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Abstract

In this paper, we study linear regression applied
to data structured on a manifold. We assume that
the data manifold is smooth and is embedded in a
Euclidean space, and our objective is to reveal the
impact of the data manifold’s extrinsic geometry
on the regression. Specifically, we analyze the
impact of the manifold’s curvatures (or higher or-
der nonlinearity in the parameterization when the
curvatures are locally zero) on the uniqueness of
the regression solution. Our findings suggest that
the corresponding linear regression does not have
a unique solution when the embedded submani-
fold is flat in some dimensions. Otherwise, the
manifold’s curvature (or higher order nonlinearity
in the embedding) may contribute significantly,
particularly in the solution associated with the
normal directions of the manifold. Our findings
thus reveal the role of data manifold geometry
in ensuring the stability of regression models for
out-of-distribution inferences.

1. Introduction

The manifold hypothesis posits that real-world data points
typically cluster on a lower-dimensional manifold, denoted
as M, within a high-dimensional encoding space like R¢.
This concept has been investigated in numerous studies
(Hein & Maier, 2006; Narayanan & Mitter, 2010; Niyogi
et al., 2008; Tenenbaum et al., 2000). Fefferman et al.
(2016) established a theoretical and algorithmic framework
to statistically validate and test the manifold hypothesis.
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Other rigorous experiments (Brand, 2002; Ruderman, 1994;
Roweis & Saul, 2000; Scholkopf et al., 1998) have also pro-
vided empirical evidence supporting the low-dimensional
manifold, particularly in the context of image data sets.

The related current mainstream research fields can be clas-
sified into the following two categories: (i) Dimensional-
ity reduction methods (Abdi & Williams, 2010; Roweis &
Saul, 2000; Tenenbaum et al., 2000); (ii) Approximation
theory for deep learning models for functions supported on
low-dimensional manifolds (Chen et al., 2019; Cloninger &
Klock, 2021; Shaham et al., 2018). One of the objectives of
(1) is to reduce the “curse of dimensionality” imposed by the
embedding space directly and explicitly by (approximately)
encoding the data into a lower dimensional space. In the
case of (ii), results show that neural networks can approx-
imate functions that are defined on an embedded smooth
manifold with costs depending on the intrinsic dimensions
of the manifold itself not the dimensionality of the embed-
ding space. However, these studies use only some global
geometric quantities, such as the reach (Federer, 1959) of
the data manifold to establish the approximation estimates.
Moreover, relatively little is known about the stability of
neural networks when evaluating inputs that deviate from
the manifold, i.e., inputs that lie outside the training data dis-
tribution. Further research is needed to uncover the stability
characteristics of neural networks in these situations and
extend our knowledge of their performance and limitations.

Instead of studying the dimensionality reduction or approx-
imation techniques when data are concentrated on a low-
dimensional manifold, we propose to explicitly explore the
influence of extrinsic geometric information of the data man-
ifold on the learning process and its outcome. In particular,
we study linear regression models under the assumption that
the data is distributed on a smooth manifold embedded in a
higher dimensional Euclidean space. To unveil the influence
of the manifold’s geometry on the regression, we focus our
analysis on a localized region around the manifold. We thus
refer to linear regression in such a setup as the local linear
regression problem. Specifically, we focus on the issues of
uniqueness and stability of solutions in the well-posedness
of the linear regression, stemming from the local geometry
of the data manifold. We further discuss the effect of adding
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noise as regularization for the local linear regression under
the low-dimensional manifold setup.

More precisely, we assume a smooth low-dimensional data
manifold M embedded in R%, and we have the data/target
function g : R? — R. Local linear regression means that
we construct an affine function

fx,w,b)=w-x+b, x,weRLbeR, (1)

by solving the least square optimization problem

min _£(w,b) = / £ w,B) — g(x)Pp(x)dx, (2)
weR,beR Q

where p(x) is the data density in a small neighborhood
@ C M. The local linear regression model is of interest
for two primary reasons. On the one hand, the local lin-
ear regression model, which is also known as the moving
least-square method (Cleveland, 1979; Cleveland & Devlin,
1988; Levin, 1998), is widely studied in computer graph-
ics (Schaefer et al., 2006), numerical analysis (Gross et al.,
2020; Liang & Zhao, 2013), and machine learning (Trask
etal., 2019; Wang et al., 2010). On the other hand, any deep
neural network (DNN) with ReLLU activation function is
essentially a piece-wise linear function (Arora et al., 2016),
which can be interpreted as a different parametrization of
the local linear regression model or the linear adaptive fi-
nite element method (Babuvska & Rheinboldt, 1978). By
further studying the approximation theory of adaptive fi-
nite elements and connections between ReLU DNNs and
the linear finite element methods (He et al., 2020), one can
show that the linear region of the learned ReLU DNN is
relatively small if the Hessian of the target function has
a lower bound on that region. Consequently, the optimal
learned ReLU DNN should comprise multiple local linear
regressions within small linear regions if the Hessian of the
target function is not small. In addition to these, a general
regression model f(x;0) = w - (x; 0) + b with feature
map v(x; #) can be understood as a linear regression on the
latent manifold 1) (M) := {¢(x;60) : x € M}. Therefore,
studying how the geometric information of the manifold
affects the linear regression system can benefit us in under-
standing the general regression model or regularizing the
feature map (Zhu et al., 2018).

Moreover, it is important to consider that datasets in practice
often contain noise. Thus, it is imperative to delve into the
impact of noises on the linear regression solution. As stud-
ied in (He et al., 2023), noise in the codimension of the data
manifold can provide a regularization that improves the sta-
bility of linear or ReLU DNN regressions. In this work, we
further showcase how the presence of noise can potentially
prevent the degeneracy and provide regularization effects
for the linear regression model when the embedded data
manifold is not flat.

To summarize, in this study, we focus on local linear regres-
sion models with data on low-dimensional submanifolds
embedded in a Euclidean space and mainly investigate the
following questions:

1. How the uniqueness of solutions for the local linear
regression problem is dependent on the local geometric
information, such as curvatures, of the data manifold;

2. How the local geometric information affects the regres-
sion outcomes;

3. How noises interact with the local geometric informa-
tion of the data manifold and affect learning.

Other related work

Linear dimension reduction, manifold learning, and
the intrinsic dimensionality of data and features. A
multitude of dimensionality reduction methods exists,
both in the supervised and unsupervised settings, includ-
ing Linear Discriminant Analysis (LDA) (Balakrishnama
& Ganapathiraju, 1998), Principal Component Analysis
(PCA) (Abdi & Williams, 2010), Multiple Dimensional
Scaling (MDS) (Cox & Cox, 2008), and Canonical Corre-
lation Analysis (CCA) (Hardoon et al., 2004). The random
projection framework provides a theoretical justification
for data compression (Bourgain et al., 2011; Johnson &
Lindenstrauss, 1984; Krahmer & Ward, 2011) using ran-
dom matrices and sampling methods. Manifold learning
algorithms (Belkin & Niyogi, 2003; Brand, 2002; Chui &
Mhaskar, 2018; Donoho & Grimes, 2003; Roweis & Saul,
2000; Saul & Roweis, 2003; Tenenbaum et al., 2000; Wein-
berger et al., 2004), as a direct result of low-dimensional
manifold hypothesis, aims at finding local low dimensional
representations of the high dimensional data. In the con-
text of deep learning, Gong et al. (2019) finds the intrinsic
dimensionality of deep neural network representations is
significantly lower than the dimensionality of the embedded
space of data. Across layers of neural networks, Ansuini
et al. (2019) further showcases that the intrinsic dimension
of features first increases and then progressively decreases
in the final layers. Pope et al. (2021) investigates the role
of low-dimensional structure in deep learning by applying
dimension estimation tools to natural image datasets. They
find that neural networks could learn and generalize better
on low-dimensional datasets.

Approximation of functions supported on a manifold.
Several studies have shown that the approximation rate for
functions defined on low-dimensional manifolds is deter-
mined by the intrinsic dimensions of the manifolds rather
than the dimensions of the ambient spaces. Shaham et
al. (Shaham et al., 2018) achieves this rate by utilizing the
wavelet structure to construct a sparsely-connected neural
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network. Chen et al. (2019) and Schmidt (2019) implement
chart determination (or partition of unity) and Taylor ap-
proximation with ReLU neural network to get the results.
Liu et al. (2021) obtains similar approximation rates for
approximating Besov functions with convolutional residual
networks. As for stability, a more comprehensive under-
standing requires making specific assumptions about the
form of the functions being approximated. For instance,
Cloinger et al. (2021) explored the case where functions are
locally constant along the normals of the manifold.

The impact of the data manifold in learning. The ex-
ploration of how the geometry of the data manifold affects
the learning process and how to utilize this information to
enhance learning outcomes has received limited attention
in the existing literature. For deep linear and ReLLU neural
networks, He et al. (2023) investigates the variation of the
learned functions in the direction transversal to a linear sub-
space where the training data is distributed. This work also
delves into the side effects and regularization properties of
network depth and noise within the codimension of the data
manifold. Following the low-dimensional manifold hypoth-
esis, Zhu et al. (2018) proposes to apply the dimensionality
of the data manifold as a regularizer in deep neural networks
to achieve better performance for image classification. Fur-
thermore, Dong et al. (2020) uses the curvature information
as the regularizer for missing data recovery tasks.

2. Local linear regression on embedded
manifolds

Denote x = (z1, 2, -+ ,24) and w = (w1, wa, - ,Wq).
The solution to the linear regression problem (1)-(2) should
satisfy the following (d + 1) x (d + 1) linear system, which
is also known as the least square problem:

(z1)  (z122) (1ma) (1) [un (gz1)
(zr1ma)  (a) (xoza) (x2)| W2 (gw2)
(@rwa) (woma) ... (22)  (@a)| |wa| |(gma)

<l‘1> <132> - <$d> 1 b <g)

3

where the ( - ) notation denotes averaging with the density

p(x):
(= [ pxax

We say that the linear regression problem (1)-(2) is ill-posed
when (3) does not have a unique solution.

When the scope of the linear regression is restricted to a
local subset of the data manifold M, the corresponding
analysis can be simplified through a suitable change of co-
ordinates given by a unitary transformation followed by a
translation. The following simple lemma shows that this

change of coordinates preserves the equivariance of the
linear regression problem (1)-(2).

Lemma 2.1. Let Q € R be an orthogonal matrix and
to € Re.If (w*,b*) € R? x R minimizes

£l = | Jocw o+ 8) = g Polx)dx
then (Qw*, b* — (Qw™) - to) minimizes

Bty = [ @x+ to) w b= g0 plx)e

Proof. Define the affine transformation ¢(x) = Qx + tg
and denote X = ¢(x) and Q) be the image of  under
this affine transformation. Since () is orthogonal and
has full rank, ¢ is a change of coordinates. Let w =
(W, W, ..., Wa—1, Wy) and b be the new set of param-
eters for the linear regression problem in the transformed
domain. Further define (%) = g(Q” (X — to)) so that

§(¢(x)) = g(x), and similarly p.

min £(W, b) = mip/ [wli'x — §(%)|?p(x)dx
w,b w,b JQ
=min | [WTto + W Qx +b— g(x)]*p(x)|det(Q)|dx
w,b JQ
:milrjl/ wix +b— g(x)*p(x)dx = miilﬁ(w, b).
w, Q w,
Above, we use the fact that |det(Q)| = 1 since @Q is or-
thogonal. Therefore, the equivalence between the min-
imization problems implies the minimizer of the trans-
formed problem {w, b} can be identified with that of the
original problem {w, b} through the following bijection:
wl =wTQ, b=wTty +b. O

So, without loss of generality, we study the least square
problem under a suitable local coordinate system, which
can facilitate the following queries related to local linear
regression on embedded submanifolds.

1. Examining the solvability of (3);
2. Deriving explicit solution formulas;

3. Describing the effect of the data manifold’s geometry
on local linear regression more lucidly.

Finally, we outline the assumptions and conventions that
will be employed throughout the rest of this work.

Assumptions 2.1. We have the following assumptions for
the data and model with a visual provided in Figure 1 to
help demonstrate some of the assumptions:
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A.1 The given data is a local subset of the smooth data
manifold M N U with U C R? centered at x.

A.2 The linear regression problem is investigated under a
local coordinate frame of R%, where x; := 0 and the
tangent space 7x, /M at Xg is the independent variable
space parameterizing the smooth data manifold locally.

A.3 The data is uniformly distributed in a subset Q' of the
independent variable space Tx, M, i.e., p(x) = ﬁ:

1
() =157 [ -dx. 4)
V] Jar
A.4 All the independent variables z; are assumed to be

i.i.d. according to U ([~ L, L]) where L < 1 deter-
mines the size of the local region §2'.

Figure 1. A visualization of a collection of manifold-structured
data (the grey point clouds) sampled from a 2-manifold embed-
ded in R?; the local based point x is given by the red dot; the
corresponding tangent space Tx,.M is the yellow plane; the blue
surface indicates the part of the submanifold that would be used
for local linear regression. Note only the data distribution is shown
here, no information of the target function g is presented.

While a more general assumption could be entertained for
the data distribution, we contend that the above formulation
provides more clarity in the derivations of the linear regres-
sion solutions and explicates the primary influence exerted
by the local geometry of the underlying manifold.

2.1. Simple curves in R?

We first consider a model problem in which M is given as
the curve M := (z,y(z) = kz?) in R? with & character-
izes the curvature of M at (0, 0). Since the tangent space
at (0,0) is already given as the z-axis, A.2 is automatically
satisfied. According to A.3-A.4, the local data manifold is
given by (z,y(z)) where z € [~L, L] and p(z) = 1/2L.

Then, Equation (3) for this model problem becomes the
following 3 x 3 system:

(@%) (zy) (2)] [we (g)
(xy) (W*) W) |wy| = |(ov) |- ®)
() (yy 1] |0 (9)

With A.3-A.4, we have (xy) = (z) = 0, and Equation (3)
is further reduced to

(z?) 0 0| [wy (g9)
0 (v*) W |wy| = ()
0 (yy 1 b (9)

The solution is given by

= l92)
T @)
w = (o) — {9) ()
1

b = 5 (= () (gy) + (¥*) 9);

where D is the determinant D := (y?) — ((y))?. If g is C*:

ol 4(@) =9(0) + 520z + 5 (0)
2 2 2
43 (550 + 5L Oy + 5L0)57) + 0P

Combining with (xy) = (z) = 0, we finally have
_ 9

._0g 1 9%g >
wy_@(o) %@(0)‘?0@ ),

b* = g(0)+O(LY),

where the power of L terms are considered to be of higher
order since we take L < 1.

Based on the derived formulas, we observe that the mag-
nitude of w;; tends to blow up when the curvature of the
underlying curve M goes to 0. To demonstrate this claim,
we perform a simple numerical simulation on the linear
regression problem with the target function g(z,y) =
222 + 2y% + 62y + 3x + 4y + 10. We randomly sam-
ple N = 1000 points uniformly in the interval [—0.1, 0.1]
to obtain z, and apply the linear regression solver to fit the
data function ¢(z,y), for different values of the curvature
k. The simulated result shown in Figure 2 solidifies our
assertion: w,, tends to blow up as the curvature approaches
0.

To summarize, we list the following properties which will
persist in more general situations discussed in this paper:
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Figure 2. 2D linear regression solutions on data manifolds (z, k2?)
with different curvatures x. z-axis is in log-scale. When curvature
is small, the optimal solution wy, is dominated by the curvature
effect, in a magnitude related to é as we have shown in (2.1).

1. The well-posedness of the linear regression.

2
The matrix {<<Z;>> <?>} will not be invertible if

<y2> = 0 due to k = 0. The data manifold is therefore
called “flat” at the origin.

2. The effect of geometry on the solutions

In the case of non-zero curvature, the linear regres-
sion problem has a unique solution. However, one
must account for the influence of the curvature when
attempting to approximate the first-order information
of g (unless g is linear). This is particularly relevant
when the curvature is small as it could lead to contam-
ination of the target solution. Therefore, the impact
of geometry on the solutions in a more general setup
should not be overlooked.

2.2. Hypersurfaces in R?

In this section, we derive results similar to those obtained in
Section 2.1, which allow us to address the aforementioned
inquiries for general hypersurfaces. The hypersurface M in
R? is an embedded submanifold with codimension 1. As-
sume M is locally smooth (C" for any m > 1). Then by
the inverse function theorem, M can be locally represented
by the graph of a unique continuously differentiable func-
tion, meaning there is a smooth mapping & (of full rank)
of (d — 1) variables defined in the (d — 1)-dimensional
neighborhood U’ of xq s.t.

MNU={zg=y=hx):x' €U cR"'}, (6)

where x € RY = (z1, 29, - --
neighborhood of xy € R,

,xq) = (X', xgq),and U is a

Therefore, the tangent space Ty, M at x is identified by
a hyperplane in R? implying the normal space is only 1-
dimensional since by definition the normal space is spanned

by all the unit vectors n(xg) at xo that satisfy (n, v) =0
for all v € Tx, M, where (-, -) is the standard inner prod-
uct for the embedding space R?. To extend the concept of
curvatures from Section 2.1, we can rely on the shape oper-
ator (Singer & Thorpe, 2015) from differential geometry:

Proposition 2.2. The principal curvatures k1, Ka, . .., K4—1
(associated with n(x)) of M at xo defined through the
shape operator are given by the eigenvalues of the Hessian
at xo: Hess(h)(xo) of the graph representation h.

Proposition 2.2 establishes a direct relationship between
the extrinsic principal curvatures and the Hessian, the gen-
eralized second-order derivative, of the graph of M. The
following Lemma further motivates and generalizes the sur-
face representation assumed in Section 2.1.

Lemma 2.3. (Local representation of the hypersurface M)
Locally under a suitable coordinate basis, the hypersurface
M can be approximated by a quadratic form using the
principal curvatures up to the second order.

Proof. The local graph representation of M is given by
y = h(x') for x’ € U’ C R?L, a neighborhood of x{.
Without loss of generality, we take x{;, = 04—1. A Taylor
expansion of i around 04_; gives:

Y :h(X/) = h(Odfl) + Vh(Odfl) - x!

1
+ 5x T Hess(h(04-1)x" + O(|x'||*).

Sincex =0 = h(04—1) =0, and VA(04-1) = 04—1
because h is tangent to the z-plane, we have y = h(x') =
ix'THess(h(04-1))x" + O([|x'||*). The Hessian is semi-
positive definite, by diagonalization and a change of basis,
we eventually have

y=hix) = 2xXTKx + O(Ix' ),

where KC is a diagonal matrix with its diagonal being the prin-

cipal curvatures k1, ko, . .., kq—1 based on Proposition 2.2.

Thus M can be approximated up to the second order by:
d—1

g~ S mial O

i

With the above local approximation, we can obtain a local
linear regression formula for hypersurface around x:

Theorem 2.4. (Solution formulas for local linear regression

on hypersurfaces)

When the data manifold M is a hypersurface with a local
. . / d—1 2 . .

approximation (x',y = Y ._| K;x;) given in Lemma 2.3,

under the assumptions A.2-A.4, if the linear regression prob-
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lem is well-posed, it has the following solution:

e 2
wis = 55(0) +O(L2)
d—1
82
«_ 0Og 1ot Kiaixg(()) 2
Yy @(0) + 5 d—1 + O(L )7
K2
=1

Proof. Following a similar argument and the same notation
introduced in Section 2.1, by symmetry the linear system
resulted from the least square minimization is given by:

(i) 0 .0 0 w1 (gz1)

0 («3) © 0 0 w2 (gz2)

o O e | e

0 0 0 ) W | w,

v oo b <quy>>
@)

Then it is easy to see w; is trivial to obtain, and we again
only have a 2 x 2 system to solve for w, and b, similar
as in Section 2.1. The rest follows from some algebraic
manipulations, see Appendix A for details. O

To conclude for the local linear regression on hypersurfaces,
we note that we obtain a generalized system with similar
structures as in the case of Section 2.1, however, the previous
problematic situations become much nicer:

1. The system is invertible as long as we have at least
one k; # 0. When k; = 0, corresponding higher-
order nonlinearity assumes the role of x;, meaning the
hypersurface only needs to be non-flat in at least one
direction.

2. The blow-up effect in wy, caused by curvatures is miti-
gated: as long as k; is large in some directions, the term

d—1 d—1
82
L Z i 87132 (0)/ Z #2 would be well-controlled.
=1 ?

2
i =1

2.3. Codimension-% submanifolds

The success of obtaining a solution formula in Section 2.2
is mainly due to the reduction to a 2 x 2 system in the end
of the least square minimization, a direct consequence of
the fact that the normal space is always 1-dimensional for a
hypersurface. In general, for a codimension-%k submanifold

. d%g ([ iFi 7\ L?
b —g(O)—FO(} 5 0)(F— )5 )

whose normal space is therefore k-dimensional, one has
to solve a (k + 1) x (k + 1) linear system from the least
square minimization under the same assumption, hence the
solution formula cannot be easily obtained.

Furthermore, from Proposition 2.2 we learn that the diago-
nalization process and its connection to principal curvatures
are strongly predicated on the assumption of maintaining
a consistent normal direction. For a k-dimensional normal
space, there will be one shape operator associated with each
orthonormal basis of the normal space, meaning whenever
we diagonalize the Hessian of the graph representation along
one normal direction and obtain a change of coordinates
for the tangent space, the resulting local coordinate frame
generally would not diagonalize the others.

To solidify the above statements, consider the example of
a 2-manifold in R%, which is a codimension-2 subman-
ifold with 2 independent normal basis vectors. Follow-
ing the same procedure as in Section 2.2, we would ob-
tain locally a quadratic graph representation (acl, To, Y1 =
k1123 + kopx3) when restricted on the linear subspace
Txo M @& N7. With this coordinate frame, locally around xo,
M, in general, would take the following form up to some
higher order errors:

My, = {(z1, 22, y1,52) ’yl = k1125 + koows + .. .,
Yo = T11TT + T12T1T2 + TooTh + ... },

where the graph representation along 5 is not diagonalized.
Besides, after applying local linear regression as in Sec-
tion 2.2, the resulting linear system from the least square
minimization is given as:

(x3) 0 0 0 0 Wi, (g1)
0 (x3) 0 0 0 Wy (gz2)
0 0 (i)  (ny2) )| |wn| = |(9v) |,
0 0 (yiy2)  (W5)  (y2)| |Wue (gy2)

0 0 (y1) (y2) 1 b (9?

implying to obtain the solution formulas, one needs to solve
the 3 x 3 dense linear system related to y1, y2, and b,

Wi)  (ny2) ()] [wa (gy1)
() W3)  (w2)| |wee | = |[(9¥2) |,
(yi)  (y2) 1 b (9)

where in general a solution formula is hard to obtain, so
is the explicit effect of the data geometry on the solutions.
Nonetheless, investigating the well-posedness of the prob-
lem remains valuable. Apparently, a sufficient condition for
the linear system to be singular, without loss of generality,
is when yo = 0, indicating a completely flat projection of
M onto the linear subspace Ty, M @ M. In general, this
may occur when a low-dimensional manifold is embedded
within a high-dimensional space and lacks sufficient non-
linearity for any of the normal directions in the chosen local
coordinate frame. Therefore, we can state the following
theorem:
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Theorem 2.5. (lll-posedness of linear regression for
codimension-k submanifolds) For a codimension-k sub-
manifold M embedded in R where k > 1, the local lin-
ear regression on U N M for U C R? leads to solving a
(k4 1) x (k 4+ 1) linear system, which could be ill-posed if
the submanifold restricted on U: U N M is flat in any of its
normal direction in a chosen local coordinate frame.

For those cases identified as problematic in Theorem 2.5,
i.e., the local graph representation of M along some normal
direction y; is 0, where M is given locally by M|y, =
{(z1, -+ ,Td—k, Y1, ,Yk)}, it is important to note that
the reach (Federer, 1959), even for the restricted subset U N
M, can still be finite, where the finiteness merely guarantees
that the manifold is non-flat in some directions, not all. Such
findings suggest that the implications derived from the reach
measure may not be sufficient in some practical settings.

A direct comparison between Theorem 2.5 and Theorem 2.4
reveals the distinct contributions of the intrinsic dimension
and the codimension of the data manifold. Specifically, as
the intrinsic dimension increases, the undesirable behavior
in wy, is less likely to occur. Conversely, if the data mani-
fold can be considered as a subset of R”, care must be taken
when isometrically embedding it into R? with d > , as the
manifold may not possess adequate non-linearity in all di-
rections of the normal space, thereby leading to an ill-posed
linear regression problem. Nonetheless, we demonstrate in
Section 3 the benefits of noise to prevent the degeneracy
of the linear regression problem so that this concern rarely
arises in practical applications.

Finally, while an explicit solution formula for general
codimension-%£ submanifolds remains elusive, our study
demonstrates that a solution formula can still be derived for
a specific case involving a codimension-(d — 1) submanifold
in R%, namely a curve embedded in R? in Appendix B. The
derivation utilizes the concept of the Frenet-Serret frame
from classical differential geometry and techniques akin to
the method of matched asymptotic expansion.

2.4. Experiments with MNIST dataset

To gain further insights into Theorem 2.5 and more practical
implications of the linear regression problem, we conducted
numerical experiments with the MNIST dataset (LeCun
et al., 1998). Specifically, we use the 1032 images related
to the digit 2 as data points in R7®* (each of these 28 x 28
pixels are regarded as a point in R”3%). We then construct
a linear data function, denoted by grg4, by generating a
random Gaussian vector in R"3* and normalizing it to have
unit norm. This normalized vector u = (uy, usg, . . ., U7ss)
defines the linear function linear g7g4 as grg4 = U - X =
UIT] + UT2 + ... U784 784.-

We employ the standard scikit-learn software (Pedregosa

etal., 2011) to solve the least square problem min,, ||w-x—
g7s4l|3. The resulting solutions w* are shown in Figure 3(a).
Notably the obtained solutions differ from the expected so-
lution u, while the pointwise approximation error is close
to machine epsilon: ||g7g4(x) — Grsa(x)| < 6.5 x 10712,
where g7g4 is the linear regression approximation with mag-
nitude ~ O(10%). Different parameters leading to essen-
tially the same evaluation indicates that the linear regression
is undetermined.

0.2 0.2

2 SN Rl ARG
¢ }iﬂxdﬁu;‘_ .&%-&"‘ 24
T, N T
A
. Lo e o e te % S
coef .
diff *  error=6.4353E-12
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Figure 3. Left: blue dots represent computed linear regression
solution w* = (w7, ..., w7g,), wWhile orange dots show w* — u.
A constantly-zero tail can be observed at the end for blue dots.
Right: all parameter values with absolute values < 1072 are
changed to 0.18, the error magnitude stays the same.

When the linear system is undetermined, the linear regres-
sion software is designed to find the least Ly-norm solution
to ensure uniqueness, which corresponds to introducing
regularizer to the original linear regression problem. This
regularization causes the free parameters to always be 0,
which forms the constantly-zero tail in Figure 3(a). Fur-
thermore, we artificially modify the parameter values in the
obtained solution: we change all the parameter values with
an absolute value < 1078 to a fixed value of 0.18 as shown
in Figure 3(b). These parameter values should correspond
to dimensions that do not contribute to the final evaluation
of grg4. Therefore, arbitrarily perturbing them should not
have a substantial impact. Interestingly and as expected,
the error in the resulting point-wise evaluation remains the
identical as in the previous case, providing evidence that
these dimensions are indeed redundant.

Theorem 2.5 suggests that the ill-posed nature of the linear
regression problem may be the consequence of the submani-
fold, where the digit-2 MNIST images reside, is confined in
some lower dimensional linear subspace. Analyzing the sin-
gular value of the 0-centered dataset in Figure 4(a), we note
a 534D linear subspace can effectively capture the dataset.
This implies the digit-2 MNIST submanifold, embedded in
R784, exhibits nonlinearity up to around 534 dimensions,
while it is flat with respect to the remaining dimensions.

To validate this observation, let {q1, q2, . . ., q7s4} denote
the principal components of the dataset, and we project the
digit-2 data onto R%3* using {qy, . ..,Qs34}, and repeat a
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534-dimensional linear regression experiment similar to the
one on R84, In Figure 4(b), we observe that the linear
regression recovers the parameters with no constantly-zero
tail, indicating that the regression solution is unique.

ID\\
0

log scale
|
s
parameter value

— x=535
sing_val
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dimension

(a) b)

o

400
dimension

Figure 4. Left: singular value plots of the digit-2 images in O-
centered MNIST under log scale. A sharp decay is observed
at around qs35. Right: linear regression solution on the space

spanned by {qu, ... qs534}.

We now examine the impact of nonlinearity in the data
distribution using data functions of the form: g(x) =

0.025°7%7 22 4 0.01 .7 2. Let X = (&1, ..., F784) €
R784 denote the projected data on span{qy, ..., Qs34 }, we

introduce random quadratic polynomials along all the nor-
mal directions {qs3s, . - ., Q7s4} to bend the data, i.e.:

784 784

x(a) =x+a Z (Z DAL

i=535 j=1

where 7;; ~ N(0,1) and « is the parameter to control the
degree of bending. Next, we perform linear regression on
x(«) with varying « to approximate the quadratic function
g. We record the magnitude of the resulting solutions w
as well as the magnitude of the approximation error e; =
lw-%(c) — g(X)|| in Table 1. We observe that as the degree
of bending decreases, the pointwise approximation error on
the in-sample data remains unchanged, while the magnitude
of the resulting solutions increases significantly, echoing the
phenomenon observed in Section 2.2.

Furthermore, we create out-of-sample data points by ex-
tending along the combined normal direction: X+ =
x+0.1 21‘73535 q;, we found the “off-sample” evaluation
error es = || W+ Xour — g(Xout)|| also drastically increases
as the curvature decreases (column 4), indicating the small
amount of bending of the data manifold adversely affects
the generalization to out-of-sample data.

3. Regularization from noise

In Section 2, we show that local linear regression for data
distributed on submanifolds can have two potential issues:
(1) the problem may no have a unique solution when the
data manifold is flat in one of the normal directions; (2) the

Table 1. Magnitude of different tests of approximating a quadratic
function using linear regression on full-dimensional curved data.
The bending magnitude affects the linear regression solution mag-
nitudes (column 2) and the generalization errors (column 2).

o [lw]|2 e1 e
le-8 92.27 | 463.21 2580.06
le-10 7678.69 | 463.21 10073.15
le-12 | 767852.03 | 463.21 | 1269868.67

nonlinearity of the data manifold could have a nontrivial
effect on the first order information of the target function g.
In this section, we investigate how the presence of noise can
potentially alter these scenarios.

3.1. Noisy data could prevent degeneracy

He et al. (2023) pointed out that the presence of noise in
the ambient space around the data manifold can regularize
the linear regression problem. We recount their finding
specifically for the simple problem considered in Section 2.1.
In their setting, the data is distributed just on the x-axis
(effectively by setting the curvature x = 0, so along the
y-axis the data manifold is flat). Under the presence of
Gaussian noise in the y component of the data coordinates,
ie,y = on ~ N(0,0%) instead of y = 0, the optimal

parameter w, would converge with high probability to:

. Og 1
gyt O(ox/ﬁ
This implies that in the presence of noise, the previously
degenerated linear system defined by the noise-free data is
now invertible, and the true first-order information g—z 1S
obtained in the limit of the number of data points N — oo.
This observation can be easily extended to any codimension-
k submanifold that is flat in certain directions to address the
ill-posed linear regression as discussed in Section 2.3. A
more involved example in R* is used to demonstrate such
point below:

).

Consider again the case of 2-manifold embedded in R*
where the graph representation along one normal direction
11 is at least C2, while the graph along the other direction
Y2 is only linear. Under a suitable local coordinate frame
with yo = 0, the resulting system from the minimization
problem is singular if one applies a full-dimensional linear
regression. However, with the presence of noise, i.e., yo =
on, n ~ N(0,1) for some small o > 0, the linear system
under our usual assumption A.1-A.4 becomes:

z1 O 0 0 0 w1 (gz1)
0 =z 0 0 0 wWa (g9z2)
0 0 @ 0 ()| |we| =)
0 0 0 (5 0| |wy (gy2)
0 0 () O 1 b (9)
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0y2 +

0(02). Thus, the linear system becomes well-posed, and
one can obtain the desired first-order information up to the
order of noise variance.

It is easy to verify that (y3) = o2, leading to wy, =

3.2. Interplay between noises and curvatures

The second observation concerns the impact of geometry
in the derived solution formulas. If one wants to use the
local linear regression to obtain first-order information of
the function g, the geometry of the data manifold would
certainly affect the results as derived in Section 2.2 and
Appendix B. Here we show that one simple remedy is to
add noises to the data.

We demonstrate the effect of the method by applying it to
the case of Section 2.1. Instead of considering y = k=,
we add the Gaussian noises to y along the y-direction to
obtain § = kx + on. Then, the leading order solution for
w,, becomes:

dg 1 kL 0%g
Py 8y( ) 2 K24 + Bo2 8332( )
102
. . % F) g
instead of the previous wy; ~ 5%(0) + %@(O) From

the derived formula, we note that if we take o = 0, we
recover the formula for the noise-free case. Furthermore,
if we take o2 large relative to k2L*, then the denominator
is dominant by o2 such that kL* 4+ 4262 ~ 4352, and the
overall term would be small. This suggests that by adding
noises of a certain magnitude, the curvature effect would be
mitigated and one can obtain a better approximation to the
true first-order solution from the linear regression.

To validate the aforementioned observations, we again con-
duct numerical simulations under the same setting as in
Section 2.1 but with added noises. We take L. = 0.1 and
x = 0.1, and vary the noise standard deviation, o, to obtain
various linear regression solutions; see Figure 5.

Remarkably, within a suitable range of noise variance, the
blow-up effect arising from a small curvature is mitigated.
The underlying mechanism can be better comprehended
through the visualizations of the data distribution provided
in Figure 6. The intuition behind this is the addition of noise
causes the data distribution to blur the structure of the prob-
lematic manifold, resulting in an improved approximation
to the desired value g—g (0) = 4.

4. Conclusions and future work

This study aims to investigate the impact of data manifold
geometry and noise on the well-posedness and stability of
local linear regression models for out-of-distribution infer-
ences, both qualitatively and quantitatively. It was found
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parameter value

Figure 5. 2D linear regression solutions under the presence of

noises with different o. When o is too small, w;j still blows
up; when o is of certain magnitude, w; approximates g—z; but

when o is too large, the noise eventually affects w}, and b*.

Figure 6. Visualization of the distribution of the noisy data.
(a) o = O,w; = 24: the solution is influenced by the small
99 _

curvature, substantially deviates from the target value 52 =4

(b) o = le — 3,w, = 5.63, (c) 0 = 2e — 3, w,, = 4.43: when
noise is added at a certain level of the standard deviation o, w; is
significantly reduced; as o increases further, w, approaches to 4.

that for general low-dimensional smooth manifolds, the
uniqueness of solutions in the local linear regression prob-
lem can be compromised when the data manifold is flat in
one of the normal directions. Additionally, through theo-
retical and experimental analysis on specific submanifolds,
it was revealed that the nonlinearity of the data manifold,
such as curvatures, has a significant and nontrivial effect
on the stability of the regression outcomes. Furthermore,
the presence of noise in the data was shown to not only pre-
vent degeneracy but also interact with curvatures to prevent
blow-up in the linear regression solutions.

This work presents a novel approach for analyzing the in-
fluence of data manifold geometry and noise on the well-
posedness and stability of regression problems. It offers
opportunities to incorporate established concepts and tech-
niques from geometry to study diverse data manifolds and
unveil their intrinsic impact on regression problems. Addi-
tionally, it opens avenues for exploring more complex and
practical machine learning scenarios, such as investigating
ReLU deep neural networks for regression and convolu-
tional neural networks for classification tasks.
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A. Derivation of solutions for hypersurfaces

To compute the quantities in each entry in Equation (7), under the assumption that each z; ~ U ([—L, L]) we have:

d—1 L L2 d—1
(y) = W/Q,me dxidxs ... dxg_1 = 2L Z/L/{Zx dz; = _ Ki,
i=1 i=1
1 L L “ It
(:c?y) = —/ njx]dx] ) Z / K dxl/ $?d.’£j = —K; + Z Ki—,
(2L) (4L iy #j I 5 Byl 9
d—1 d—1 i d-1 14 d-1 i 14
_<(Zmzxi)>—<25 —&—QZZ/@/@J > ki —&—222/{2&]9.
i=1 i=1 =2 j=1 i=1 =2 j=1
The determinant of the target 2 x 2 linear system is then given by:
4 % L4 d—1

D= ZK?L7+2ZZKZKJ?—? Iii)Q

=2 j=1 =1

where (Y01 ki)° = (0] k242300 2 Yoy kirij). As aresult:

Then, to obtain an explicit expression for the RHS, we again Taylor expand the data function g, assumed to be locally
smooth, around the base point:

9x) =9 < h(x)) = 9(0) + X" Vg(0) + 5x" Hess(9)(0)x + O(|x)
N |

dg ‘“39 ) 0% 19%g
—9(0) + Za— 33 b O+ 0T T O, + 5 g SO0 + Ol
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where 3?2 is in fact of O(||=||*). With such expansion along with the previously computed quantities and keeping only the
nonzero terms, we can obtain (g), (gz;), (gy) accordingly:

_ g 15~ 9%9 01,2 3
(9) =0(0) + 5,00 + 33 57 Oeh) + (o(IxI*))
B dg 1292 102 & o2 .
_9(0)+a—y(0) 3 > kit 2?;@(0”0“ )
0 L?
(gui) =52-(0) % + O(LY)
dg 1L 92 0%g
(9w) =9(0){y) + 5 (O)") + 53 55ty + 52 0°) +(O(e]))
i=1 z
P, g d—1 ,L d—1 i I
=9(0) 5> i+ 5 (0)( Z?HZZRZ@Q)
i=1 i=1 =2 j=1
= 0%
+ 52@@)(“#?"’2’% )+ O(L°)
i=1 "t J#i
L d—1 d—1 L d—1 1
— 2
fg(())?; 1+— Z 7+2;;K1H]9
12 9% Lt Lt .

Again, the optimal solutions for w,, b are given by applying the inverse (the matrix is non-singular) to the RHS vector
[{gy), (9)]", which yields:

—_

wy = 5 ({gy) — {9) (v))

0" = 5 ((v*) (9) = () (9v))
. dg o Oy 2
wj = ( (o) >)+(a—y< W) - 2 0)w)?)
19292 g 10240 0%g,  L* “ 6
(5 . 527 +Z 5g) 35 L g0 L)+ O )
dg 1 /04 1* Eoy Loy Loy L4 .
L)+ ((5 SDX G0+ (A0 s - X g0 k) o)
i=1 ? i=1 L e i=1 g e
_0Og 1 [4* &2 0%g 5
= aiy(o) + ﬁ <5 £ azlz (O)Hz + O(L ))
dg 1 414 22 6
20+ = (g 2 58O+ 0())
00" s i & o
d—1 92 .
8—3(0) 5 S+ 0L
P
=1
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. _ 1 9, 0g 0g
b —W(gm>(<y2>—<y>2)+(< v 5, O) = ) 5 )1

9 d—
+ (300 X 580D~ 510 3 §$§<0><x3y>) v O<LS>)
d—1 1

1829 d—1
Z? ) Z/ﬁ: +2ZZ/€1I€] 9
i=1 ?

1

=2 j=1

d—1 7

6 6
X (s s )+ (s s + 2 Y Y ) ) ) + 0

i=1 k#i j#i Jj#i Jj=2k=1

LG L6 6
D (Zm?(w—w> (35 + mefwsz%?) (0) + O(L*)

J#i J#i J#i

B 1 , L8 LS L6 IS 8% y
—0(0) + 5 1(;nj<1527> R ) a0+ O

6 2
:9(0)+d_114L4}_1<Z (§§5) (i;)mg )g‘g()JrO(L“)

B. Local linear regression for curves in R?

In this section, we consider submanifold with codimension d — 1 in some Euclidean space, that is, a smoothly embedded
curve. A simple case would be a non-planar curve in 3-space.

B.1. Results on 3-dimensional curves

Similar as in Section 2.2, we fix a based point x( and apply unitary transformation and translation to obtain the standard
local coordinate frame, where we have the tangent space Ty, M as our domain. However, the caveat here is that for a curve,
the tangent space is always 1-dimensional (line induced by the tangent vector), resulting in a normal space of 2-dimensional.
Since the principal curvatures are associated to a certain normal direction, when the normal space is only 1-dimensional,
there is no ambiguity, but when the codimension is larger than 1, one needs to deal with care as we discuss in Section 2.3.

Fortunately, for curves, a useful concept called Frenet—Serret frame from differential geometry comes in handy: if the curve

14
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r is parameterized by the arc length s, then we have:

() LT
T = ) N = )
Bls) = T(s) x N'(s) w(s) = [T'(s)| = [ (5)

where T, N/, B denotes the tangent direction, normal direction, and binormal direction respectively, and it is easy to see
they form a orthonormal basis for the embedding space. «(s) denotes the curvature. Then the Frenet-Serret formulas give
explicit equations to describe the relationship of the three basis vectors:

T'(s) = k()N (s)
N(s) = =r(s)T () +7(5)B(s) ®)
B(s) = —7(s)N(s)

where 7(s) is the torsion (at position r(s)) given by |7(s)| = |N"(s) — (N’(s) - T(s))T (s)]|, which in intuition describes

the tendency of the curve to deviate from being flat in a plane, just as the curvature describes the tendency to stay away from
being straight as a line. Then we arrive at the following lemma.

Lemma B.1. (Local representation of curves in R3)
For a smoothly embedded curve r(s) in 3-dimensional Euclidean space, locally when viewing from the coordinates defined
through T, N and B, it can be approximated by monomials in each of the basis direction in the following way:

r(s) = (z, gm2 + 0(2), %x?’ +0(2?) = r(s) = (v, -a?, —a%)

Proof. By taking the local referring point as r(0) = 0, then a local Taylor expansion of the curve around s = 0 yields:
1 1 -
r(s) = 0+1'(0)(s = 0) + 5r"(0)(s — 0)> + 57" (0)(s — 0)%+0O(s*) )

Using the Frenet-Serret frame Equation (8), we know

Plug in the above into Equation (9) to obtain:

1 1
r(s)=Ts+ 5/{/\/52 + E(H/(O)N — k2T 4 wk1B)s® + O(s) (10)
which is a complete characterization of the curve r(s) around s = 0 up to the forth order. Furthermore, note that 7-A-B
forms an orthonormal basis with the origin being at 0, we can therefore express Equation (10) up to the forth order term
under the new coordinate basis by collecting terms as

2
r(s) ~ (S - %83, gsz +

'(0) 3 KT 3

—S", —/S§ :>rsz(s,fs, S
5 ) =)

Finally, for another parametrization of r(t), choose a specific ¢ such that the change along the tangent direction at ¢ = 0 has

the same scale as the original x-axis. This can be easily done by setting the parametrization to have constant speed along 7T,

and rescale the constant to match with z. Thus, locally we obtain r(¢) - 7 =: z(¢) ~ =, having the same scale as . On the

other hand, for the arc length parametrization one has

s(t) = / ()=
15
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which is another function of ¢. Therefore, both z(¢) and s(¢) admit the Taylor series expansion around 0 as follow:
S// (O)
2
1
0
z(t) = z(0) + 2/(0)t + xT()tQ +0(t%)

s(t) = s(0) + s’ (0)t + 2+ O(t%)

We show their Taylor series expansions match with each other in the lower order. Apparently s(0) = x(0) = 0, then
r'(0)

[ (0

2’'(0) = ||’ (0)|| = s’(0). As for the second order derivative, 2’/ (t) =" (t) - T = 2”(0) =r"(0) - T.

(r'(t), £(t)) + (x"(t), ¥'(t))  (K/(t), ¥/ (1))

2,/(r'(t), r'(t)) vl

=T -r"(0) = 2(0). A further calculation will show that s”/(0) # z'”(0), therefore s(t) — x(t) =

0, from the Taylor expansion we have z(t) = O(t), we can then write s(t) = x(t) + O(x(t)?). Plug
g 2

25

ﬂs3) we have the desired results. O

for first order: z'(t) = r'(t) - T, s'(t) = ||r'(¢)|| by fundamental theorem of calculus. But 7 = , we have

=

() = (I ()] = _ T ()

which implies s”(0)
O(t?). Since x(0) =

this in to r(s) ~ (s, ;g

The above formulation indicates that if we choose the tangent space as the space for the independent variable z, as we did
in Section 2.2, and investigate the local graph representation of the curve with respect to this base coordinate, we have
one graph along the A/ direction, whose approximation is denoted by y(z) = §x2, and one along the B direction, with
approximation denoted by z(x) = 2. Therefore, we can perform local linear regression under this coordinate frame,
demonstrated in the following theorem:

Theorem B.2. (Solution formulas for local linear regression on curves in R3)

Assume for simplicity the given data points (x,y,z) € M are uniform in x, e.g. x € Q = [—L, L] where M is a curve

in 3D, then the solution formulas for local linear regression on M under the local coordinate frame, if the problem is

well-posed, are given by:

9g

o(rL*

s =20 +ort

dg 1 9% 9

=—=(0)4+ —==(0)+ O(L

Wy = G0 + 5= 5 (0) + O(12)

«_ 0y ks 9%g 1 9

t= 2o+ 2o+ oot
0z kg 8£Ey 6]433 ox

b* = g(0) + O(L*)

where ko, k3 are the corresponding nonlinear quantities along the vy, z respectively.

w (0) + O(L?)

Proof. From Lemma B.1, we know any curve can be locally described by the triplet: (z, §x2 %x?’) up to some higher
order error, where x is the independent variable along the tangent direction at the base point xg = 0, and «, 7 are the
curvature and torsion respectively at the base point. For consistency we denote x by ks and 7 by k3, and assume they are

non-zero otherwise the linear regression problem becomes ill-posed on the dimensions with zero nonlinear quantities.

Similar to Section 2.1 by a symmetry argument, e.g., (zy) = (yz) = 0, (xzz) # 0, the linear system resulted from the least
square minimization is (with a reordering):

S A U i I - [0 ] ) [to0] |
() 1]Lb] [(@
leading to two independent 2 x 2 linear systems which can be solved exactly. O

16
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Again, from the solution formula we make conclusion similar to that from Section 2.1: when any of the direction of y and =
is flat, meaning ko = 0 or k3 = 0, the linear system is not invertible hence the problem is well-posed; the non-linearity
prevents the ill-posedness, but they affect the first order solution from a non-trivial way. The next step is to generalize to
curves in d-dimensional Euclidean space.

B.2. Generalizations to curves in R¢

To obtain a similar result to curves in an Euclidean space of arbitrary dimension, we first need a local representation of the
curve in R?. To this end, we introduce the notion of generalized Frenet-Serret formula: starting from the canonical basis
vectors, the tangent 7 and the normal N'(s) = 7'(s)/|T(s)|, one obtains the remaining orthonormal basis following a
Gram-Schmidt type procedure by subtracting projection on previous directions. For example, to get the next two basis
vectors:

TB(s) = N'(s) = (N'(s) - T(s))T(s) = N'(s) = —k(s)T(s) + 7(s)B(s)
oD(s) = B'(s) — (B'(s) - N(s))N(s) — (B'(s) - T(s))T(s) = B'(s) = —7N(s) +D(s),

where (7, B) and (o, D) are the nonlinearity-direction pair for the third and the forth normal direction respectively, and
the last equation follows from differentiating B - 7 = 0. Last but not least, if the curve is embedded in R%, by expressing
D’(s) in terms of sum of projections along all the available directions, and differentiating the dot product of D with all the
directions, we will have D’(s) = —7(s)B(s). In high dimension, for clarity, we use {V;}¢_, to denote the orthonormal
basis, e.g. V1 := T, Vo := N, etc, and {ai},‘f:l for the corresponding curvature quantities, e.g. a; = 1, ap = K, etc. Then,
all the corresponding Frenet equations derived from the Gram-Schmidt process can be summarized in the following matrix
form (with a slight abuse of notation that V| = 77(0), etc.)

0 [65) 0 ce 0 Vl V{
—Q 0 (6 %:3 ce 0 VQ Vé
0 —as 0 . | |Vs|=|Vs (11)
: o eyl | 3
0 ... 0 —ag 0] LV Va

With Equation (11), we have the following Lemma:

Lemma B.3. (Local representation of curves in R%)
For a smoothly embedded curve r(s) in RY, locally when viewing from the coordinates frame obtained by the generalized
Frenet-Serret frame, it can be approximated by monomials in each of the basis direction in the following way:

d
Qg | e
r(s) ~ (s, ?sz, el %sd) ~ (z, kox?, ..., kqx?)

Proof. Note V; = r/(0), and for n < d from Equation (11), we notice:
I'H(O) = V{ = OLQVQ, r/l/(o) = OLQVé = a2(_a2vl + 053))3)3 V':L = _anvn—l + an—i—lvn—i-l

By induction, one can easily see that the n-th basis direction only shows up in and after the n-th order derivative (™) (0).
Combined with the Taylor series of r around s = 0, by setting r(0) = 0,

s" + O(s‘”l)

n

d_ L (n)
=y U

we know that when collecting all the terms associated to V,,, the leading order term is s”. Therefore, the leading order
approximation of r in terms of the basis {V;}¢_; is:
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Using x,, to denote the variable corresponding to the n-th direction and let k,, := % H;L:1 «; to denote the corresponding
nonlinear quantity, we get z,,(s) = k,s™ + O(s"*1). Then by the approximation introduced in similar to Theorem B.2 ,
we finally arrive at the local approximation of the curve along the n-th direction for any n < d:

Tn(2) = kpz™ + O3 x k2™

O

With Lemma B.3, one can follow the same procedure as in Theorem B.2 to derive the solution formula for local linear
regression on curves in R?. However, the resulting linear system is dense and high dimensional where the direct solving is
no longer tractable. Therefore, we consider an approach based on method of matched asymptotic (Lagerstrom, 2013) to
obtain the solution formulas.

Theorem B.4. (Solution formulas for local linear regression on curves in R%) Assume for simplicity the given data points
X € M are uniform in zy, e.g. ¥ € Q = [~L, L] where M is a curve in RY, then the solution formulas for local linear
regression on M under the local coordinate frame, if the problem is well-posed, are given by:

11 ;. olliitlg
Wn = - (0)+0O r2([41-1%))
{ji}ZG:An i Hken 0,5, . .. ( )
b=g(0) + O(LW%U)

where k; is the corresponding nonlinear quantities along the j-th basis direction, and A,, is the set of all finite indexing
sequences {j;},_, such that:

Ay = { {Jiti=1

ji € N*, Zy‘i:n}

Proof. From Lemma B.3, variables associated to each basis direction can be expressed in terms of x1, then by the symmetry
argument:

ki k j
t+j+1
0; if 1 4 j odd

(zH7) = L9, ifi+ jeven

9

{wia) ~ (217) =

resulting in a decoupling of the linear system from the least square minimization of linear regression problem. For example,
the odd system is given as

(x2)  Amyz3) (zixs) ... [ws (gz1)
(z173) <~T§> (x3ws) ...| |ws (gz3)
(mrxs) (wszs)  (x2)  ...| |ws| = |{gxs)| > (12)

Solving the above system is not tractable in high dimension, however, there is a helpful one can make use of. For example,
for the first row:

L? ks L4 ks LS
(#7) = 37 (T123) = 35 ;o (T1as) = 57
while for the R.H.S. ( 9T ), assume g has enough regularity, we Taylor expand g around 0 abbreviating the evaluation at 0
notation for clarify s.t., admgl = %(0):
99 , 2, 99 g, 5 d%g 18 , 4 1 &g
Oy o) + O3 (w1s) + 0179 (wie) + Orox (w12w3) + 6 O3 (1) 2 0x3x (wrs) +
dg L?>  0Og ksL* 8%g 4 8%g 6o 10% , 1 9% 6
=——+ O(L O(L ——L"+ - O(L
Ox1 3  Ox3 5 0x1 T2 (L9 + OxaTs (L) + 6 O3 + 2 0r3x3 (L) +

18
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Since L < 1 is a free variable, by using the idea from the method of matched asymptotic expansions, we match different
orders of L in the equation to obtain the solutions for w; . In this case, for the first three variable coefficeitns, we have

’UJT 2 39 L2 4 * 89 2
Bt = L O = ui = 5+ O(r?)
2 1 3

3T 8953 kigal'll'g %Txi’
«_ 0y  keks g ks &9 k3 &g ks &g Ry 09 1 O
5 8355 k5 8x2x3 ]{75 8x1x4 2]€5 32511’% 2k5 a.’L%’Eg 6]{}5 al’?lg 120k5 835‘;’

w +O(L?)

Last but not least, for w3, the higher order O(L?) comes from the O(L*) terms from the R.H.S., but the existence of w}
ensures the complete matching of the O(L*) terms, therefore, w7} would have O(L*) as the higher order terms instead, but
existence of w3 would further turn it into O(LG). In the end, if the curve is embedded in R¢ for d being odd, the higher
order term for w?} would be O(L4~1), and O(L?) if d is even. Similar arguments can be applied to each of the coefficients.
Finally, for the even order system for b, w3, wy, ..., same conclusion can be made. And by identifying the patterns in the
solution formulas, one could use the following compact formula to represent:

[T ki g0 .
= 2 I{Z;}llknajﬂ- Z; () +o(z2(H1-1)))

{ji}EAn

b:g(0)+0(L2(f%1))

where k; is the corresponding nonlinear quantities along the j-th basis direction, and A,, is the set of all finite indexing

sequences {J; },_, such that:
Gi €N i —n}.
i

For example, when n = 3, 4,, = {{1, 1,1}, {1,2},{2,1}, {3} }, which are the corresponding z-indices for each of the
term in the leading order solution for w3. O

A, = { {Ji}i=1

The above solution formulas indicate that when embedding the curve in an extremely high dimensional Euclidean space, the
higher order term correspond to the power of L would be infinitesimally small for most of the variable coefficients, while the
leading order terms always remain, and we again observe the nonlinear quantities come into play in a totally non-trivial way.
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