a compelling analogy for the way that
complex functions (deep networks) can be composed out
of simple parts (layers). Indeed, it is well known that both
deeper (Poole et al., 2016; Raghu et al., 2017; Rolnick &
Tegmark, 2017) and wider (Hornik et al., 1989) neural net-
work architectures can express a larger class of functions
than their shallower or narrower counterparts. However,
much less is known about how implementing a particular
complex function constrains the role of individual layers
and intermediate representations in the intervening layers
between input and output. Our work is in line with other
recent efforts to characterize the features learned in hid-
den layers as smoothly varying between inputs and outputs
(Chan et al., 2020; Yang et al., 2022; He & Su, 2022; Yu
et al., 2020; 2023). Our work is a first step, so to speak,
towards formalizing this notion of composing simple func-
tions in geometric terms.

There is a rich literature applying geometric concepts
like distance between representations to formalize notions
of “similarity” in neuroscience and psychology (Edelman,
1998; Jäkel et al., 2008; Rodriguez & Granger, 2017; Hénaff
et al., 2019; Kriegeskorte & Wei, 2021). However, there is a
crucial difference between measuring similarity or distance
between points in a given space, and measuring distances
between representational spaces themselves. The former
includes questions like, “how far apart are the activation
vectors for two inputs in a given layer?” The latter, which
is the subject of this paper, asks instead, “how far apart are
two layers’ representations, considering all inputs?”

Our work is most closely related to, and draws much inspira-
tion from recent advances in representational similarity anal-
ysis (RSA). In particular, Kornblith et al. (2019) showed that
a kernel method for testing statistical dependence, known
as CKA (Gretton et al., 2005; Cortes et al., 2012), is closely
related to classic RSA (Kriegeskorte, 2009). In follow-up
work, Nguyen et al. (2021) used CKA to make layer-by-
layer comparisons between wide and deep networks. Inde-
pendently, both Williams et al. (2021) and Shahbazi et al.
(2021) developed methods to compute metrics between neu-
ral representations. Shahbazi et al. (2021) proposed using
the so-called Affine-Invariant Riemannian metric on the
space of symmetric positive-definite matrices (abbreviated
AIR-SPD below) (Pennec, 2006; 2019). Williams et al.
(2021) derived a metric variation of CKA which we call
Angular CKA, as well as a family of Generalized Shape

2

https://github.com/wrongu/repsim

Neural Networks as Paths

Metrics. We extend this prior work by computing not just
pairwise distances, but by also introducing a suite of tools
for analyzing the geometry of the manifold implied by each
of these distance metrics. Finally, whereas Williams et al.
(2021) and Shahbazi et al. (2021) compare representations
across models, we compare representations within a sin-
gle model to study the transformation of information from
inputs to outputs through hidden layers.

2.2. Distance metrics between neural representations

Representational dissimilarity is quantified by some func-
tion d(X,Y) : X× X→ R+ that takes in two matrices of
neural data and outputs a nonnegative value for their dis-
similarity. Here, X =

⋃
n=1,2,3,... Rm×n is the space of all

m× n matrices for all n. The matrices X and Y could be,
for instance, the values of two hidden layers in a network
with nx and ny units, respectively, in response to m inputs.
We flatten convolutional layers, in which case n is the prod-
uct of height, width, and feature dimensions. We encode
target labels as one-hot vectors, i.e. targets are encoded
in a m× 10 matrix for the CIFAR-10 dataset (Krizhevsky,
2009). Note that X and Y may be different layers of the
same model or layers from different models, as long as they
are evaluated on the same inputs.

There is considerable leeway in choosing the representa-
tional dissimilarity function d(X,Y) in terms of what fea-
tures of X and Y it is sensitive or invariant to. Previ-
ous work has argued that any sensible dissimilarity func-
tion should be nonnegative, so d(X,Y) ≥ 0, and should
return zero between any equivalent representations, so
d(X,Y) = 0 ⇔ X ∼ Y, where X ∼ Y means that
X and Y are in the same equivalence class. For example,
we may wish to design the function d so that d(X,Y) = 0
if Y is a shifted copy of X, or if it is a non-degenerate
scaling, rotation, or affine transformation of X (Kornblith
et al., 2019; Williams et al., 2021; Shahbazi et al., 2021).
A second desirable property is that d is symmetric, so
d(X,Y) = d(Y,X). A third is that d satisfies the triangle
inequality, or d(X,Y) ≤ d(X,Z) + d(Z,Y). As argued
by Williams et al. (2021), a representational dissimilarity
function that fails to satisfy the triangle inequality can lead
to errant results when, for instance, clustering or embed-
ding representations based on their pairwise dissimilarity. A
function that satisfies all of the above properties – equiva-
lence, symmetry, and the triangle inequality – qualifies as a
metric2 on the space of neural representations X (Burago
et al., 2001).

We are interested in using metrics between neural represen-

2More precisely, it is a “metric” on the quotient space of the
equivalence class X ∼ Y, or a “pseudometric” on X, but we
suppress this distinction throughout to avoid excess verbiage; see
(Williams et al., 2021).

tations to explore how representations evolve as they are
transformed through the hidden layers of deep networks.
Not all metrics are sufficient for the kind of spatial reason-
ing – that is, not all metrics can be interpreted as distances.
For example, consider the trivial metric

d(X,Y) =

{
0 if X ∼ Y

1 otherwise
.

This is a valid metric according to the equivalence, sym-
metry, and triangle inequality criteria, but it is useless for
characterizing distances. To be interpretable as a measure
of distance, d(X,Y) must satisfy an intuitive fourth con-
dition called rectifiability: the distance between any two
points must be realizable as the (infimum of the) sum of
distances of segments along a path between them (Burago
et al., 2001). While not all metrics are rectifiable (such as
the trivial metric above), this condition is unsurprisingly
met by many sensible metrics, including those already de-
veloped by Williams et al. (2021) and Shahbazi et al. (2021).
In fact, all metrics considered in this paper are Riemannian
metrics, which not only implies that they are rectifiable,
but further has the property that points (i.e. neural repre-
sentations in each hidden layer) live on a smooth manifold
(Burago et al., 2001). The rectifiability property allows
us to smoothly interpolate neural representations along a
geodesic as well as compute projections and angles, and
Riemannian structure allows us to meaningfully compare
the direction of steps taken by different layers using the
tangent space of the manifold.

All prior distance metrics use a two-stage approach to defin-
ing d(X,Y): first, X and Y are mapped to a common
manifold M through an embedding function f : X → M,
then distance is computed using a distance metric defined
on M. More precisely,

d(X,Y) ≡ dM(X̃, Ỹ) , (1)

where X̃ = f(X) is the result of mapping X from X to
M. In all cases we consider here, M is a Riemannian mani-
fold. In practice, equivalence relations can be built into this
two-stage approach in either stage: d(X,Y) can be made
invariant to changes in the scale of X, for instance, either
by imposing a canonical scale in the embedding stage f , or
by preserving scale in f but using a scale-invariant metric
dM. Appendix A provides details for all metrics we con-
sider here, the parameters that govern their behavior, what
transformations on X they are invariant to, etc.

In addition to these desiderata on how the metric space is de-
fined, a practical concern is computing d(X,Y) accurately
and efficiency while selecting finitely many inputs on which
to evaluate the representations X and Y. For instance, in
our experiments below, we evaluate hidden representations
X using m = 1000 randomly selected images from the test

3

Neural Networks as Paths

set. When m is small (and 1000 may be small relative to the
size of the hidden layer), d(X,Y) – and other geometric
quantities of interest – may be biased or high variance. In
order to work with these representational manifolds in prac-
tice, we need the geometry to be asymptotically consistent,
so the limit

lim
m→∞

d(Xm,Ym)

exists, where Xm and Ym each have m rows. In the m→
∞ limit, distances between neural representations become
a kind of distance between probability distributions, but in
different spaces since in general nx ̸= ny . We would like to
remove as much bias and variance as possible, so that dm is
a good estimator of d∞ using a feasible value for m.

2.3. Geodesics, projections, and angles between neural
representations

Having embedded a matrix of neural data X as a point
X̃ = f(X) on a Riemannian manifold M, new kinds of
analyses become available going beyond mere pairwise rep-
resentational distances, such as geodesics, logarithmic and
exponential maps, projections, and angles between neural
representations. In this section, we will give a brief and
intuitive introduction to each of these concepts as they ap-
ply to neural representations. For a formal introduction to
manifolds, metrics, and Riemanninan geometry, we refer
the reader to (Burago et al., 2001; do Carmo, 1992).

Imagine the manifold M as a sphere, where the embedded
neural representations X̃ – as well as the embedded inputs
(images) and targets (labels) – are points on the sphere (Fig-
ure 1b). A geodesic γ(X̃, Ỹ, t) is a smooth curve between
X̃ and Ỹ in M, parameterized by t, that traces out the
shortest path between X̃ and Ỹ (Burago et al., 2001). On
the sphere, geodesics are arc segments of great circles. In
practice, we can assume there is a unique shortest path be-
tween any two embeddings of neural data. We use geodesics
to quantify the “efficiency” of the transformations imple-
mented by the layers of a deep network by comparing to the
hypothetical shortest path towards the targets (but note that
the geodesic depends on the metric).

The tangent space of a manifold can be thought of as a flat
hyperplane that is tangent to the manifold at a point. The
tangent space provides a flat coordinate system where we
can reason about vectors and directions along the surface
of the manifold. The logarithmic map V = logX̃(Ỹ)
computes a vector V in the tangent space of the base point
X̃ that points in the direction of Ỹ, and the exponential
map Ỹ = expX̃(V) is its inverse. We use the tangent
space around embedded neural representations to reason
about directions towards or away from other representations.
For instance, we use it to compute the angle θ(X̃, Ỹ, Z̃)

between triplets of embedded representations, defined as

cos
(
θ(X̃, Ỹ, Z̃)

)
=

⟨logỸ(X̃), logỸ(Z̃)⟩Ỹ√
⟨logỸ(X̃), logỸ(X̃)⟩Ỹ⟨logỸ(Z̃), logỸ(Z̃)⟩Ỹ

.
(2)

Here, the inner product ⟨V,U⟩Ỹ is in the tangent space at
Ỹ and depends on the local metric tensor (do Carmo, 1992).

Finally, we are interested in projecting points onto the
geodesic spanned by another two points. Projecting allows
us to decompose tangent vectors (e.g. steps taken by neu-
ral network layers) into a component that is pointing in a
particular direction (e.g. towards the target outputs) and
an orthogonal component (Figure 1E). The projection of
X̃ onto the geodesic spanning Ỹ and Z̃ can be found by
minimizing the distance from X̃ to expỸ(t logỸ(Z̃)) with
respect to t.3 Details on how we solve for t numerically can
be found in Appendix C.

2.4. Angular CKA

Angular CKA was introduced by Williams et al. (2021)
(eq (60)) as a metric variation on CKA, which is a well-
established method for (non-metric) representational sim-
ilarity analysis (Kornblith et al., 2019). Angular CKA is
defined as the arccosine of CKA, which is itself derived
from the Hilbert-Schmidt independence criterion (HSIC)
(Gretton et al., 2005; Cortes et al., 2012; Kornblith et al.,
2019). Because HSIC and CKA measure statistical depen-
dence, distance measured by Angular CKA is small when
the rows of X and Y are strongly statistically dependent,
and large when they are independent. As originally argued
by Kornblith et al., CKA has desirable properties as a mea-
sure of neural similarity because it is invariant to shifts,
scaling, and rotations of the original data X, but is not in-
variant to arbitrary affine transforms. While Angular CKA
was originally introduced simply as a method for computing
a metric between neural representations, here we exploit the
fact that Angular CKA is the arc-length on a hypersphere to
compute additional geometric properties of the space.

Formally, Angular CKA is defined as

d(X,Y) = arccos

(
HSIC(X,Y)√

HSIC(X,X)HSIC(Y,Y)

)
(3)

The bias and variance of a finite-m estimator of Angular
CKA depends primarily on the bias and variance of the
estimator of HSIC. Gretton et al. originally proposed the
estimator

HSIC(X,Y) ∝ ⟨HGXH,HGYH⟩F , (4)

3When 0 ≤ t ≤ 1, this is a projection onto the geodesic
spanning from Ỹ to Z̃, but this expression in terms of logarithmic
and exponential maps extends to the t < 0 or t > 1 cases.

4

Neural Networks as Paths

where ⟨·, ·⟩F is the Frobenius inner-product, GX is the m×
m Gram matrix between rows of X, and H ≡ I−m−111⊤

is the centering matrix. This Gram matrix may optionally
be computed using a kernel, but following (Kornblith et al.,
2019), we set GX = XX⊤. This expression of HSIC as an
inner-product leads to a straightforward characterization of
Angular CKA as the arc-length a hypersphere.

Unfortunately, (4) has substantial bias of O(m−1) that re-
quires infeasibly large values of m to overcome (Figure E.1).
This bias has been addressed in different ways by different
authors. Song et al. introduced an unbiased estimator of
HSIC, but unlike (4) their estimator cannot be written as an
inner-product in a vector space, and thus we cannot use it
our geometric calculations. Nguyen et al. further reduce
variance by estimating the numerator and denominator of
(3) separately using the unbiased estimator of Song et al. in
small batches, but this approach similarly will not work for
our geometric calculations.

To address these issues, we derived a new estimator of HSIC
that simultaneously (i) has low bias at O(m−2) and (ii)
can be written as an inner product in a vector space, thus
retaining the desired geometric properties. Our estimator is

HSIC(X,Y) =

2

m(m− 3)
⟨tril(HGXH), tril(HGYH)⟩F ,

(5)

where tril is a function that extracts just the lower-triangular
part of its matrix argument, excluding the diagonal. Proof
of the O(m−2) bias of (5) can be found in Appendix B. In
sum, we compute finite-sample estimate of Angular CKA
as

d(X,Y) = arccos
(〈

X̃, Ỹ
〉
F

)
, (6)

where the embedding function X̃ = f(X) is given by

X̃ ≡ tril(HGXH)

||tril(HGXH)||F
. (7)

Further details on the geometry of Angular CKA can be
found in Appendix A, including expressions for the loga-
rithmic map, exponential map, and geodesics, all of which
follow from the well-known geometry of hyperspheres.

2.5. Shape Metrics

Williams et al. (2021) additionally proposed using a gener-
alization of Procrustes distance and Kendall’s shape space
as a dissimilarity metric for neural representations. Shape-
space and Procrustes distance are a well-studied case of a
Riemannian manifold between point clouds (Nava-Yazdani
et al., 2020). The basic idea of shape metrics is as follows:
m × n matrices of neural data are first transformed into a
common m×p space and interpreted as a “shape” consisting

of m distinct p−dimensional keypoints. Then, shift-, scale-
and rotation-invariance are added explicitly by centering,
scaling, and rotationally aligning pairs of shapes so that they
maximally align with each other before computing distances
between keypoints.

We embed each m × n matrix of neural data X (where n
may vary) into the shared ambient space of m× p matrices
(where p is fixed) by first subtracting the mean of each
column, then projecting neural data X onto its top p = 100
principal components, or padding with zeros, depending on
whether n > p or n < p. Matrices are then scaled to unit
Frobenius norm. These operations embed neural data X
into points X̃ in the pre-shape space (Nava-Yazdani et al.,
2020). Distances in shape space are then given by

d(X̃, Ỹ) = min
Q∈SO(p)

arccos
(〈

X̃, ỸQ
〉
F

)
(8)

The minimization over Q ∈ SO(p) rotates Ỹ to maximally
align with X̃. Formally, this means that shape distance is
distance in the quotient space of pre-shape space after ap-
plying the equivalence relation X̃ ∼ Ỹ ⇔ ∃Q ∈ SO(p) :
X̃ = ỸQ.

Our presentation differs slightly from that of Williams et al.
(2021). There, the authors include a “partial whitening”
stage as part of the embedding, and consider more restricted
classes of rotations than SO(p) that eliminate permutations
across spatial dimensions when comparing convolutional
layers. Here, we opted not to perform whitening because full
whitening makes the metric invariant to affine transforma-
tions in the original n-dimensional neural space, and others
have argued that neural dissimilarity should be sensitive to
second moments (Kornblith et al., 2019). Further, partial
whitening distorts the pre-shape space, thorough treatment
of which we leave for future work (see Appendix A and
Table A.1). We additionally opted not to use restricted rota-
tions because we are interested in distances between both
convolutional and non-convolutional layers. Note that re-
stricting large convolutional layers to p = 100 dimensions
has a similar effect of restricting the analysis only to rel-
evant features of the data, and reduces bias for finite m,
though we note that this technique incurs moderate bias
when computing distances to one-hot labels (Figure E.2).

Solving for Q that minimizes (8) – or equivalently maxi-
mally aligning the individual keypoints of X̃ and ỸQ – is
known as the orthogonal Procrustes problem, and its solu-
tion is given by

Q∗ = V ⊤U⊤

where UΣV ⊤ is the singular value decomposition of
X̃⊤Ỹ.

5

Neural Networks as Paths

2.6. Affine Invariant metric on SPD matrices

Shahbazi et al. proposed using a well-studied metric be-
tween symmetric positive definite (SPD) matrices as a dis-
similarity metric for neural data. This metric is known as
the Affine-Invariant Riemannian metric on the manifold of
SPD matrices (Pennec, 2006; 2019), or AIR-SPD.

The AIR-SPD metric requires positive definite matrices;
all rank-deficient symmetric matrices are effectively at a
distance of infinity. This is addressed by the original authors
by using the XX⊤ Gram matrix when m < n or X⊤X
otherwise, but the latter solution requires nX = nY when
comparing different layers. While rank deficiency in the
case of n < m could in principle be addressed using a
kernel to compute the Gram matrix, this runs up against
numerical stability issues in practice. Worse, it does not
fix rank deficiency due to repeated rows, and by design,
the target outputs of a classification task contain repeated
rows when inputs are from the same class. This makes the
AIR-SPD metric ill-suited for the problem of quantifying
distance or directions towards target outputs. Finally, we
note that others have argued that affine invariance is a bug
rather than a feature when comparing neural data (Kornblith
et al., 2019).

For these reasons, we leave further investigation of the AIR-
SPD metric to future work.

3. Experiments
We are interested in characterizing geometric properties of
the “paths” that standard neural networks take on their way
from inputs (e.g. images) to outputs (e.g. labels). These
paths are high-dimensional objects on curved manifolds, but
we can get interpretable glimpses of their overall structure
by plotting summary statistics of the path’s structure and
how they depend on the model architecture, training, the
dataset the model was trained on.

For our main analyses, we trained a variety of standard
“wide” and “deep” ResNet models (He et al., 2016; Nguyen
et al., 2021), as well as models from the VGG family (Si-
monyan & Zisserman, 2015), on the CIFAR-10 dataset
(Krizhevsky, 2009). For all training, we used standard pro-
cedures developed for repeatable experimentation on neural
networks,4 and each model was trained using 5 different
seeds.

First, we confirmed that both Angular CKA and the An-
gular Shape Metric are suitable for our original goal of
quantifying the gradual progress that neural networks make
towards targets through their layers. We began by calculat-
ing pairwise distances on the manifold between all layers in

4https://github.com/facebookresearch/
open_lth

PC1

PC1

P
C

2
P

C
2

ResNets

25
50
75
100
125
150

VGG
Depth

Targets
(CIFAR-10)Width

16
32
64
128
160

11
13
16
19

Depth

Task

CIFAR (ResNet)
CIFAR (VGG)

TinyImageNet

A

B

Inputs

Targets (CIFAR-10)
Inputs

Figure 2. Visualizations of representation paths in low dimension.
A) Several models of varying architecture, depth, and width were
trained on the same task of CIFAR-10 image classification. All
models take nearly the same path, departing from the inputs-targets
geodesic, regardless of architecture. B) Several models from above
are compared against identical models applied on the TinyIma-
geNet task instead. These paths are visually distinct, and terminate
at a visibly different destination than the CIFAR-10 task target.

a trained model as well as distances from each layer to the
embedding of the targets. We then used multidimensional
scaling (MDS) to embed each layer as a point on a 20-
dimensional5 hypersphere, then used principal component
analysis (PCA) to summarize the main axes of variation of
the network’s path (Williams et al., 2021). The top two PCs
for an example model are shown in Figure 1B-C. We indeed
find that for both metrics, the path taken by the network
does indeed gradually approach the targets, and that the first
two principal components tend to cover (i) the direction
spanning the input-output geodesic, and (ii) a primary “out
and back” axis of deviation of the model’s path away from
the geodesic.

5chosen as the smallest dimensionality where the stress of the
embedding improves on the stress of a 2D embedding by at least
99%.

6

https://github.com/facebookresearch/open_lth
https://github.com/facebookresearch/open_lth

Neural Networks as Paths

A

B

0.0

0.2

0.4

0.6

0.8

1.0

S
te

p
le

ng
th

s
In

te
rio

r a
ng

le
s

VGGResNet

3π
4

π

0

π
4

π
2

Before training After training

14
_1

6
14

_1
60

20
_1

6
20

_1
60

26
_1

6
26

_1
60

32
_1

6
32

_1
60

38
_1

6
38

_1
60

44
_1

6
44

_1
60

56
_1

6
56

_1
60

11
0_

16
11

0_
16

0
16

4_
16

16
4_

16
0

V
G

G
 1

3
V

G
G

 1
9

aCKA

Figure 3. Step lengths and interior angles θ for a variety of archi-
tectures, compared before and after training. Resnet models are
labeled “depth width”. A) We compute the length of the step taken
by each residual bock of ResNets (or each convolutional block of
VGG), d(X̃l, X̃l+1). Three notable trends emerge: first, step sizes
are generally longer after training than before. Second, this effect
is greater on average for shallower models. Third, although the
average step size is small for very deep models, there are large out-
lying step lengths that are of roughly the same size for all models.
B) We computed the interior angle (see Figure 1D) for all triplets
of layers (X̃l−1, X̃l, X̃l+1). It is expected that angles are more
variable before training when step sizes are on average smaller.
The primary effect of training is to concentrate these angles at
values just above π/2, and in fact we see a significant sharpening
of interior angles for wide and shallow models (Figure ??).

We next asked to what extent paths taken by different model
architectures are similar or different. For this, we again
computed pairwise distances between layers within each
model as well as across different models, and followed the
same MDS and PCA procedure above to jointly embed them
into the same space. Figure 2A shows the first two princi-
pal components after jointly embedding ResNet models of
various widths and depths, as well as models from the VGG
family, all trained on CIFAR-10 (see Figure E.4 for addi-
tional PCs and E.6 for the Angular Shape Metric). These
analyses are initially suggestive that, when trained on the
same dataset, the path taken by models of different archi-
tectures are highly similar (Li et al., 2015; Nguyen et al.,
2021). However, could it be that these low-dimensional
visualizations show intrinsic properties of neural networks

unrelated to the particular task? To answer this question, we
trained another set of models with similar architecture on
the related but different dataset known as TinyImagenet.6

We then co-embedded paths taken by models trained on dif-
ferent datasets in the same space by passing images from the
CIFAR-10 test set through all models including those trained
on the other task. The first two PCs using Angular CKA are
shown in Figure 2B (see Figure E.5 for additional PCs and
E.7 for the Angular Shape Metric). Even in the first 2 PCs,
we see a “fork” in the paths between models trained on dif-
ferent image classification datasets. This suggests that there
is nontrivial similarity between the different architectures
shown in Figure 2A. Further, it is consistent with the idea
that two image-classification datasets like CIFAR-10 and
TinyImagenet are similar enough that they share common
processing in the first few layers (Yosinski et al., 2014). Ul-
timately, these low-dimensional path visualizations confirm
our original spatial intuitions, namely that representational
distance metrics can be used to characterize the gradual
layer-wise transformation of information through the layers
of a deep network and to distinguish internal computations
of different networks.

Next, we turned to the question of how some simple sum-
mary statistics of model’s paths – including the size of the
steps taken by each layer as well as internal angles (Fig-
ure 1D) – are affected by the model architecture and how
they change with training. Before running these analyses,
we hypothesized that (i) step sizes would be smaller for
deeper models, as they are able to break a problem into a
larger number of steps, and (ii) that interior angles would
begin close to orthogonal and become more straight through
training.

Our first hypothesis about step lengths was borne out by
the data (Figures 3A, ??A). Importantly, this increase in
step length is not merely a function of an increase in the
magnitude of the neural network weights, as we are using
metrics that are invariant to overall scale. An increase in
step length here means that representations at the output of
each residual block become more dissimilar from the input
to the block in terms of second- or higher-moments.

Surprisingly, our second hypothesis about interior angles
straightening with training was not borne out by the data
(Figure 3B, ??B). Surprisingly we see the opposite trend in
shallow and wide networks, with interior angles becoming
on average less straight with training (Figure ??). Analysis
of target angles can be found in Figure E.10).

Finally, we leveraged projections of points onto geodesics
(Figure 1E) to decompose the step taken by each resid-
ual block (or convolutional block for VGG models) into a

6available at http://cs231n.stanford.edu/
tiny-imagenet-200.zip

7

http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://cs231n.stanford.edu/tiny-imagenet-200.zip

Neural Networks as Paths

Figure 4. Summarizing average “progress” towards targets and
“deviation” in orthogonal directions by every step of the models.
Error bars show standard error of the mean. See Figure E.3 for
individual datapoints and the Angular Shape Metric.

“progress” component that points along the geodesic from
X̃l to the targets, and a “deviation” component in orthogonal
directions (Figure 4; see also Figure E.3)). Two main trends
are apparent: first, increasing depth reduces overall step
sizes close to linearly, reducing both progress and deviation
both for ResNet and for VGG models. Second, increasing
ResNet width trends down and right, increasing width and
reducing deviation. This suggests that wider models have
the capacity to take more direct paths towards targets, per-
haps because additional width reduces constraints on the set
of possible steps that each layer can take.

4. Discussion
We investigated two families of representational distance
metrics — Angular CKA, and the Angular Shape Metric
(Williams et al., 2021). Surprisingly, we found that trained
networks take rather circuitous paths according to both met-
ric families, deviating far from the shortest paths from inputs
to targets. There are three potential explanations for this.
First, networks may be taking short paths according to some
metric other than those we investigated here, implying that
the metrics we used may not reflect the most natural no-
tion of distance between representations. Second, neural
networks may fail to take efficient paths. The distance met-
rics we consider are all differentiable, and so an interesting
question for future work is whether networks can be regular-
ized to take shorter paths, and whether such regularization
will improve or reduce their performance or generalization

ability. Third, it could be that networks take the shortest
and most direct path which is possible under some archi-
tectural constraints, which may prevent the hidden layers
of the network from moving directly along the geodesic.
This explanation must be at least partially true, since the
dimensionality of the representation space M generally ex-
ceeds the number of parameters in each layer/block of the
network, and our analysis of deviation versus progress in
Figure 4 is consistent with the idea that wider networks –
with more degrees of freedom per layer – deviate less.

We were also surprised to discover that according to all
metrics we investigated, network paths tended to be jagged
in the sense that interior angles are predominantly of 90◦

angle turns, and learning had little effect. Although it is well
known that random directions in high-dimensional spaces
such as the representation space M tend to be nearly always
orthogonal, this does not explain why we found that path
angles are straighter at initialization and become more acute
during training. This is puzzling because we expected gra-
dient descent to encourage all layers to point in the same
direction towards the targets. This result also contrasts with
recent work by Chan et al. (2020) that suggests that a se-
quence of residual blocks can be interpreted as a sequence
of small gradient steps optimizing a rate reduction objec-
tive; in their interpretation, all layers ought to be moving in
the same general direction. However, this is not what we
find in our models trained by backpropagation and where
interior angles are quantified using Angular CKA or the
Angular Shape Metric. Ultimately, ours is an empirical find-
ing which suggests that future theoretical work is needed to
interpret the direction of steps taken in representation space
in the context of a given representational distance metric,
and to understand which directions are realizable by a given
network architecture.

As described in the introduction, we are motivated to de-
velop a general spatial analogy for neural information-
processing, where complex transformations of represen-
tations require functions that cover more “distance” than
simple ones. To this end, a measure of representational dis-
tance ought to reflect the function complexity of transform-
ing X into Y. In this work, we chose to extend and compare
existing representational distance metrics in order to build
directly on previous work, but the metrics we evaluated here
may not be interpretable as measures of function complexity.
In fact, such a d(X,Y) characterizing function complexity
of transforming X into Y will likely not be a standard dis-
tance metric at all. For intance, the complexity of a function
and its inverse are in general not equal, and so it may be
desirable to have d(X,Y) < d(Y,X) if the transformation
from X to Y can be implemented by a simpler function than
the inverse. An exciting avenue for future work is thus to
derive new measures of representational dissimilarity specif-
ically for characterizing information-processing in spatial

8

Neural Networks as Paths

terms, as was our original goal.

The analogy of neural networks as paths in a representation
space brings together ideas about representational similar-
ity and the expressivity of deep networks, marrying these
techniques with intuitive and mathematically rigorous ge-
ometric concepts. Our work takes a first step in exploring
the possibilities of this new geometric framework, and we
anticipate that it will spark new insights about model design,
model training, and model comparison.

References
Barrett, D. G., Morcos, A. S., and Macke, J. H. Ana-

lyzing biological and artificial neural networks: chal-
lenges with opportunities for synergy? Current Opin-
ion in Neurobiology, 55:55–64, 2019. ISSN 18736882.
doi: 10.1016/j.conb.2019.01.007. URL https://doi.
org/10.1016/j.conb.2019.01.007.

Burago, D., Burago, Y., and Ivanov, S. A Course in Metric
Geometry. American Mathematical Society, 2001.

Chan, K. H. R., Yu, Y., You, C., Qi, H., Wright, J., and
Ma, Y. Deep Networks from the Principle of Rate Re-
duction, October 2020. URL http://arxiv.org/
abs/2010.14765. arXiv:2010.14765 [cs, math, stat].

Cortes, C., Mohri, M., and Rostamizadeh, A. Algorithms
for learning kernels based on centered alignment. Journal
of Machine Learning Research, 13:795–828, 2012. ISSN
15324435.

Diedrichsen, J. and Kriegeskorte, N. Representational
models: A common framework for understanding encod-
ing, pattern-component, and representational-similarity
analysis. PLoS Computational Biology, 13(4):1–33,
2017. URL https://journals.plos.org/
ploscompbiol/article/file?id=10.1371/
journal.pcbi.1005508&type=printable.

do Carmo, M. Riemannian Geometry. Mathe-
matics (Boston, Mass.). Birkhäuser, 1992. ISBN
9783764334901. URL https://books.google.
com/books?id=uXJQQgAACAAJ.

Edelman, S. Representation is representation of similarities.
Behavioral and Brain Sciences, 21(4):449–498, 1998.
ISSN 0140525X. doi: 10.1017/S0140525X98001253.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B.
Measuring statistical dependence with Hilbert-Schmidt
norms. In Jain, S., Simon, H. U., and Tomita, E.
(eds.), Lecture Notes in Artificial Intelligence, volume
3734, pp. 63–77. Springer-Verlag, Berlin, 2005. ISBN
354029242X. doi: 10.1007/11564089 7.

He, H. and Su, W. J. A Law of Data Separation in Deep
Learning, October 2022. URL http://arxiv.org/
abs/2210.17020. arXiv:2210.17020 [cs, math, stat].

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. CVPR, 2016.

Hénaff, O. J., Goris, R. L., and Simoncelli, E. P. Per-
ceptual straightening of natural videos. Nature Neuro-
science, 22(6):984–991, 2019. ISSN 15461726. doi:
10.1038/s41593-019-0377-4. URL http://dx.doi.
org/10.1038/s41593-019-0377-4.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989. ISSN 08936080. doi:
10.1016/0893-6080(89)90020-8.

Jäkel, F., Schölkopf, B., and Wichmann, F. A. Similarity,
kernels, and the triangle inequality. Journal of Mathemat-
ical Psychology, 52(5):297–303, 2008. ISSN 00222496.
doi: 10.1016/j.jmp.2008.03.001. URL http://dx.
doi.org/10.1016/j.jmp.2008.03.001.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Similar-
ity of Neural Network Representations Revisited. ICML,
36, 2019. URL http://arxiv.org/abs/1905.
00414.

Kriegeskorte, N. Relating population-code representations
between man, monkey, and computational models.
Frontiers in Neuroscience, 3(3):363–373, 2009. ISSN
16624548. doi: 10.3389/neuro.01.035.2009. URL http:
//journal.frontiersin.org/article/10.
3389/neuro.01.035.2009/abstract.

Kriegeskorte, N. Deep Neural Networks: A New Frame-
work for Modeling Biological Vision and Brain Informa-
tion Processing. Annual Review of Vision Science, 1(1):
417–446, 2015. ISSN 2374-4642. doi: 10.1101/029876.

Kriegeskorte, N. and Wei, X.-X. Neural tuning and repre-
sentational geometry. Nature Reviews Neuroscience, 22
(11):703–718, 2021.

Krizhevsky, A. Learning multiple layers of features from
tiny images. 2009.

LeCun, Y., Bengio, Y., and Hinton, G. E. Deep
learning. Nature, 521(7553):436–444, 2015. ISSN
0028-0836. doi: 10.1038/nature14539. URL
http://www.nature.com/nature/journal/
v521/n7553/full/nature14539.html.

Li, Y., Yosinski, J., Clune, J., Lipson, H., and Hopcroft,
J. Convergent learning: Do different neural networks
learn the same representations? JMLR: Workshop and
Conference Proceedings, 44:196–212, 2015. arXiv:
1511.07543.

9

https://doi.org/10.1016/j.conb.2019.01.007
https://doi.org/10.1016/j.conb.2019.01.007
http://arxiv.org/abs/2010.14765
http://arxiv.org/abs/2010.14765
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005508&type=printable
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005508&type=printable
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005508&type=printable
https://books.google.com/books?id=uXJQQgAACAAJ
https://books.google.com/books?id=uXJQQgAACAAJ
http://arxiv.org/abs/2210.17020
http://arxiv.org/abs/2210.17020
http://dx.doi.org/10.1038/s41593-019-0377-4
http://dx.doi.org/10.1038/s41593-019-0377-4
http://dx.doi.org/10.1016/j.jmp.2008.03.001
http://dx.doi.org/10.1016/j.jmp.2008.03.001
http://arxiv.org/abs/1905.00414
http://arxiv.org/abs/1905.00414
http://journal.frontiersin.org/article/10.3389/neuro.01.035.2009/abstract
http://journal.frontiersin.org/article/10.3389/neuro.01.035.2009/abstract
http://journal.frontiersin.org/article/10.3389/neuro.01.035.2009/abstract
http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html
http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html

Neural Networks as Paths

Miolane, N., Guigui, N., Brigant, A. L., Mathe, J., Hou, B.,
Thanwerdas, Y., Heyder, S., Peltre, O., Koep, N., Zaatiti,
H., Hajri, H., Cabanes, Y., Gerald, T., Chauchat, P., Shew-
make, C., Brooks, D., Kainz, B., Donnat, C., Holmes, S.,
and Pennec, X. Geomstats: A python package for rieman-
nian geometry in machine learning. Journal of Machine
Learning Research, 21(223):1–9, 2020. URL http:
//jmlr.org/papers/v21/19-027.html.

Nava-Yazdani, E., Hege, H.-C., Sullivan, T. J., and von Ty-
cowicz, C. Geodesic analysis in kendall’s shape space
with epidemiological applications. Journal of Mathemat-
ical Imaging and Vision, 62(4):549–559, 2020.

Nguyen, T., Raghu, M., and Kornblith, S. Do Wide
and Deep Networks Learn the Same Things? Uncov-
ering How Neural Network Representations Vary with
Width and Depth. ICLR, pp. 1–25, 2021. URL http:
//arxiv.org/abs/2010.15327.

Nguyen, T., Raghu, M., and Kornblith, S. On the Origins
of the Block Structure Phenomenon in Neural Network
Representations, February 2022. URL http://arxiv.
org/abs/2202.07184. arXiv:2202.07184 [cs].

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019.
URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Pennec, X. Intrinsic statistics on Riemannian manifolds:
Basic tools for geometric measurements. Journal of Math-
ematical Imaging and Vision, 25(1):127–154, 2006. ISSN
09249907. doi: 10.1007/s10851-006-6228-4.

Pennec, X. Manifold-valued image processing with
SPD matrices. Elsevier Ltd, 2019. ISBN
9780128147269. doi: 10.1016/B978-0-12-814725-2.
00010-8. URL https://doi.org/10.1016/
B978-0-12-814725-2.00010-8.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and
Ganguli, S. Exponential expressivity in deep neural
networks through transient chaos. arXiv, 2016. URL
http://arxiv.org/pdf/1606.05340v2.pdf.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Jascha
Soh. On the Expressive Power of Deep Fully Circulant
Neural Networks. ICML, 70:2847–2854, 2017. URL
http://arxiv.org/abs/1901.10255.

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y.,
Bogacz, R., Christensen, A., Clopath, C., Costa, R. P.,
de Berker, A., Ganguli, S., Gillon, C. J., Hafner, D.,
Kepecs, A., Kriegeskorte, N., Latham, P., Lindsay, G. W.,
Miller, K. D., Naud, R., Pack, C. C., Poirazi, P., Roelf-
sema, P., Sacramento, J., Saxe, A., Scellier, B., Schapiro,
A. C., Senn, W., Wayne, G., Yamins, D., Zenke, F., Zyl-
berberg, J., Therien, D., and Kording, K. P. A deep
learning framework for neuroscience. Nature Neuro-
science, 22(11):1761–1770, 2019. ISSN 15461726. doi:
10.1038/s41593-019-0520-2. URL http://dx.doi.
org/10.1038/s41593-019-0520-2.

Rodriguez, A. M. and Granger, R. The differential
geometry of perceptual similarity. arXiv preprint
arXiv:1708.00138, 2017. URL http://arxiv.org/
abs/1708.00138.

Rolnick, D. and Tegmark, M. The power of deeper networks
for expressing natural functions. ICLR, pp. 1–14, 2017.
URL http://arxiv.org/abs/1705.05502.

Rumelhart, D. E., McClelland, J. L., Group, P. R., et al.
Parallel distributed processing, volume 1. IEEE New
York, 1988.

Shahbazi, M., Shirali, A., Aghajan, H., and Nili, H. Using
distance on the Riemannian manifold to compare rep-
resentations in brain and in models. NeuroImage, 239
(June):118271, 2021. ISSN 10959572. doi: 10.1016/j.
neuroimage.2021.118271. URL https://doi.org/
10.1016/j.neuroimage.2021.118271.

Shoemake, K. Animating rotation with quaternion curves. In
Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, pp. 245–254, 1985.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations, 2015.

Skopek, O., Ganea, O.-E., and Bécigneul, G. Mixed-
curvature variational autoencoders. arXiv preprint
arXiv:1911.08411, 2019.

Song, L., Smola, A., Gretton, A., Borgwardt, K. M., and
Bedo, J. Supervised feature selection via dependence es-
timation. ACM International Conference Proceeding Se-
ries, 227:823–830, 2007. doi: 10.1145/1273496.1273600.
arXiv: 0704.2668.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

10

http://jmlr.org/papers/v21/19-027.html
http://jmlr.org/papers/v21/19-027.html
http://arxiv.org/abs/2010.15327
http://arxiv.org/abs/2010.15327
http://arxiv.org/abs/2202.07184
http://arxiv.org/abs/2202.07184
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1016/B978-0-12-814725-2.00010-8
https://doi.org/10.1016/B978-0-12-814725-2.00010-8
http://arxiv.org/pdf/1606.05340v2.pdf
http://arxiv.org/abs/1901.10255
http://dx.doi.org/10.1038/s41593-019-0520-2
http://dx.doi.org/10.1038/s41593-019-0520-2
http://arxiv.org/abs/1708.00138
http://arxiv.org/abs/1708.00138
http://arxiv.org/abs/1705.05502
https://doi.org/10.1016/j.neuroimage.2021.118271
https://doi.org/10.1016/j.neuroimage.2021.118271

Neural Networks as Paths

Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Williams, A. H., Kunz, E., Kornblith, S., and Lin-
derman, S. Generalized shape metrics on neural
representations. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 4738–4750. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
252a3dbaeb32e7690242ad3b556e626b-Paper.
pdf.

Yang, A. X., Robeyns, M., Milsom, E., Schoots, N., and
Aitchison, L. A theory of representation learning in
deep neural networks gives a deep generalisation of ker-
nel methods, July 2022. URL http://arxiv.org/
abs/2108.13097. arXiv:2108.13097 [cs, stat].

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How trans-
ferable are features in deep neural networks? Advances in
Neural Information Processing Systems, pp. 3320–3328,
2014. URL http://papers.nips.cc/paper/
5347-how-transferable-are-features-in-deep-neural-networks.
Publisher: Curran Associates, Inc.

Yu, Y., Chan, K. H. R., You, C., Song, C., and Ma, Y.
Learning Diverse and Discriminative Representations
via the Principle of Maximal Coding Rate Reduction,
June 2020. URL http://arxiv.org/abs/2006.
08558. arXiv:2006.08558 [cs, math, stat].

Yu, Y., Buchanan, S., Pai, D., Chu, T., Wu, Z., Tong, S.,
Haeffele, B. D., and Ma, Y. White-Box Transformers via
Sparse Rate Reduction, June 2023.

11

https://proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf
http://arxiv.org/abs/2108.13097
http://arxiv.org/abs/2108.13097
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks
http://arxiv.org/abs/2006.08558
http://arxiv.org/abs/2006.08558

Neural Networks as Paths

Metric Family Options
Invariances

Dimensionality d Isometric to
scale rotation affine

Angular CKA linear kernel yes yes no m(m−1)
2 − 1 Sd

Angular CKA nonlinear kernel no† no† no m(m−1)
2 − 1 Sd

Angular Shape p <∞, α = 1 yes yes no (m− 1)p− p(p−1)
2 − 1 Sd

Angular Shape p <∞, 0 < α < 1 yes yes no (m− 1)p− p(p−1)
2 + α(p− 1) (see note◦)

Angular Shape p <∞, α = 0 yes yes yes‡ (m− 1)p− p(p+1)
2 Sd

Euclidean Shape p <∞, α = 1 no yes no (m− 1)p− p(p−1)
2 Rd

Euclidean Shape p <∞, 0 < α < 1 no yes no (m− 1)p− p(p−1)
2 + αp (see note◦)

Euclidean Shape p <∞, α = 0 (converges to Angular Shape when α = 0)

AIR-SPD (unused in this paper; see section 2.6 for rationale)

Table A.1. Properties of distance metrics between neural representations. All metrics are translation-invariant by construction. What
each metric is invariant to and properties of their manifolds depend on various configuration options. Angular CKA, Angular Shape, and
Euclidean Shape were introduced as metrics for neural data by Williams et al.. Option for Angular CKA is choice of kernel. Options for
Shapes include (i) Angular or Euclidean base metric, (ii) dimensionality of neural space p, and (iii) whether to whiten the data (α = 0) or
not (α = 1). In this work we do not consider the case of unbounded p.
† depends on the choice of kernel. Many kernels are rotation-invariant, i.e. k(x,y) = k(xQ,yQ) for Q ∈ SO(n), in which case the
metric becomes rotation-invariant. Nonlinear kernels may also be constructed to be scale-invariant, e.g. using a squared exponential
kernel k(x,y) = exp(−||x− y||2/τ2) with the length scale τ automatically adapted to the scale of the data X.
‡ only if affine transform does not affect the subspace spanned by the top p principal components.
◦ The manifold M is a continuous deformation of Rdα=1 (in the euclidean case) or Sdα=1 (in the angular case) to Sdα=0 , parameterized
by α. With partial whitening (0 < α < 1), natural way to measure dimensionality is using the sum of singular values of the local
metric tensor on the manifold expressed in the coordinate frame of the ambient (α = 1 metric). This leads to a real-valued measure of
dimensionality that linearly interpolates between the integer-valued dimensionalities for α = 0 and α = 1.

A. Detailed information on metrics
As summarized in equation (1), all distance metrics between neural repreoentations operate in two stages: first, a layer’s
activity X ∈ X is transformed into a point in some canonical space M through an embedding function f , and second
distances are measured in that shared space. In the following subsections we give details for each metric in Table A.1.

We say a metric is scale-invariant if d(X, αX) = 0 for all scalars α ̸= 0 and X ∈ X (that is, X is a matrix of neural
data in the original space, before embedding on a manifold). A metric is shift-invariant if d(X,X+ 1b⊤) = 0 for any
n−dimensional vector b. A metric is rotation-invariant if d(X,XR) = 0 for any n× n orthonormal matrix R. A metric
is affine-invariant if d(X,XA) = 0 for any full-rank n× n matrix A.

Our Python implementation of various quantities from Riemannian geometry draws much inspiration from the geomstats
Python package (Miolane et al., 2020). Our analyses in the main paper were done using

• Angular CKA with m = 1000 and the linear kernel k(xi,xj) = x⊤
i xj , using our estimator of HSIC in (5).

• The Angular Shape metric with m = 1000, p = 100, α = 1.

We begin with an introduction to Angular CKA, where we also review some key terms from Riemannian geometry.

A.1. Angular CKA

Angular CKA was introduced by Williams et al. (2021) (eq (60) in their supplement). It is defined as the arccosine of
centered kernel alignment (CKA), which is itself derived from the Hilbert-Schmidt independence criterion (HSIC) (Gretton
et al., 2005; Cortes et al., 2012; Kornblith et al., 2019). Because HSIC and CKA measure statistical dependence, distance

12

Neural Networks as Paths

measured by Angular CKA is high when the rows of X and Y are statistically independent, and low when they are highly
correlated.

Angular CKA is equivalent to arc-length distance on the spherical manifold consisting of centered and normalized m×m
Gram matrices. Let GX denote the Gram matrix of X, i.e. GXij is given by the inner-product between the ith and jth rows
of X. Optionally, this inner-product may be computed using a kernel; following previous work (Kornblith et al., 2019;
Nguyen et al., 2021), results in this paper use Linear CKA, i.e. we use GX = XX⊤, but our python package supports the
use of other kernels. The normalized and centered Gram matrix is given by

G̃X =
HGXH

||HGXH||F

where H = Im− 1
m11⊤ is the m×m centering matrix, and || · ||F is the Frobenius norm of a matrix. As stated in the main

text, we address the bias of HSIC by dropping the diagonal elements of HGXH in both the numerator and denominator (or
equivalently, taking the upper- or lower-triangular elements only). Thus, the embedding function we use for Angular CKA
is given by

X̃ ≡ tril(HGXH)

||tril(HGXH)||
. ((7) restated)

The Riemannian manifold M for Angular CKA consists of all such centered, normalized, symmetric positive definite
matrices; it is a sphere in sense that

〈
X̃, X̃

〉
F
= 1, where ⟨A,B⟩F = Tr(A⊤B) is the Frobenius inner-product.

Distance according to Angular CKA is equal to arc length on the sphere consisting of centered and normalized Gram
matrices:

d(X,Y) = dM(f(X), f(Y))

= dM(X̃, Ỹ)

= arccos
(〈

X̃, Ỹ
〉

F

)
. ((3) restated)

Because Angular CKA is an arc length, its geodesics lie along great circles on the hypersphere. We therefore can compute
points along the geodesic in closed-form using the SLERP formula (Shoemake, 1985):

geodesic(X̃, Ỹ, t) =
sin((1− t)Ω)

sin(Ω)
X̃+

sin(tΩ)

sin(Ω)
Ỹ , (A.1)

where t ∈ [0, 1] is the fraction of distance along the geodesic from X to Y, and Ω = dM(X̃, Ỹ).

The tangent space for Angular CKA is the space of all symmetric m×m matrices, and the inner-product in the tangent
space is simply the Frobenius inner-product. The logarithmic map computes tangent vectors from a base point that point
towards another point. In the case of Angular CKA, the logarithmic map from X̃ to Ỹ is a tangent vector (symmetric matrix)
at X̃ given by

logX̃
(
Ỹ
)
= W arccos

(〈
X̃, Ỹ

〉
F

)
(A.2)

where W is the unit tangent vector at X̃ pointing towards Ỹ, given by

W =
Ỹ − X̃

〈
X̃, Ỹ

〉
F

||Ỹ − X̃
〈
X̃, Ỹ

〉
F
||F

.

The exponential map is the inverse of the logarithmic map – it is a function that “extrapolates” a tangent vector W from a
point to give another point on the manifold. In the case of Angular CKA, the exponential map is given by

expX̃(W) = cos (||W ||F) X̃+ sinc (||W ||F)W (A.3)

where sinc(x) = sin(x)
x . For proofs of the exponential and logarithmic map on hyperspheres, see Skopek et al. (2019)

Theorem A.8.

13

Neural Networks as Paths

For all metrics, we compute angles between triplets of points by computing the inner-product of their tangent vectors. In the
case of Angular CKA in particular, let WXY denote the tangent vector pointing from X̃ to Ỹ, i.e. the result of logX̃(Ỹ).
Then,

θ(X̃, Ỹ, Z̃) = arccos
(
⟨WYXWYZ⟩F
||WYX||F||WYZ̃||F

)
(A.4)

is the angle of the X̃ỸZ̃ triangle.

A.1.1. INVARIANCES OF ANGULAR CKA

The invariances of Angular CKA depend on the kernel used to compute the Gram matrix. In the simplest case of Linear
CKA, the Gram matrix is simply GX = XX⊤. The resulting metric is

• shift-invariant due to centering the Gram matrix.

• scale-invariant due to normalizing the Gram matrix.

• rotation-invariant since (XR)(XR)⊤ = XRR⊤X⊤ = XX⊤ for any orthonormal R.

However, Angular CKA with is not invariant to arbitrary affine transformations – a feature it inherits from CKA and has
been argued to be an important feature of CKA (Kornblith et al., 2019). Note that when using a nonlinear kernel to compute
the Gram matrix, the resulting metric may lose these invariances. However, Angular CKA with a nonlinear kernel may still
be shift-, scale-, and rotation-invariant if the kernel itself has those invariances. For example the squared exponential kernel

Gij = k(xi,xj) = exp
(
||xi − xj ||22/τ2

)
(A.5)

is naturally shift- and rotation-invariant, and it can be further made scale-invariant by setting the length scale τ automatically
based on the scale of the data.

A.2. Shape Metrics

Williams et al. (2021) proposed using a generalization of Procrustes distance and Kendall’s shape space to measure metric
distance between neural representations. Shape-space and Procrustes distance are a well-studied case of a Riemannian
manifold between point clouds (Nava-Yazdani et al., 2020). Williams et al. (2021) consider two different shape metrics –
one angular shape metric and one Euclidean shape metric. The key idea behind both of these metrics is as follows: m× n
matrices of neural data are first transformed into a common m × p space and interpreted as a point cloud consisting of
p−dimensional points. Then, any two point clouds are scaled and rotated so that they maximally align with each other.
The final distance is then computed as some measure of discrepancy between these maximally-aligned point clouds. The
behavior of these shape metrics is tuned using two hyperparameters: the dimensionality p, and a partial whitening parameter
α.

The role of the embedding function for shape metrics is to convert n−dimensional neural data into a canonical zero-mean
p−dimensional space (i.e. M = Rm×p is the space of all m× p matrices whose column means are all zero). Williams et al.
(2021) also include a partial whitening stage as part of the embedding. This space of m × p zero-mean (and sometimes
scaled) matrices is called the pre shape space (Nava-Yazdani et al., 2020). In the case where n < p, this conversion from n
to p dimensions is done by simply padding X with p − n columns of all zeros. In the case where p < n, we reduce the
dimensionality of X by keeping only the top p principal components. Formally, let X̄ = X− 1

m

∑m
i=1 Xi be the matrix of

neural data with its mean subtracted, then

X̃ = f(X) =

{
whiten([X̄, 0], α) if n ≤ p

whiten(X̄U:p, α) if n > p
(A.6)

where U:p stands for the first p principal components of X̄, as unit column vectors, and 0 is a m× (p−n) matrix of all zeros.
The partial whitening function begins by computing the eigen-decomposition of its input, m−1X̄⊤X̄ = V ΣV ⊤ (here, V
is a p× p orthonormal matrix containing the top principal components of X̄, and Σ is a diagonal matrix of variances). Then,
the partial whitening stage is

whiten(X̄, α) = X̄V
(
αIp + (1− α)Σ− 1

2

)
V ⊤ .

14

Neural Networks as Paths

Note that when α = 0, this is equivalent to ZCA whitening, and when α = 1 it leaves X̄ unchanged. All shape metric
results we report are with p = 100 and α = 1. We use α = 1 because this is most comparable to Angular CKA in terms of
its invariances.

Both the angular and Euclidean shape metrics require aligning by rotating the embedded points by minimizing ||X̃− ỸR||F
where R is a p× p orthonormal matrix. This is known as the orthogonal Procrustes problem, and its solution is given by

R = V ⊤U⊤

where UΣV ⊤ = X̃⊤Ỹ is a singular value decomposition of X̃⊤Ỹ. The generalized shape metrics introduced by Williams
et al. (2021) include further restrictions on R, such as considering rotations across channel but not spatial dimensions of
convolutional layers, but we omit these restrictions in our work.

In the case of angular shape metrics, distance is defined as

dM(X̃, Ỹ) = arccos

〈
X̃, ỸR

〉
F

||X̃||F||Ỹ||F

 . (A.7)

In the case of Euclidean shape metrics, distance is defined as

dM(X̃, Ỹ) =
1

m

m∑
i=1

||X̃i − ỸiR|| . (A.8)

We compute geodesics in shape space after finding R to align Ỹ to X̃. Then, the geodesic from X̃ to ỸR in the angular
case is given by the SLERP formula as in (A.1):

geodesic(X̃, Ỹ, t) =
sin((1− t)Ω)

sin(Ω)
X̃+

sin(tΩ)

sin(Ω)
ỸR , (A.9)

where Ω = dM(X̃, Ỹ) is the angular shape distance. Note that this means that geodesic(X̃, Ỹ, 1) results in a point that is
equivalent but not identical to Ỹ.

Tangent vectors for Euclidean shape metrics can be any m× p matrix whose column-wise mean is zero. In the case of
angular shape metrics, the tangent space is further restricted to the tangent space of the hypersphere of unit-Frobenius-norm
matrices (i.e. a tangent vector W at X̃ must satisfy

〈
X̃,W

〉
F
= 0 in the angular case). The tangent space is further divided

into so-called horizontal and vertical subspaces, where the vertical subspace captures changes to X̃ that leave distance
invariant, i.e. rotations that are removed by alignment by R, and the horizontal subspace captures changes that affect the
metric (Nava-Yazdani et al., 2020). The vertical component of a tangent vector W at point X̃ is given by vertX̃(W) = X̃A,
where A ∈ Rp×p is the solution to the following Sylvester equation:

X̃⊤X̃A+AX̃⊤X̃ = W⊤X̃− X̃⊤W .

Following the example of Miolane et al. (2020), we use the solve sylvester function from Scipy to compute this
(Virtanen et al., 2020). The horizontal component of a tangent vector is given by simply subtracting the vertical part of W :

horzX̃(W) = W − vertX̃(W)
⟨vertX̃(W),W ⟩F
||vertX̃(W)||F

.

To compute the angle between any triplet of representations, we use the inner-product of tangent vectors, as in (A.4), but
using only the horizontal part of each tangent vector. As in Angular CKA, we compute horizontal tangent vectors from X̃ to
Ỹ using the logarithmic map, which in the case of shape metrics is given by

horizontal logX̃(Ỹ) = ỸR− X̃ (A.10)

in the Euclidean case, or

horizontal logX̃(Ỹ) = W arccos

〈
X̃, ỸR

〉
F

||X̃||F||Ỹ||F

 (A.11)

15

Neural Networks as Paths

where W is the unit tangent vector at X̃ pointing towards Ỹ, given by

W =
ỸR− X̃

〈
X̃, ỸR

〉
F

||ỸR− X̃
〈
X̃, ỸR

〉
F
||F

.

(Nava-Yazdani et al., 2020). As in (A.7) and (A.8), R is the rotation matrix that optimally aligns Ỹ to X̃.

A.2.1. INVARIANCES OF SHAPE METRICS

The invariances of the shape metrics depend on a variety of hyperparameter settings.

• All shape metrics are shift-invariant because the embedding function X̃ = f(X) subtracts the mean.

• All shape metrics are rotation-invariant because of the Procrustes alignment procedure, and because rotation does not
affect the principal component projection nor the zero-padding step of (A.6).

• The angular shape metric is scale-invariant because (A.7) divides by the norms of X̃ and Ỹ.

• The Euclidean shape metric is not scale-invariant in general, but it is for the special case of α = 0, since scale is
removed by whitening. In fact, the Euclidean and Angular shape metrics coincide with each other entirely when α = 0.

• Neither angular nor Euclidean shape metrics is affine-invariant in general, but both can become affine-invariant for the
special case of α = 0, since full-rank affine transforms are removed by whitening as long as n ≤ p. However, in the
n > p case, an affine transformation may amplify or suppress the principal components of the data, and as a result it
can affect the embedding stage (A.6). Thus, these metrics are only truly affine-invariant even with α = 0 within the
top-p principal components’ subspace.

A.2.2. ADDITIONAL CHALLENGES OF PARTIAL WHITENING

Note that (partial) whitening with α < 1 adds additional constraints on the space. When using (A.7) the Frobenius norm
of X̃ is constrained to be 1, and the structure of the space is spherical. This constraint on the Frobenius norm of X̃ is
equivalent to saying that the sum of the singular values of X̃⊤X̃ is constrained. After full whitening with α = 0, X̃ is further
constrained so that all singular values of X̃⊤X̃ are equal. This adds an additional p− 1 constraints and thus reduces the
dimensionality of the space by p− 1 dimensions; see Table A.1. The standard equations for geodesics and the tangent space
above do not take this constraint into account; for instance, using Z̃ = geodesic(X̃, Ỹ, t) with both X̃ and Ỹ whitened, Z̃
will not in general be whitened. This makes our definition of Shape Metrics with α < 1 valid metrics, but not valid length
metrics (namely, distances are not rectifiable because they do not respect the whitening constraint). By focusing on α = 1 in
the main paper, we circumvent this issue and retain all length and Riemannian structure of the metric. We leave proper
treatment of the geometric structure of the α < 1 case to future work.

A.3. Affine Invariant Riemannian Metric

The Affine Invariant Riemannian (AIR) metric is a metric between symmetric positive definite (SPD) matrices, originally
derived for use in image processing (Pennec, 2006; 2019), and recently it was proposed to use it as a metric between neural
representations by first converting neural data into a SPD matrix (Shahbazi et al., 2021). The embedding function can
therefore be any function that maps m× n matrices in X into M = Sym+

k for some k. Shahbazi et al. (2021) considered
two possibilities for the embedding stage: either using the m × m Gram matrix f(X) = GX, or using the n × n data
covariance matrix f(X) = cov(X) = 1

m−1X
⊤HX. These correspond to complementary perspectives on the nature of

neural representation, analogous to the difference between representational similarity analysis and pattern component
analysis (Diedrichsen & Kriegeskorte, 2017).

The challenge when using the m×m Gram matrix approach is that, without further regularization, a m×m Gram matrix
has rank n when n < m, which implies that it cannot be SPD (and the metric considers all rank-deficient matrices to be
infinitely far away). To address this, our toolbox implements the AIR metric between neural representations with additional
regularization options. In the Gram matrix case, we regularize in two ways: first, we compute the Gram matrix using a
kernel that implicitly has an infinite feature space (so that m is much less than the number of features). This alleviates the

16

Neural Networks as Paths

rank-deficiency problem in cases where n < m but rows are unique. However, when rows of X contain duplicates (notably,
this is true for the target labels), GK is still rank-deficient. To address this, we include a second regularization stage where
we add a small diagonal ridge with magnitude ϵ. The full embedding function in the Gram matrix case is given by

f(X) = GX + ϵIm (A.12)

where the ijth element of GX is given by k(Xi,Xj). For our results in the paper, we use ϵ = 0.05 and a squared exponential
kernel for k as in (A.5), setting the length scale τ automatically to the median pairwise Euclidean distance between rows of
X.

The main challenge when using the covariance matrix approach is that it cannot be directly applied to compare layers with
different numbers of neurons n. To address this, we first convert from m× n matrices of neural data into a common m× p
size, using the same method as we use for the shape metrics as in (A.6), but without the whitening stage. We can then embed
all layers into a common space of p× p covariance matrices. As in the Gram matrix case, we again run into rank-deficiency
issues when n < m (e.g. for the one-hot embedding of targets for which n = 10), and so we again regularize by adding a
diagonal ridge to the resulting covariance matrices. The full embedding function in the covariance matrix case is given by

f(X) =

{
cov ([X, 0]) + ϵIp if n ≤ p

cov (XU:p) + ϵIp if n > p
(A.13)

(compare with (A.6)).

Let P = f(X) and Q = f(Y) be SPD matrices (we are using P and Q instead of X̃ and Ỹ to use a consistent notation with
Pennec (2019)). The AIR metric distance is defined as

d(X,Y) = dM(P,Q) =
∑
i

log(di)
2 (A.14)

where di is the ith eigenvalue of P− 1
2QP− 1

2 (Pennec, 2006; 2019). Since P is SPD, its singular value decomposition can be
written P = V ΣV ⊤, where Σ is a diagonal matrix and V is orthonormal. Following Pennec (2019), we use element-wise
square root, exp, and log operations on the singular values to define the matrix square root, matrix exponential, and matrix
logarithm:

pow (P, k) = V pow (Σ, k)V ⊤

exp (P) = V exp (Σ)V ⊤

log (P) = V log (Σ)V ⊤

where the operations on the left hand side are matrix power, exponential, and log, whereas pow, exp, and log operations
are performed element-wise on the diagonal of Σ. Pk is equivalent to pow (P, k).

The geodesics from P to Q is given by

geodesic(P,Q, t) = P
1
2

(
P− 1

2QP− 1
2

)t
P

1
2 (A.15)

(combining equations (3.12) and (3.13) in (Pennec, 2019)).

Tangent vectors in this space are symmetric matrices, and the logarithmic map is given by

logP(Q) = P
1
2 log

(
P− 1

2QP− 1
2

)
P

1
2 (A.16)

(see equation (3.12) in (Pennec, 2019)). The exponential map of the tangent vector W at P is given by

expP(W) = P
1
2 exp

(
P− 1

2WP− 1
2

)
P

1
2 (A.17)

(see equation (3.13) in (Pennec, 2019)). One can easily verify that expP(logP(Q)) = Q.

As before, we compute angles between triplets of representations X,Y,Z by computing the inner product of the logY(X)
and logY(Z) tangent vectors, but unlike the previous metrics the definition of inner products for the AIR metric is not
simply the Frobenius inner product. For the AIR metric, the inner product of tangent vectors W and V at P is defined as

⟨W ,V ⟩P ≡
〈
P−1W ,P−1V

〉
F = Tr

(
W⊤P−⊤P−1V

)
. (A.18)

17

Neural Networks as Paths

A.3.1. INVARIANCES OF AFFINE INVARIANT RIEMANNIAN METRIC

We will treat the Gram matrix (A.12) and the covariance matrix (A.13) cases separately. In the Gram matrix case,

• The AIR metric is shift-invariant, scale-invariant, and/or rotation-invariant if and only if the kernel used to compute
GX has the corresponding invariance. Because we use a squared-exponential kernel with a length scale that adapts to
the data scale, we have all three invariances.

• The AIR metric is, despite its name, not affine-invariant in the sense we are interested in, since affine transformations
of X will in general affect GX through the nonlinear kernel (e.g. the squared exponential kernel with an isotropic
length scale is sensitive to non-isotropic scaling of X).

In the covariance matrix case,

• The AIR metric is shift-invariant because covariance subtracts the mean.

• The AIR metric is scale- and rotation-invariant due to the eponymous “affine-invariances” of the metric itself (Pennec,
2006; 2019).

• As in the case of shape metrics discussed above, the AIR metric may or may not be invariant to arbitrary affine
transformations of X due to the restriction to the top p principal components in the embedding stage. Only in the
case where n > p and A is a matrix such that XA changes the subspace of the top p principal components, then the
resulting metric is not invariant to A.

B. Proof of HSIC estimator bias
Recall from equation (5) that we defined

HSICours(X,Y) ≡ 2

m(m− 3)
⟨tril(HGXH), tril(HGYH)⟩F ,

where tril(A) is a function that zeros out all but the lower triangle of A, zeroing the diagonal as well.

To simplify notation, let K = GX and L = GY . Defining diag(A) to be the diagonal of A as a column vector, and using
the fact that K and L are symmetric Gram matrices, our estimator is equivalent to

HSICours(X,Y) ≡ 1

m(m− 3)

(
⟨HKH,HLH⟩F − diag(HKH)⊤diag(HLH)

)
.

Using symmetry and idempotency of H , and the cyclic property of the trace, ⟨HKH,HLH⟩F = Tr(KHLH) which
is equivalent to a multiple of the biased estimator found by Gretton et al. (2005):

HSICGretton(X,Y) ≡ Tr(KHLH)

(m− 1)2
=

1

(m− 1)2

(
aGretton −

2

m
bGretton +

1

m2
cGretton

)
aGretton ≡ Tr(KL)

bGretton ≡ 1⊤KL1

cGretton ≡ 1⊤K11⊤L1

Song et al. (2007) introduced an unbiased estimator of HSIC, given by

HSICSong(X,Y) ≡ 1

m(m− 3)

(
aSong −

2

m− 2
bSong +

1

(m− 1)(m− 2)
cSong

)

aSong ≡ Tr(K̂L̂) = Tr(KL)− diag(K)⊤diag(L)

bSong ≡ 1⊤K̂L̂1 = 1⊤KL1− 1⊤Kdiag(L)− 1⊤Ldiag(K) + diag(K)⊤diag(L)

cSong ≡ 1⊤K̂11⊤L̂1 = 1⊤K11⊤L1− 1⊤K1Tr(L)− 1⊤L1Tr(K) + Tr(K) Tr(L) .

18

Neural Networks as Paths

where the hat symbol Â denotes that the diagonal of A has been set to zero. For ease of manipulation, we include expressions
for aSong, bSong, and cSong in terms of K and L.

Both our estimator and Song et al’s estimator share the same general strategy of mitigating bias by removing the diagonal,
since the diagonal of the Gram matrices contain non-independent samples. The primary difference is that it is impossible to
express HSICSong as an inner-product of real-valued vectors, due to the subtraction of 2

m−2bSong.

Our strategy for proving that our estimator has O(m−2) bias by taking the difference HSICours(X,Y)− HSICSong(X,Y)
and inspecting the asymptotics of the remaining terms, since

bias = E[HSICours(X,Y)]− HSICTrue

= E[HSICours(X,Y)]− E[HSICSong(X,Y)]

= E[HSICours(X,Y)− HSICSong(X,Y)] .

First, we rewrite our estimator as the difference between the original biased estimator and a product of matrix diagonals:

HSICours(X,Y) ≡ 1

m(m− 3)

(
(m− 1)2HSICGretton(X,Y)− diag(HKH)⊤diag(HLH)

)
.

Using the definition H = I−m−111⊤, the diagonal term expands as:

diag(HKH)⊤diag(HLH) = adiag −
2

m
bdiag +

1

m2
cdiag

adiag ≡ diag(K)⊤diag(L)

bdiag ≡ 1⊤Kdiag(L) + 1⊤Ldiag(K)

cdiag ≡ 1⊤K1Tr(L) + 1⊤L1Tr(K) + 41⊤KL1− 3

m
1⊤K11⊤L1 .

Taking the difference between the estimators gives:

HSICours(X,Y)− HSICSong(X,Y)

=
1

m(m− 3)
(aGretton − adiag − aSong)

− 2

m2(m− 2)(m− 3)
((m− 2) (bGretton − bdiag)−mbSong)

+
1

m3(m− 1)(m− 2)(m− 3)

(
(m− 1)(m− 2) (cGretton − cdiag)−m2cSong

)
.

Next, we examine each of a, b, and c separately. The a terms cancel exactly:

aGretton − adiag − aSong = Tr(KL)− diag(K)⊤diag(L)− Tr(KL) + diag(K)⊤diag(L) = 0 .

The b terms give the difference:

(m− 2) (bGretton − bdiag)−mbSong = (m− 2)
(
1⊤KL1− 1⊤Kdiag(L)− 1⊤Ldiag(K)

)
−m

(
1⊤KL1− 1⊤Kdiag(L)− 1⊤Ldiag(K) + diag(K)⊤diag(L)

)
= − 21⊤KL1+ 21⊤Kdiag(L) + 21⊤Ldiag(K)−mdiag(K)⊤diag(L)

= − 21⊤KL1+O(m2) .

Note the order of each component depends on the degrees of freedom in the equivalent summation. For example,
1⊤Kdiag(L) =

∑m
i=1

∑m
j=1 KijLii is a sum over m2 products.

19

Neural Networks as Paths

The c terms give the difference:

(m− 1)(m− 2) (cGretton − cdiag)−m2cSong

= (m− 1)(m− 2)

(
1⊤K11⊤L1− 1⊤K1Tr(L)− 1⊤L1Tr(K)− 41⊤KL1+

3

m
1⊤K11⊤L1

)
−m2

(
1⊤K11⊤L1− 1⊤K1Tr(L)− 1⊤L1Tr(K) + Tr(K) Tr(L)

)
= − 7m− 6

m
1⊤K11⊤L1+ (3m− 2)

(
1⊤K1Tr(L) + 1⊤L1Tr(K)

)
− 4(m− 1)(m− 2)1⊤KL1−m2 Tr(K) Tr(L)

= − 4(m− 1)(m− 2)1⊤KL1+O(m4) .

Finally, substituting a, b, and c into the bias equation and cancelling shows that our estimator’s bias is of order O(m−2):

HSICours(X,Y)− HSICSong(X,Y)

= − 2
−21⊤KL1+O(m2)

m2(m− 2)(m− 3)
+
−4(m− 1)(m− 2)1⊤KL1+O(m4)

m3(m− 1)(m− 2)(m− 3)

=
4 (m(m− 1)− (m− 1)(m− 2))

m3(m− 1)(m− 2)(m− 3)
1⊤KL1+O(m−2)

=
8(m+ 1)

m3(m− 1)(m− 2)(m− 3)
1⊤KL1+O(m−2)

= O(m−2)

□

C. Numerical details and algorithms
For all metrics we study here, we have closed-form expressions for geodesics, logarithmic maps, exponential maps, inner-
products in the tangent space, and parallel transport (although we do not use parallel transport in this paper). Let ⟨U,V⟩X̃
denote the inner product of tangent vectors U and V at the point X̃ ∈M. The angle between U and V is

arccos

(
⟨U,V⟩X̃√

⟨U,U⟩X̃⟨V,V⟩X̃

)
.

In the main text, we used this to compute the interior angle of a network’s path at layer l, using this formula with
U = log ˜̃l

X
(X̃l−1) and V = log ˜̃l

X
(X̃l+1). We also used it to compute the target angle at layer l, using U = log ˜̃l

X
(X̃l+1)

and V = log ˜̃l
X
(T̃) where T̃ denotes the embedding of the target outputs (i.e. embedding of the one-hot class vectors).

We used an iterative algorithm to compute the projection of a point Z̃ onto the geodesic spanning X̃ and Ỹ. Specifically, we
used an iterative procedure that reaches the correct projection in a single iteration on flat (isometric to Euclidean) manifolds.
In Euclidean space, the projection of z onto the vector spanning x→ y is given by

projection length(z,x,y) = (z− x)⊤
(

y − x

||y − x||

)
project(z,x,y) = x+ projection length(z,x,y)×

(
y − x

||y − x||

)
The analogue in curved spaces is given by

projection length(Z̃, X̃, Ỹ) =

〈
logX̃(Z̃),

logX̃(Ỹ)

|| logX̃(Ỹ)||

〉

project(Z̃, X̃, Ỹ) = expX̃

(
projection length(Z̃, X̃, Ỹ)×

logX̃(Ỹ)

|| logX̃(Ỹ)||

)

20

Neural Networks as Paths

Our algorithm for projection on curved manifolds iteratively solves for t, the projection length onto the tangent vector from
X̃ to Ỹ as follows:

1. initialize t = 0

2. calculate the base point B̃ ≡ expX̃

(
t× logX̃(Ỹ)

|| logX̃(Ỹ)||

)
3. calculate how far to update t using the formula for flat spaces: ∆t ≡ projection length(Z̃, B̃, Ỹ)

4. update t← t+∆t and go to step 2 unless converged, in which case return B̃.

D. Models and training details
We trained a collection of convolutional networks including both residual networks (He et al., 2016) and VGG (Simonyan &
Zisserman, 2014) on CIFAR-10 (Krizhevsky, 2009) using PyTorch (Paszke et al., 2019). We used the open-source OpenLTH
framework for training and checkpointing models, using the default hyperparameters for each model.

Following Nguyen et al. (2021), we trained Residual networks of varying widths and depths. The “width” refers to the
number of feature channels per convolutional layer, and took on values of {16, 32, 64, 128, 160} (corresponding to the
base size of 16 multiplied by {1×, 2×, 4×, 8×, 10×}). The “depth” controls the number of residual blocks, according to
the formula #blocks = (depth − 2)/2, since each block contains two convolutional layers, and there are two additional
preprocessing/projection layers before/after the blocks. We trained models of depths {14, 20, 26, 32, 38, 44, 56, 110}. The
VGG architecture supports “depths” of {11, 13, 16, 18}, all at the same width. The test accuracy of all models is shown in
Table D.2. We analyzed the representational distances and geometry of a subset of these, focusing on depths 14 and 38 (for
all widths), and widths 16 and 64 (for all depths).

All models were trained using the default training hyperparameters of OpenLTH. Specifically, all models were trained by
stochastic gradient descent for 160 epochs with a batch size of 128 (390.6 batches per epoch of 50k training items), an initial
learning rate of 0.1 reducing to 0.01 and 0.001 after 80 and 120 epochs respectively, momentum of 0.9, and weight decay
of 0.0001. During training, images were augmented by random horizontal flips and random ±4 and ±8 pixel left/right or
up/down shifts (padding with zeros) for CIFAR-10 and Tiny ImageNet.

When evaluating TinyImagenet models on CIFAR-10 data to co-embed them in the same space, we upscaled the CIFAR-10
images from 32× 32 to 64× 64 using bilinear interpolation built in to PyTorch.

E. Additional figures

21

Neural Networks as Paths

Architecture (depth/width) CIFAR-10 test accuracy (mean ± std)

VGG 11 0.919 ± 0.002

VGG 13 0.935 ± 0.001

VGG 16 0.934 ± 0.001

VGG 19 0.933 ± 0.001

ResNet 14/16 0.907 ± 0.003

ResNet 14/32 0.931 ± 0.001

ResNet 14/64 0.943 ± 0.001

ResNet 14/128 0.949 ± 0.001

ResNet 14/160 0.949 ± 0.001

ResNet 20/16 0.917 ± 0.002

ResNet 20/32 0.939 ± 0.002

ResNet 20/64 0.948 ± 0.001

ResNet 20/128 0.953 ± 0.001

ResNet 20/160 0.954 ± 0.001

ResNet 26/16 0.922 ± 0.002

ResNet 26/32 0.940 ± 0.002

ResNet 26/64 0.950 ± 0.001

ResNet 26/128 0.954 ± 0.001

ResNet 26/160 0.954 ± 0.002

ResNet 32/16 0.925 ± 0.002

ResNet 32/32 0.942 ± 0.002

ResNet 32/64 0.950 ± 0.001

ResNet 32/128 0.954 ± 0.001

ResNet 32/160 0.954 ± 0.003

ResNet 38/16 0.926 ± 0.001

ResNet 38/32 0.945 ± 0.001

ResNet 38/64 0.951 ± 0.002

ResNet 38/128 0.954 ± 0.004

ResNet 38/160 0.951 ± 0.002

ResNet 44/16 0.927 ± 0.001

ResNet 44/32 0.944 ± 0.001

ResNet 44/64 0.950 ± 0.001

ResNet 44/128 0.949 ± 0.003

ResNet 44/160 0.950 ± 0.002

ResNet 56/16 0.929 ± 0.002

ResNet 56/32 0.944 ± 0.002

ResNet 56/64 0.950 ± 0.001

ResNet 56/128 0.946 ± 0.007

ResNet 56/160 0.947 ± 0.003

ResNet 110/16 0.934 ± 0.002

ResNet 110/32 0.942 ± 0.002

ResNet 110/64 0.938 ± 0.003

ResNet 110/128 0.935 ± 0.009

ResNet 110/160 0.942 ± 0.005

ResNet 164/16 0.934 ± 0.003

ResNet 164/32 0.937 ± 0.004

ResNet 164/64 0.938 ± 0.006

ResNet 164/128 0.941 ± 0.012

ResNet 164/160 0.943 ± 0.009

Table D.2. Model architectures and performance on CIFAR-10.
22

Neural Networks as Paths

Architecture (depth/width) Tiny ImageNet test accuracy

ResNet 14/16 0.498

ResNet 14/32 0.570

ResNet 14/64 0.600

ResNet 14/128 0.637

ResNet 14/160 0.635

ResNet 20/16 0.535

ResNet 20/32 0.581

ResNet 20/64 0.620

ResNet 20/128 0.654

ResNet 20/160 0.659

ResNet 26/16 0.542

ResNet 26/32 0.588

ResNet 26/64 0.627

ResNet 26/128 0.666

ResNet 26/160 0.667

ResNet 32/16 0.550

ResNet 32/32 0.595

ResNet 32/64 0.638

ResNet 32/128 0.664

ResNet 32/160 0.670

ResNet 38/16 0.555

ResNet 38/32 0.595

ResNet 38/64 0.639

ResNet 38/128 0.674

ResNet 38/160 0.673

ResNet 44/16 0.564

ResNet 44/32 0.605

ResNet 44/64 0.648

ResNet 44/128 0.674

ResNet 44/160 0.675

ResNet 56/16 0.569

ResNet 56/32 0.608

ResNet 56/64 0.655

Table D.3. Model architectures and performance on Tiny ImageNet. (Note only one seed for each combination was run, so no error
bounds are placed on the accuracy) 23

Neural Networks as Paths

Figure E.1. Inspecting bias and variance of calculations of Angular CKA using different underlying estimators for HSIC. “Gretton” refers
to Gretton et al. (2005), and the estimator given in equation (4). “Song” refers to Song et al. (2007) and the estimator given in equation
(??). “Ours” refers to equation (5). The Song estimator is known to be unbiased, the Gretton estimator is known to have O(m−1) bias,
and we prove in Appendix B that our estimator has O(m−2) bias. Lines and error bars show mean ± standard deviation of each quantity
across four runs for each value of m. Top left: estimates of representational distance or length from one convolutional layer to another in
an example ResNet. Top right: estimates of interior angles among three convolutional layers; note that the Song estimator is omitted
because it is not expressible as an inner product in a vector space, and so we cannot compute geodesics or angles with it. Bottom left:
estimates of distance from a convolutional layer to one-hot labels. Bottom right: estimates of target angle, i.e. the angle between X̃l,
X̃l+1, and one-hot labels, for some layer l.

24

Neural Networks as Paths

Figure E.2. Same as Figure E.1 but for the Angular Shape Metric. We reduce the dimensionality of convolutional layers to p = 100 and
use m = 1000. Note that this means that estimates of length and interior angles may be slightly biased throughout.

25

Neural Networks as Paths

Figure E.3. Companion to Figure 4 in the main text. Here, we additionally show progress and deviation for every layer individually (right
subplots) and identical analyses using the Angular Shape Metric (bottom row).

26

Neural Networks as Paths

P
C

2
P

C
3

P
C

4
P

C
5

PC1

P
C

6

PC2 PC3 PC4 PC5

ResNets

25
50
75
100
125
150

VGG
Depth

Width
16
32
64
128
160

11
13
16
19

DepthTargets
(CIFAR-10)

Inputs

Figure E.4. Grid of first 5 principal components of path visualizations for various architectures on CIFAR-10. Figure 2A shows PC1 vs
PC2 (top left of this figure).

P
C

2
P

C
3

P
C

4
P

C
5

PC1

P
C

6

PC2 PC3 PC4 PC5

Task

CIFAR (ResNet)
CIFAR (VGG)

TinyImageNet

Targets (CIFAR-10)
Inputs

Figure E.5. Grid of first 5 principal components of path visualizations comparing models trained on CIFAR-10 to models trained on
TinyImagenet. Figure 2B shows PC1 vs PC2 (top left of this figure).

27

Neural Networks as Paths

P
C

2
P

C
3

P
C

4
P

C
5

PC1

P
C

6

PC2 PC3 PC4 PC5

ResNets

25
50
75
100
125
150

VGG
Depth

Width
16
32
64
128
160

11
13
16
19

DepthTargets
(CIFAR-10)

Inputs

Figure E.6. Same as Figure E.4 – comparing paths taken by various model architectures trained on CIFAR-10 – but for Angular Shape
Metric.

P
C

2
P

C
3

P
C

4
P

C
5

PC1

P
C

6

PC2 PC3 PC4 PC5

Task

CIFAR (ResNet)
CIFAR (VGG)

TinyImageNet

Targets (CIFAR-10)
Inputs

Figure E.7. Same as Figure E.5 – comparing paths taken by similar models trained on different datasets – but for the Angular Shape
Metric.

28

Neural Networks as Paths

A

B

0.0

0.2

0.4

0.6

0.8

1.0

S
te

p
le

ng
th

s
In

te
rio

r a
ng

le
s

VGGResNet

3π
4

π

0

0

π
4

π
4

π
2

Before training After training

14
_1

6
14

_1
60

20
_1

6
20

_1
60

26
_1

6
26

_1
60

32
_1

6
32

_1
60

38
_1

6
38

_1
60

44
_1

6
44

_1
60

56
_1

6
56

_1
60

11
0_

16
11

0_
16

0
16

4_
16

16
4_

16
0

V
G

G
 1

3
V

G
G

 1
9

C

D

VGGResNet

Width = 16 Width = 160

14 20 26 32 38 44 56 11
0

16
4

V
G

G

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

Δ
st

ep
 le

ng
th

s
af

te
r t

ra
in

in
g

Δ
in

te
rio

r a
ng

le
s

af
te

r t
ra

in
in

g

π
4

Figure E.8. Angular CKA: Elaborating on Figure 3 in the main text. Here, we reproduce A) the distances between layers per model
before and after learning, and B) the interior angles between layers per model before and after training. We then show C) the change in
step length and D) change in interior angles per layer per model before and after learning. The main effect we see is that interior angles
trend towards becoming more acute with learning (the delta is negative), and this effect is more pronounced in shallower models than deep
models.

29

Neural Networks as Paths

0

π
4

C

D

VGGResNet

Width = 16 Width = 160

A

B

0.0

0.2

0.4

0.6

0.8

1.0

S
te

p
le

ng
th

s
In

te
rio

r a
ng

le
s

VGGResNet

3π
4

π
4

π
2

Before training After training

14
_1

6
14

_1
60

20
_1

6
20

_1
60

26
_1

6
26

_1
60

32
_1

6
32

_1
60

38
_1

6
38

_1
60

44
_1

6
44

_1
60

56
_1

6
56

_1
60

11
0_

16
11

0_
16

0
16

4_
16

16
4_

16
0

V
G

G
 1

3
V

G
G

 1
9

π

0

14 20 26 32 38 44 56 11
0

16
4

V
G

G

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

Δ
st

ep
 le

ng
th

s
af

te
r t

ra
in

in
g

Δ
in

te
rio

r a
ng

le
s

af
te

r t
ra

in
in

g

π
4

Figure E.9. Angular Shape Metric: The matching figure to Figure E.8, here showing results for the angular shape metric. The main
trends are qualitatively conserved between metric spaces.

30

Neural Networks as Paths

−600 −500 −400 −300 −200 −100 0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

C
ha

ng
e

in
 ta

rg
et

 a
ng

le

Depth
25
50
75
100
125
150

Width

16

160

13

19

Depth
25
50
75
100
125
150

Width

16

160

13

19

−600 −500 −400 −300 −200 −100 0
right_idx

−0.8

−0.6

−0.4

−0.2

0.0

0.2

C
ha

ng
e

in
 ta

rg
et

 a
ng

le

Last 50

Last 50

A

B

Figure E.10. Analysis of target angles (see Figure 1E. Angles close to zero mean that a layer is pointing in the direction of the targets.
Here, we calculated the change in target angle for all layers before and after learning, and plotted as a function of the layer index relative
to the targets. Consistent with the low dimensional MDS+PCA visualizations, we see that all models make slight progress in the direction
of the targets in the early layers, and much more dramatic progress towards the targets in the last few layers. Insets zoom on the final
few steps. (Note that the indices on the x-axis use a different convention than earlier analyses. Here, indices correspond to raw network
components like Conv, ReLU, BatchNorm, etc., rather than residual blocks, and residual blocks consist of many individual components.
The largest model is a ResNet-164 and has 81 residual blocks. The inset covers about 10 block-sized “steps” per model.)

31

