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Abstract
Neural operations that rely on neighborhood infor-
mation are much more expensive when deployed
on point clouds than on grid data due to the irreg-
ular distances between points in a point cloud. In
a grid, on the other hand, we can compute the ker-
nel only once and reuse it for all query positions.
As a result, operations that rely on neighborhood
information scale much worse for point clouds
than for grid data, specially for large inputs and
large neighborhoods.
In this work, we address the scalability issue of
point cloud methods by tackling its root cause:
the irregularity of the data. We propose learn-
able gridification as the first step in a point cloud
processing pipeline to transform the point cloud
into a compact, regular grid. Thanks to gridifi-
cation, subsequent layers can use operations de-
fined on regular grids, e.g., Conv3D, which scale
much better than native point cloud methods. We
then extend gridification to point cloud to point
cloud tasks, e.g., segmentation, by adding a learn-
able de-gridification step at the end of the point
cloud processing pipeline to map the compact,
regular grid back to its original point cloud form.
Through theoretical and empirical analysis, we
show that gridified networks scale better in terms
of memory and time than networks directly ap-
plied on raw point cloud data, while being able
to achieve competitive results. Code is avail-
able at https://github.com/computri/
gridifier.

1. Introduction
Point clouds provide sparse geometric representations of
objects or surfaces equipped with signals defined over their
structure, e.g., the surface normals of an underlying object
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Figure 1. Convolution on point clouds and grids. Due to the irregu-
lar nature of point clouds, convolutional kernels –and other opera-
tions based on neighborhood information– must be re-rendered for
every query point in the point cloud (left). In contrast, grid data is
regularly arranged, and thus pairwise distances are equal for any
query point in the grid (right). As a result, the convolutional kernel
can be computed once and reused for all query points.

(Wu et al., 2015; Qi et al., 2017a) or the chemical properties
of a molecule (Ramakrishnan et al., 2014; Schütt et al.,
2017). Several neural operators have been developed that
can be applied to such sparse representations provided by
point clouds. These methods can be broadly understood
as continuous generalizations of neural operators originally
defined over regular discrete grids, e.g., convolution (Wu
et al., 2019) and self-attention (Zhao et al., 2021).

The problem of learning on raw point clouds. Unfor-
tunately, the flexibility required from neural operators to
accommodate irregular sparse representations like point
clouds brings about important increases in time and mem-
ory consumption. This is especially prominent in neural
operations that construct feature representations based on
neighborhood information, e.g., convolution. In the case of
point clouds, the irregular distances between points make
these neural operations significantly more computationally
demanding compared to regular grid representations like
images or text. For instance, for convolution, the convolu-
tional kernel needs to be recalculated for each point in a
point cloud to account for irregular distances from the query
point to other points in its neighborhood (Fig. 1 left). In
contrast, grid representations standardize pairwise distances
following a grid structure (Fig. 1 right). As a result, the
distances from a point to all other points in its neighborhood
are fixed for all points queried in the grid. Therefore, it is
possible to compute the kernel once, and reuse it across all
query positions. This difference illustrates that operations
relying on neighborhood information scale much worse in
terms of memory and time for point clouds than for grid

https://github.com/computri/gridifier
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Figure 2. Gridification. Gridification maps a point cloud P onto a compact regular grid G. The method first constructs a D-dimensional
grid (left) that overlaps the point cloud. Then, it connects points on the point cloud to points in the grid given by a connectivity scheme
EP→G , i.e., a set of edges from points in the point cloud to points in the grid, determined by bilateral k-nearest neighbors connectivity
(middle). Finally, gridification propagates information from the point cloud onto the grid through a convolutional message passing layer
acting over the bipartite graph (P,G,EP→G). By carefully selecting the different components of the gridification module, gridification is
able to construct compact rich grid representations that can be subsequently processed with grid operations such as Conv3D.

Figure 3. Voxelization of the Stanford Bunny (Turk & Levoy,
1994) for different resolutions. Taken from Karmakar et al. (2011).

data, specially for large inputs and large neighborhoods.

A potential solution: Voxelization. A potential solution to
address the challenges posed by point clouds lies in treating
the point cloud as a continuous density that can be sam-
pled on a dense regular grid: a process called voxelization
(Maturana & Scherer, 2015; Wu et al., 2015). The idea
of voxelization is to create a grid that overlaps with the
domain of the point cloud (Fig. 3). Although voxelization
methods create grid representations on which neural oper-
ations defined on grids can act, e.g., Conv3D, the grids
resulting from voxelization are oftentimes much larger than
the number of points in the original point cloud. This is
a consequence of (i) the high-resolution grids required to
describe fine details from the point cloud, and (ii) the low
occupancy of the grid resulting from the sparse nature of
point clouds which generally leads to many more points to
process in the resulting grid than in the original point cloud.

Our proposed solution: Gridification. In this paper, we
propose an alternative solution to address the memory and
computational scalability of point cloud methods by address-
ing its root cause: the irregularity of the data. We propose
learnable gridification as the first step in a point cloud pro-
cessing pipeline to transform the point cloud into a compact,
regular grid (Fig. 2). Thanks to gridification, subsequent
layers can use operations defined on grids, e.g., Conv3D,
which scale much better than native point cloud methods.
In a nutshell, gridification can be understood as a convolu-
tional message passing layer acting on a bipartite graph that
establishes connections between points in the point cloud

to points in the grid given by a bilateral k-nearest neighbor
connectivity. The proposed bilateral k-nearest neighbor con-
nectivity guarantees that all points both in the point cloud
and in the grid are connected, therefore allowing for the
construction of expressive yet compact grid representations.

In contrast to voxelization, gridification produces expressive
compact grid representations in which the number of points
in the resulting compact regular grid is roughly equal to the
number of points in the original point cloud, yet the grid
is able to preserve fine geometric details from the original
point cloud. For instance, we observe that point clouds
with N=1000 points can be effectively mapped to a compact
dense 10x10x10 grid without significant information loss.
We show through theoretical and empirical analysis that the
resulting grid representations scale much better in terms of
memory and time than native point cloud methods. This is
verified on several comparison studies for increasing number
of points in the point cloud and increasing neighborhood
sizes in the construction of convolutional kernels.

We demonstrate that gridification can also be used for tasks
from point clouds to point clouds, e.g., segmentation. To
this end, we introduce a learnable de-gridification step at
the end of the point cloud processing pipeline, which can be
seen as an inverted gridification step that maps the compact,
regular grid back to its original point cloud form. This
extension allows for the construction of gridified networks
–networks that operate on grids– to solve global prediction
tasks, e.g., classification, as well as dense prediction tasks,
e.g., segmentation and regression, on point cloud data.

2. Method
2.1. Point cloud and grid representations
Point cloud. A point cloud P={(cPi ,x

P
i )}

NP
i=1 is an unstruc-

tured set of NP pairs of coordinate-feature values (cPi ,x
P
i )

scattered in space without any predefined pattern or connec-
tivity. Point clouds sparsely represent geometric structures
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through pairs of coordinate vectors cPi ∈ RD and correspond-
ing function values over that geometric structure xPi ∈ RFP ,
e.g., surface normals, RGB-values, electric potentials, etc.

Grid. A grid G={(cGi ,x
G
i )}

NG
i=1 can be interpreted as a point

cloud on which the coordinate-feature pairs (cGi ,x
G
i ) are

arranged in a regular pattern that form a lattice. In contrast
to general point clouds, points in a grid are evenly spaced
and align along predefined axes, e.g., x, y, z. The regular
spacing between points leads to regular pairwise distances
for all query points in the grid. As a result, we can calculate
pairwise attributes once, and reuse them for all query points.

2.2. Gridification: From a point cloud to a dense grid
We seek to map the sparse point cloud P={(cPi ,x

P
i )}

NP
j=1

onto a compact regular grid G={(cGi ,x
G
i )}

NG
i=1 in RD. We

formalize this process as an operation over a bipartite graph
that establishes connections between points in the point
cloud P to points in the grid G given by a connectivity
scheme EP→G defined as a set of edges ej→i ∈ EP→G .

Learnable gridification as message passing. We aim to
learn a mapping from P to G such that the grid represen-
tation G={(cGi ,x

G
i )}

NG
i=1, ci ∈ RD, xGi ∈ R

FG , adequately
represents the source point cloud P for the downstream
task. Given a source point cloud P , a target grid G and
a connectivity scheme EP→G , we define gridification as a
convolutional message passing layer (Gilmer et al., 2017)
on the bipartite graph (P,G,EP→G) defined as:

xGi = ϕupd

⎛

⎝
⊕

ej→i ∈ EP→G

ϕmsg(ϕnode (x
P
j ) , ϕpos (c

G
i − c

P
j ) )
⎞

⎠
.

(1)
It consists of a node embedding network ϕnode ∶ RFP → RH

that processes the point cloud features xGi , a positional em-
bedding network ϕpos ∶ RD → RH that creates feature repre-
sentations based on the pairwise distances between coordi-
nates in G and P –thus resembling a convolutional kernel–,
a message embedding network ϕmsg ∶ R2H → RH that re-
ceives both the node embedding and the relative position em-
bedding to create the so-called message. After the messages
are created for all nodes described by connectivity of the
node, these features are aggregated via the aggregation func-
tion⊕, e.g., max, mean. Finally, the aggregated message
is passed through the update network ϕupd ∶ RH → RFG to
produce the grid feature representations xGi ∈ R

FP .

2.3. De-gridification: From a dense grid to a point cloud
To extend the use of gridification to tasks from the point
cloud P to the point cloud P , e.g., segmentation, regression,
we define a de-gridification step that sends a grid represen-
tation G back to its original point cloud form P . Formally,

the de-gridification step is defined as:

xPi = ϕupd

⎛

⎝
⊕

ej→i ∈ EG→P

ϕmsg(ϕnode (x
G
j ) , ϕpos (c

P
i − c

G
j ) )
⎞

⎠
.

(2)
Intuitively, de-gridification can be interpreted as a gridifi-
cation step from G to P given by an inverted connectivity
scheme EG→P=(EP→G)−1. Note that, it is not necessary to
calculate the connectivity scheme for the de-gridification
step. Instead, we can obtain it simply by taking the connec-
tivity scheme from the gridification step EG→P and inverting
the output and input nodes of the edges.

2.4. Requirements and properties of gridification
We desire to construct a compute and memory efficient grid
representation G that captures all aspects of the point cloud
P as good as possible. That is, a compact, yet rich grid
representation G that preserves the structure of the point
cloud P with as low loss of information as possible. With
this goal in mind, we identify the following requirements:

(i) The number of points in the grid NG should be at least
as large as the number of points in the point cloud NP .

(ii) The width of all hidden representations of the node
embedding network ϕnode should be at least as large
as the width of the point cloud features xPi , i.e., FP .

(iii) The width of all hidden representations of the position
embedding network ϕpos should be at least as large
as the dimension of the domain D.

(iv) The width of all hidden representations of the embed-
ding networks ϕupd, ϕmsg should be at least as large
as the width of the point cloud features xPi plus the
dimension of the domain D.

(v) Each point cP in the point cloud should be connected
to at least one point cG in the grid.

(vi) The positional embedding network ϕpos should be
able to describe high frequencies.

(vii) Each point cG in the grid should be connected to at
least one point cP in the point cloud.

Preventing information loss. To prevent information loss,
we want to avoid any kind of compression either in the grid
representation or in any intermediary representation during
the gridification process. Consequently, we restrict the num-
ber of points as well as the width of all representations to
be at least as big as the corresponding dimensions in the
source point cloud P –items (i)-(iv)–. In addition, we must
make sure that all points in the point cloud are connected to
points in the grid to prevent points from being disregarded
during gridification –item (v)–. Finally, we must also make
sure that the positional embedding network ϕpos is able to
represent high frequencies –item (vi)–. This is important as
multilayer perceptrons (MLPs) with piecewise nonlineari-
ties, e.g., ReLU, have been shown to have an implicit bias
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towards smooth functions (Tancik et al., 2020; Sitzmann
et al., 2020). In the context of gridification, this means that
using conventional MLPs for the positional embedding net-
work ϕpos could result in over-smooth grid representations
unable to represent fine details from the source point cloud.
We circumvent this issue by using parameterizations for
ϕpos able to model high frequencies (Sec. 2.5.3).

Encouraging compact representations. In addition to
encouraging no information loss, we also identify require-
ments that encourage the resulting grid representation to be
compact and expressive. First, we note that item (v) is im-
portant for this end as well, as over-smooth representations
implicitly require higher resolutions to be able to encode
fine-grained details. Additionally, we impose all points in
the grid to be connected to points in the point cloud –item
(vii)– to prevent the grid representation from having low
occupancy. This restriction allows us to make sure that all
the spatial capacity of the grid is being used. This in turn
allows us to construct compact rich grid representations.

2.5. Materializing the gridification module
Based on the previous requirements and properties, we de-
fine the components of the gridification module as follows:

2.5.1. THE GRID G

Let [a, b]D be the domain of the point cloud P , i.e., cPi ∈
[a, b]D, ∀ cPi ∈ P . Then, we define the regular grid G
over the same domain [a, b]D with

D√
NG points along each

dimension. By doing so, we guarantee that the grid G is
uniformly spaced over the domain of the point cloud, there-
fore (i) preserving the statistics of the input point cloud,
and (ii) being able to represent the underlying signal in the
same range. In practice, point clouds are normalized during
the preprocessing steps preceding a point cloud processing
pipeline. As a result, we often have that a= − 1 and b=1,
leading to a point cloud and a grid defined on [−1,1]D.

2.5.2. THE CONNECTIVITY SCHEME EP→G

Motivated by the requirements in Sec. 2.4, we opt for bi-
lateral k-nearest neighbor connectivity over common al-
ternatives such as radius connectivity (Qi et al., 2017a;b)
or one-way k-nearest neighbor connectivity (Barber et al.,
1996; Connor & Kumar, 2010) for the construction of the
connectivity scheme EP→G to guarantee that no points either
in the grid G nor the point cloud P are disconnected. Bilat-
eral k-nearest neighbor connectivity consists of a two-way
k-nearest neighbor approach in which first each point cGi
in the grid is linked to the k nearest points cPj in the point-
cloud. Subsequently, connections are established from each
point cPi in the point cloud to its nearest k points cGj in
the grid (Fig. 4). By following this procedure, bilateral
k-nearest neighbor connectivity creates a complete connec-
tivity scheme, i.e., with no disconnected points, from P to
G with at least k and at most 2k connections for each point.

Figure 4. Bilateral k-nearest neighbor connectivity for k=4.

2.5.3. THE POSITIONAL EMBEDDING NETWORK ϕpos

In literature, the positional embedding network ϕpos is of-
ten parameterized as an MLP with piecewise nonlinearities,
e.g., ReLU, that receives relative positions (ci−cj) as input
and retrieves the value of an spatial function at that position
ϕpos(ci−cj) (Schütt et al., 2017; Qi et al., 2017b; Wu et al.,
2019). However, previous studies have shown that MLPs
with piecewise nonlinearities suffer from an spectral bias
towards low frequencies, which limits their ability to rep-
resent functions with high frequencies (Tancik et al., 2020;
Sitzmann et al., 2020). In the context of modelling spatial
neural operators such as ϕpos, this implies that using piece-
wise MLPs to parameterize spatial neural operators leads to
inherently smooth operators. Consequently, applying such
an operator over an input function, e.g., via a convolution op-
eration, would implicitly perform a low-pass filtering of the
input, causing the output representations to lack information
regarding fine-grained details of the input.

To overcome this issue, we rely on the insights from Con-
tinuous Kernel Convolutions (Romero et al., 2021) and pa-
rameterize the positional embedding network as a Neural
Field (Sitzmann et al., 2020; Tancik et al., 2020). In con-
trast to piecewise MLPs, neural fields easily model high
frequencies, and thus allow for powerful parameterizations
of spatial neural operators that do not perform smoothing.
In the context of gridification, using neural fields to pa-
rameterize ϕpos allows gridification to project fine-grained
geometric information from the point cloud onto the grid.

2.6. Gridified networks for global and dense prediction
Gridification and de-gridification allow for the construction
of gridified networks able to process point clouds both for
global and dense prediction tasks (Fig. 5). For global pre-
diction tasks, e.g., classification, we construct a point cloud
processing pipeline consisting of gridification, followed by
a grid network, i.e., a neural network that operates on grid
data, designed for global prediction, e.g., a ResNet (He et al.,
2016) or a ViT (Dosovitskiy et al., 2020). For dense pre-
diction tasks, e.g., segmentation, our proposed point cloud
pipeline consists of gridification, followed by a grid network
designed for dense predictions, e.g., a U-Net (Ronneberger
et al., 2015) or a CCNN (Knigge et al., 2023). After the
processed grid representation is obtained, we utilize the de-
gridification step to map back the grid representation to a
point cloud with the output node predictions.
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Figure 5. Point cloud processing pipeline for global prediction
(left) and dense prediction tasks (right).

3. Related Work
Deep learning approaches for point cloud processing can be
broadly classified in two main categories: (i) native point
cloud methods and (ii) voxelization methods.

Native point cloud methods. Native point cloud methods
operate directly on the raw, irregular point cloud data with-
out any preprocessing steps such as voxelization. These
methods leverage the inherent spatial distribution of the
points to extract meaningful features. PointNet (Qi et al.,
2017a) introduced a pioneering framework for point cloud
processing by employing shared multilayer perceptrons and
symmetric functions to learn global and local features from
unordered point sets. PointNet++ (Qi et al., 2017b) extended
this work with hierarchical neural networks to capture hi-
erarchical structures in point clouds. PointConv (Wu et al.,
2019) introduced a convolution operation specifically de-
signed for point clouds, incorporating local coordinate sys-
tems to capture local geometric structures. PointGNN (Shi
& Rajkumar, 2020) utilized graph neural networks to model
interactions between neighboring points in point clouds.

Despite the flexibility in handling irregular data that native
point cloud methods provide, they suffer from scalability
issues due to the increased computational and memory com-
plexity of processing unstructured point sets.

Voxelization methods. Voxelization methods aim to convert
the irregular point cloud data into a regular grid structure,
enabling the utilization of neural architectures designed for
regular grid data. VoxNet (Maturana & Scherer, 2015) intro-
duced the concept of voxelization for point clouds and em-
ployed 3D convolutions on the resulting grid representations.
Volumetric CNN (Qi et al., 2016) extended this approach
with an occupancy grid representation and achieved impres-
sive performance on 3D shape classification tasks. Other
works, such as VoxSegNet (Wang & Lu, 2019) explore vari-
ations of voxelization techniques to improve performance
on tasks like object detection and segmentation.

While voxelization methods offer a well-founded solution to
the computational and memory complexity of native point
cloud methods, in practice, they suffer from high memory
consumption and information loss due to the discretization
process. This is due to the inherent trade-off between the
need to capture fine geometric details –which requires high
resolution grids–, and the need for efficiency –which favors
low resolution grids–. As a result, conventional voxelization
methods struggle to strike a balance between resolution and
speed. In contrast, gridification is able to generate compact
yet expressive grid representations able to preserve fine
geometric details on a low resolution grid with roughly the
same number of points as the source point cloud.

Hybrid methods. Aside from pure point cloud and voxeliza-
tion methods, there exist works that attempt combine the
advantages of both categories. Their main idea is to combine
point-wise and grid-wise operations to perform effective fea-
ture extraction while maintaining scalability and efficiency.
PointGrid (Le & Duan, 2018) uses a hybrid representation
by voxelizing the point cloud and employing a combination
of point-wise and grid-wise operations at each layer. Point-
Voxel CNN (Liu et al., 2019) combines grid convolutions
with point-wise feature extraction. It uses low-resolution
voxelization to aggregate neighborhoods with regular 3D
convolutions and MLPs to generate point-wise features
that preserve fine-grained structure. These features are
then fused through interpolation. Point-Voxel Transformer
(Zhang et al., 2022) follows a similar two-branch structure,
but replaces convolutions with windowed self-attention.

Although hybrid methods reduce the computational and
memory complexity of native point cloud methods, their
explicit use of voxelization still leads to a trade-off between
information loss and efficiency on that branch. To com-
pensate for the information lost during voxelization, they
require a parallel raw point cloud branch, which does not
scale well. In contrast, gridification does not make use of
raw point cloud branches but instead focuses on the creation
of descriptive compact grid representations that preserve
the geometric information of the source point cloud. Hence,
gridification offers a solution with better scalability proper-
ties than existing hybrid methods.

4. Experiments
To evaluate our approach, we first analyze the expressive
capacity of gridification and de-gridification on a toy point
cloud reconstruction task. Next, we construct gridified net-
works and evaluate them on classification and segmentation
tasks. In addition, we provide empirical analyses on the com-
putational and memory complexity of gridified networks
which we then corroborate with theoretical analyses.

Experimental setup. For the position embedding function
ϕpos we use an Random Fourier Feature Network (Tancik
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Table 1. Classification performance on ModelNet40 benchmark.

MODEL INPUT TYPE ACCURACY PARAMETERS

PointNet++ (Qi et al., 2017b) 32 × 1000 native 89.64 1.5M
VoxNet (Maturana & Scherer, 2015) 32 × 303 voxelization 83.00 0.92M
PointGrid (Le & Duan, 2018) 32 × 163 voxelization 92.00 -
Point Voxel Transformer (Zhang et al., 2022) 32 × 1024 hybrid 94.00 2.76M
Gridified Networks 3x3x3 (Ours) 32 × 1000→ 32 × 33 voxelization 90.86 0.28M
Gridified Networks 9x9x9 (Ours) 32 × 1000→ 32 × 93 voxelization 92.28 0.47M

Figure 6. Random point clouds with random scalar node features
are mapped to a grid representation. From the grid representation
the node features need to be reconstructed via de-gridification.

et al., 2020), due to explicit control over the smoothness
through the initial frequency parameter Ω. The practical
setup and instantiation of the convolution blocks can be
found in Appendix A. We train our models without data
augmentation using AdamW (Loshchilov & Hutter, 2019)
and a cosine scheduler (Loshchilov & Hutter, 2017) with 10
epochs of linear warm-up. We follow the standard procedure
and preprocess all objects in the datasets to be centered and
normalized. For each dataset, we choose the grid resolution
such that its number of points is roughly equal to the size
of the original point cloud. For ModelNet40 we use surface
normals in addition to positions as node features. Dataset
specific hyperparameters can be found in Appendix B.

4.1. Random point cloud reconstruction
First, we evaluate the expressivity of our proposed grid-
ification and de-gridification procedure. To this end, we
construct a dataset with 1000 synthetic random graphs –800
for training and 200 for validation– consisting of a pre-
defined number of nodes NP=1000 randomly sampled on
the unit cube, i.e., cPi ∼ U([−1,1]

3), accompanied with a
random scalar feature fPi ∼ U(−1,1) at each position.

Experimental setup. To evaluate the expressiveness of our
method, we set up a network consisting only of a gridifica-
tion and a de-gridification step, i.e., no intermediary layers,
in a point cloud reconstruction pipeline. In other words,
the task consists of propagating the point cloud into a grid
representation, and mapping the grid representation back
to the original point cloud (see Fig. 6). Therefore, to suc-
cessfully reconstruct the original point cloud from the grid
representation, the grid representation must be able to retain
sufficient information from the input point cloud.

Results. Fig. 7 shows reconstruction errors for different
resolutions and different number of channels in the inter-
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Figure 7. Random point cloud reconstruction error for varying grid
resolution and number of channels on the grid representation.

mediary grid representation. We observe that it is possible
to obtain good reconstructions by increasing the resolution
of the grid or its number of channels. From an efficiency
perspective, it is preferred to utilize low resolution represen-
tations with a larger number of channels due to the expo-
nential growth in computational demands associated with
higher grid resolutions, which instead scale linearly with the
number of channels of the representation. Our experiments
show that gridification is able to obtain compact grid repre-
sentations that preserve the structure of the input point cloud.
Furthermore, the quality of the grid representations can be
efficiently improved by scaling the number of channels used.

4.2. ModelNet40 classification
Next, we evaluate gridification on point cloud classifica-
tion. We deploy gridified networks on ModelNet40 (Wu
et al., 2015): a synthetic dataset for 3D shape classification,
consisting of 12,311 3D meshes of objects belonging to
40 classes. ModelNet40 is broadly used as a point cloud
benchmark in which points are uniformly sampled from the
faces of the meshes.

Results. Our results (Tab. 1) show that gridified networks
achieve competitive performance while being significantly
more efficient in terms of parameters, compute and mem-
ory. Interestingly, and in contrast to voxelization methods,
we observe that gridified networks operate well even on
extremely low resolution grids. For instance, on a 3×3×3
grid, gridified networks attain an accuracy of 90.86%.

4.3. ShapeNet part segmentation
Next, we evaluate gridification on point cloud segmentation.
To this end, we deploy gridified networks on ShapeNet (Yi
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Table 2. Segmentation performance on ShapeNet-part benchmark.

MODEL Gridified Networks PointNet++ PointGrid

TYPE voxelization native hybrid

instance average IoU 87.07 85.1 86.4
class average IoU 81.68 81.9 82.2

airplane 88.52 82.4 85.7
bag 86.54 79.0 82.5
cap 74.09 87.7 81.8
car 80.46 77.3 77.9
chair 91.44 90.8 92.1
earphone 51.81 71.8 82.4
guitar 92.61 91.0 92.7
knife 89.44 85.9 85.8
lamp 82.07 83.7 84.2
laptop 96.07 95.3 95.3
motor 65.36 71.6 65.2
mug 92.99 94.1 93.4
pistol 86.72 81.3 81.7
rocket 58.57 58.7 56.9
skateboard 75.70 76.4 73.5
table 85.66 82.6 84.6

et al., 2016): a synthetic dataset with 16,000 point clouds
of objects from 16 categories, each of which contains 2 to
6 parts. The objective of the task is to segment the point
clouds into one of 50 possible part annotations.

Results. Our results (Tab. 2) demonstrate that gridified
networks are also able to achieve competitive performance
in segmentation tasks, while being significantly more effi-
cient in terms of parameters, compute and memory. This
result validates the ability of gridification to handle dense
prediction tasks via gridification and de-gridification.

4.4. Efficiency analysis of gridification
Finally, we investigate the scalability properties of gridi-
fication. Specifically, we analyze the time and memory
consumption of gridified networks during inference on Mod-
elNet40 for point clouds with increasing size, and compare
the computation and memory complexity of convolutional
operations on grid and point cloud data.

Scaling gridified networks to large point clouds. Fig 8
shows the average time and memory consumption during
inference on ModelNet40 for gridified networks and Point-
Net++. We observe that gridified networks exhibit a much
more favorable scalability both in terms of inference time
and GPU allocation –linear vs. quadratic– as the input size
and number of channels increase. This demonstrates that
gridified networks scale much better than native point cloud
methods both for larger point clouds and larger networks.

Scaling the receptive field of neural operations. Further-
more, we analyze the scalability properties of gridified net-
works relative to the size of its receptive fields. As illustrated
in Fig. 1), for native point cloud methods the convolutional
kernel must be recomputed for all query points in the point
cloud. As a consequence, the construction of the convolu-
tional kernels of size K for all query points in a point cloud
with N points incurs in O(KD) memory and time complex-

ity. In contrast, on grid data, we can compute the kernel
once and reuse it at all positions. As a result, on a grid, this
operation incurs in O(D) time and memory complexity.

Fig. 9 show the methods’ potential to scale up the recep-
tive field of the gridification module without introducing
significant computational overhead.

5. Limitations and future work
The resolution of gridification depends on the size of the
point cloud. The main limitation of gridification is that the
resolution on the grid is directly proportional to the size of
point cloud in order to preserve information. This in turn
means that the whole gridified architecture must be changed
for point clouds of different sizes, even if they represent the
same underlying signal. This is in contrast to native point
cloud methods, which, due to their continuous nature, are,
in principle, able to generalize to point clouds of different
sizes as long as these exhibit the same structures.

Towards no information loss. While gridification aims to
produce compact grid representations with minimal infor-
mation loss, our experiments reveal that some information
still gets lost in the process. Loosely speaking, it should be
possible to create grid representations that do not lose any
information by ensuring that the grid representation has at
least as many points and as many channels as the source
point cloud representation. Gaining richer theoretical un-
derstanding of gridification, could therefore lead to grid
representations with no information loss either by impos-
ing other requirements on gridification, or by considering
different functional families in the gridification process.

Large scale point clouds and global context. While we
verify the scalability and efficiency of gridified networks
for increasing point cloud sizes, we only carry on experi-
ments on relatively small datasets. In future work, we aim
to deploy gridification to large scale datasets. Furthermore,
recent works have shown that using global receptive fields in
convolutional operations consistently leads to better results
across several tasks, even outperforming well-established
Transformer architectures (Gu et al., 2021; Knigge et al.,
2023; Poli et al., 2023). Due to the computational com-
plexity of native point cloud methods, networks with global
context have not been explored for point cloud processing.
With gridification this ability becomes computationally fea-
sible. Exploring the effect of global context for point cloud
processing is an exciting research direction.

Generative tasks. Gridification opens up the possibility of
performing scalable generative tasks on large point clouds.
Gridification can directly be extended to generative tasks
if we assume that the point-cloud structure is preserved,
i.e., if the coordinates of the output and input point clouds
are equal. If this is not the case, e.g., for the generation
of molecules (Xu et al., 2019; Hoogeboom et al., 2022),
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Figure 8. Average time (left) and GPU allocation (right) during inference on ModelNet40 for a batch size of 32.
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Figure 9. Average time (left) and GPU allocation (right) on ModelNet40 validation set per batch B = 32 for various number of neighbors
and number of channels C on the grid representation.

de-gridification module must be modified to predict both the
features and positions of the new point cloud. We consider
this a particularly promising direction for future research.

Equivariant gridification. In its current form, gridified net-
works do not respect symmetries which might be important
for some applications, e.g., equivariance to 3D rotations for
the prediction and generation of molecules (Schütt et al.,
2017; Hoogeboom et al., 2022). In future work, we aim to
extend gridification to respect these symmetries by taking
inspiration from equivariant graph neural networks (Fuchs
et al., 2020; Satorras et al., 2021). It is important to note that
not only gridification and de-gridification must be equiv-
ariant, but also that the grid operations in between should
respect these properties. This can be achieved in an effi-
cient yet expressive manner through the use of continuous
Monte-Carlo convolutions on the regular representations of
the group (Finzi et al., 2020; Romero & Lohit, 2022).

6. Conclusion
This work presents gridification, a method that strongly
reduces the computational requirements of point cloud pro-
cessing pipelines by mapping input point clouds to a grid
representation, and performing neural operations in there.
We demonstrate that gridified networks are able to match
the accuracy of native point cloud methods, while being

much faster and memory efficient. Through empirical and
theoretical analyses, we also show that gridified networks
scale much more favorably than native point cloud methods
to larger point clouds and larger neighborhoods.
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Appendix
A. Network structure and convolution blocks
Fig. 10 shows how we instantiated the grid network as
described in section 2.6 in practice. The Conv3D blocks
are CCNN blocks as in Knigge et al. (2023).

Figure 10. Practical pipeline and convolution blocks.

B. Hyperparameters
Table 3 contains the best hyperparameters for the specific
datasets found through hyperparameter sweeps.

Table 3. Hyperparameter settings for the different datasets

ModelNet40 ShapeNet

batch size 32 16
nr. conv blocks 3 6
hidden channels 128 256
nr. epochs 60 50
nr. input points 1000 2047
Ω position embedding 0.1 1.0
optimizer AdamW AdamW
learning rate 0.005 0.001
learning rate scheduler Cosine Annealing Cosine Annealing
learning rate warmup 10 10
nr. neighbors 9 9
grid resolution 9 13
conv. kernel size 9 9
dropout 0.1 0.3
weight decay 0 0.001
aggregation mean max


