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Abstract
Wasserstein dictionary learning is an unsuper-
vised approach to learning a collection of proba-
bility distributions that generate observed distri-
butions as Wasserstein barycentric combinations.
Existing methods solve an optimization problem
that only seeks a dictionary and weights that mini-
mize the reconstruction accuracy. However, there
is no a priori reason to believe there are unique
solutions in general to this problem. Moreover,
the learned dictionary is, by design, optimized to
represent the observed data set, and may not be
useful for classification tasks or generative mod-
eling. Just as regularization plays a key role in
linear dictionary learning, we propose a geometric
regularizer for Wasserstein space that promotes
representations of a data distribution using nearby
dictionary elements. We show that this regular-
izer leads to barycentric weights that concentrate
on dictionary atoms local to each data distribu-
tion. When data are generated as Wasserstein
barycenters of fixed distributions, this regularizer
facilitates the recovery of the generating distri-
butions in cases that are ill-posed for unregular-
ized Wasserstein dictionary learning. Through
experimentation on synthetic and real data, we
show that our geometrically regularized approach
yields more interpretable dictionaries in Wasser-
stein space which perform better in downstream
applications.

1. Introduction
A central goal of statistical signal processing is the discovery
of latent structures in complex data. The classical manifold
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hypothesis posits that data living in a high-dimensional am-
bient space can be well approximated by low-dimensional
manifolds or mixtures thereof, which circumvents the curse
of dimensionality that plagues high-dimensional statistics.
Linear dimensionality reduction methods such as principal
component analysis (PCA) (Hotelling, 1933) and non-linear
manifold learning approaches that exploit local connectivity
structure in the data (Scholkopf et al., 1997; Tenenbaum
et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003;
Coifman & Lafon, 2006) rely on this assumption of in-
trinsically low-dimensional structure in high-dimensional
data to glean insights. These techniques typically output a
low-dimensional representation preserving local geometric
structures (e.g., pairwise Euclidean or geodesic distances).

An alternative perspective for efficiently representing com-
plex data is the sparse coding and dictionary learning
paradigm (Olshausen & Field, 1996; 1997; Barlow et al.,
1961; Hromádka et al., 2008). In the simplest setting when
data are considered as elements of Rd (or more gener-
ally a normed vector space), the aim of sparse coding is
to represent data {yi}ni=1 ⊂ Rd, stacked as rows in the
matrix Y ∈ Rn×d, as a linear combination of vectors
{dj}mj=1, stacked as a dictionary matrix D ∈ Rm×d such
that Y ≈ ΛD for some coefficients Λ ∈ Rn×m, perhaps
subject to constraints on Λ. When the dictionary D is fixed,
this reduces to an optimization over Λ (Mallat, 1999; Engan
et al., 2000). More generally, D and Λ can be learned simul-
taneously with some additional constraints on the dictionary
or coefficients (Lee & Seung, 1999; Aharon et al., 2006):

argmin
D,Λ

L(Y,ΛD) + ρR(D,Λ) (1)

for some loss function L (e.g., L(Y,ΛD) = ∥Y−ΛD∥2F )
and regularization function R (e.g., R(D,Λ) = ∥Λ∥1)
balanced by a parameter ρ > 0. The regularizers ensure
well-posedness of the problem and improve interpretability
and robustness. The problem (1) is the dictionary learning
problem in Rd.

The imposed Euclidean structure is convenient computation-
ally but limiting in practice, as many real data are better
modeled as living in spaces with non-Euclidean geometry
where instead Y ≈ F(D,Λ) for some nonlinear reconstruc-
tion function F (Tuzel et al., 2006; 2007; Li et al., 2008;
Guo et al., 2010; Harandi et al., 2013; 2015; Cherian & Sra,
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2016; Yin et al., 2016; Maggioni et al., 2016; Liu et al.,
2018; Schmitz et al., 2018; Tankala et al., 2020). Important
questions in this setting are what notion of reconstruction
should take the place of linear combination (i.e., F), how
reconstruction quality is assessed without the use of a global
norm (i.e., L), and what constraints are natural on the coef-
ficients in the nonlinear space (i.e.,R).

This paper focuses on dictionary learning for data that are
modeled as probability distributions in Wasserstein space.
This basic framework was pioneered by (Schmitz et al.,
2018), where the authors leverage the theory and algorithms
of optimal transport to propose the Wasserstein dictionary
learning (WDL) algorithm, whereby a data point (interpreted
as a probability distribution or histogram in Rd) is approxi-
mated as a Wasserstein barycenter (Agueh & Carlier, 2011)
of the learned dictionary atoms. The resulting framework
is focused on learning a dictionary that reconstructs well,
but neglects other desirable aspects of a dictionary such as
sparsity of the learned coefficients to promote latent feature
representations. Moreover, WDL is ill-posed in two senses:
(i) for a fixed dictionary, unique coefficients are not assured;
(ii) there may be multiple dictionaries that enable perfect
reconstruction of the observed data; see Figure 1.

Summary of Contributions: We generalize the classical
WDL algorithm (Schmitz et al., 2018) by incorporating a
novel Wasserstein geometric regularizer. Our regularizer
encourages an observed data point to be reconstructed as
a barycentric representation from nearby (in the sense of
Wasserstein distances) dictionary atoms. As we vary the
balance parameter for this regularizer, the proposed method
interpolates between classical WDL (no regularization) and
Wasserstein K-means (strong regularization). Unlike the
original formulation, the proposed regularizer learns dictio-
nary atoms with geometric similarity to the training data.
Theoretically, we characterize the concentration of learned
coefficients on nearby atoms to a data distribution, and show
that the original generating atoms are uniquely recovered
when data is modeled as a barycenter of two distributions.
Empirically, we provide evidence that the regularized prob-
lem can learn the generating atoms even when there are
more than two generators, and that our scheme yields more
interpretable and useful coefficients for downstream clas-
sification tasks; the code to reproduce all experiments in
this paper can be found here: https://github.com/
MarshMue/GeoWDL-TAG-ML-ICML-2023.

Notations and Preliminaries: Lowercase and uppercase
boldface letters denote (column) vectors and matrices, re-
spectively. We generally use Greek letters to denote mea-
sures, with the exception that D = {Dj}mj=1 denotes the
dictionary when its elements are measures. We denote
the Euclidean norm of a vector x as ||x||2. We let ⟨·, ·⟩
be the Euclidean inner product when applied to vectors

and the trace inner product when applied to matrices. Let
∆m = {x ∈ Rm | ∑m

i=1 xi = 1,∀i = 1, . . . ,m, xi ≥ 0}.
Softmax, as a change of variables, is defined as σ(x) :=
exp(x)/⟨exp(x),1N ⟩, where we take the exponential to
be an elementwise operation on the vector and use 1N to
denote the ones vector of size N . When we write σ(X) for
a matrix X ∈ Rn×m it means applying σ to each row.

2. Background and Related Work
Classical Dictionary Learning: In (1), using
L(Y,ΛD) = ∥Y −ΛD∥2F and ρ = 0 yields an optimiza-
tion problem with optimal dictionary and coefficients given
by the m singular components with largest singular values
(Eckart & Young, 1936). To promote sparse coefficients
that still realize Y ≈ ΛD, the prototypical regularized
dictionary learning problem is min

D,Λ
||Y −ΛD||2F + ρ||Λ||1

where ||Λ||1 =
∑n

i=1

∑m
j=1 |Λij | is a sparsity-promoting

regularizer (Donoho, 2006; Elad, 2010). In the non-negative
matrix factorization (NMF) paradigm, non-negativity
constraints are imposed on the atoms and coefficients (Lee
& Seung, 1999; 2000; Berry et al., 2007).

Optimal Transport: We provide basic background on opti-
mal transport; for more general treatments and theory, see
(Ambrosio et al., 2005; Villani, 2021; Santambrogio, 2015;
Peyré et al., 2019). Let P(Rd) be the space of probability
measures in Rd. Let µ, ν ∈ P(Rd). Let Π(µ, ν) be the
space of measures on Rd ⊗ Rd with marginals µ, ν. The
squared Wasserstein-2 distance is defined as:

W 2
2 (µ, ν) := min

π∈Π(µ,ν)

∫
Rd×Rd

∥x− y∥22 dπ(x,y) (2)

Given measures {Dj}mj=1 ⊂ P(Rd) that have finite second
moments, along with a vector λ ∈ ∆m, the Wasserstein-2
barycenter (Agueh & Carlier, 2011) is defined as:

Bary(D,λ) := argmin
µ∈P(Rd)

m∑
j=1

λjW
2
2 (Dj , µ) (3)

The measure Bary(D,λ) can be interpreted as a weighted
average of the {Dj}mj=1, with the impact of Dj proportional
to λj . Wasserstein barycenters have been proven useful in a
range of applications, and are in a precise sense the “correct”
way to average measures, in that Bary(D,λ) preserves the
geometric properties of D = {Dj}mj=1 in a way that lin-
ear mixtures do not (Agueh & Carlier, 2011; Rabin et al.,
2011; Cuturi & Doucet, 2014; Bonneel et al., 2016). Wasser-
stein barycenters are intimately connected to geodesics in
Wasserstein space, in the following sense. For π∗ optimiz-
ing (2), define the McCann interpolation of µ, ν as (Pt)#π

∗

where Pt(x,y) = (1 − t)x + ty for t ∈ [0, 1] and where
(Pt)# denotes the pushforward by Pt. The McCann inter-
polation is the constant-speed geodesic between µ, ν in the
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Wasserstein-2 space (McCann, 1997; Ambrosio et al., 2005)
and coincides with the Wasserstein barycenter with weight
λ = (1− t, t) on µ, ν.

The use of Wasserstein distances in linear dictionary learn-
ing problem (1) has been considered with L = W2 and
R(D,Λ) = −ρ1⟨D, logD⟩ − ρ2⟨Λ, logΛ⟩ to promote
positivity of D and Λ (Rolet et al., 2016). The problem has
the added constraint that the data reconstructions are proba-
bility distributions, i.e., ΛD ⊂ (∆d)n in order to make L
sensible. One can also use the related Gromov-Wasserstein
distance to perform dictionary learning on graphs (Vincent-
Cuaz et al., 2021). Both of these methods have a linear
generative model that differs from the non-linear generative
model that we consider.

3. Geometric Regularization for Wasserstein
Dictionary Learning

WDL (Schmitz et al., 2018) aims to find a dictionary of
probability distributions D = {Dj}mj=1 ⊂ P(Rd) such that
observed data {µi}ni=1 ⊂ P(Rd) can be represented as
Wasserstein barycenters of the collection D. The precise
optimization problem is

argmin
D⊂P(Rd)
Λ∈(∆m)n

n∑
i=1

L(Bary(D,λi), µi), (4)

where the loss function L is typically taken to be W 2
2 and

λi ∈ ∆m is a vector of size m, corresponding to a row of
Λ. In other words, solving this problem finds the dictionary
of probability distributions yielding the best approximations
to each data point µi using barycentric combinations of D.
WDL was proposed in part as an alternative to geodesic prin-
cipal component analysis in Wasserstein space (Boissard
et al., 2015; Seguy & Cuturi, 2015; Bigot et al., 2017), and
has a demonstrated ability to produce meaningful atoms for
representing probability distributions. However, the prob-
lem formulation is ill-posed: even with a fixed dictionary
D the learned coefficients may not be unique, and more
broadly there may be multiple dictionaries that can recon-
struct the data perfectly.

Another way to see this is by comparing WDL to linear
dictionary learning: (4) is similar to (1) but without a regu-
larization term. Promotion of sparsity of coefficients on the
simplex can be done with entropy, projection onto the sim-
plex, and suitable use of the ℓ2 norm (Donoho et al., 1992;
Shashanka et al., 2007; Larsson & Ugander, 2011; Kyril-
lidis et al., 2013; Li et al., 2020). Our focus, on the other
hand, is on geometric regularization as follows. In the linear

setting, the geometric regularizer
m∑
j=1

λj ||y − dj ||22 (for an

individual data point y with representation coefficient λ,

constrained to lie on the probability simplex, with respect
to dictionary {dj}mj=1) has been proven to promote sparsity
by favoring local representations, namely reconstructing us-
ing nearby (with respect to Euclidean distances) dictionary
atoms (Yu et al., 2009; Tankala et al., 2020; Zhong & Pun,
2020).

We propose to regularize (4) with a novel Wasserstein geo-
metric regularizer:

RG(D,Λ) :=

n∑
i=1

m∑
j=1

(λi)jW
2
2 (Dj , µi). (5)

This yields a new, regularized objective:

G(D,Λ, {µi}ni=1) :=

n∑
i=1

W 2
2 (Bary(D,λi), µi) (6)

+ρRG(D,Λ)

where ρ > 0 is a tunable balance parameter. We will learn
dictionaries

(D∗,Λ∗) = argmin
D⊂P(Rd)
Λ∈(∆m)n

G(D,Λ, {µi}ni=1).

At first glance the geometric regularizer (5) resembles the
objective in the definition of the Wasserstein barycenter in
(3) and may be appear redundant. However, the barycenter
minimization is only indirect in WDL for finding dictionary
atoms that provide representational capacity for the data; the
atoms could be arbitrarily far from the data with no penalty
to the objective (4).

Interpretations of RG(D,Λ): The regularization term
RG(D,Λ) is analogous to Laplacian smoothing in Eu-
clidean space (Cai et al., 2010; Dornaika & Weng, 2019)
and can be interpreted as non-linear archetypal learning
(Cutler & Breiman, 1994) in Wasserstein space. The geo-
metric regularizer can also be seen to promote sparsity by
penalizing the use of atoms that are far from the data to
be represented and thus acts as a weighted ℓ1 norm on the
coefficients (Tasissa et al., 2021).

Connection with Wasserstein K-means: In Wasserstein
K-means (Domazakis et al., 2019; Verdinelli & Wasser-
man, 2019; Zhuang et al., 2022), given observed mea-
sures {µi}ni=1 ⊂ P(Rd) we want to find “centers” D =
{Dj}mj=1 ⊂ P(Rd) solving the optimization problem
min
C,D

∑n
i=1

∑m
j=1 CijW

2
2 (Dj , µi), where C ∈ {0, 1}n×m

is such that
∑m

j=1 Cij = 1 for all i = 1, . . . , n. Suppose
D∗ ⊂ P(Rd) and Λ∗ ∈ Rn×m are the optimizers of (6).
Note that for any feasible Λ and with dictionary fixed atD∗,
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we have

RG(D∗,Λ) =

n∑
i=1

m∑
j=1

(λi)jW
2
2 (D∗

j , µi)

≥
n∑

i=1

m∑
j=1

(λi)j min
1≤p≤m

W 2
2 (D∗

p, µi)

=

n∑
i=1

min
1≤p≤m

W 2
2 (D∗

p, µi)

Thus, for fixed D∗, coefficients that minimizeRG(D∗,Λ)
have the property that the ith row is all zeros except for a 1 at
index i∗ = argmin

1≤p≤m
W 2

2 (D∗
p, µi). In this sense, for a fixed

dictionary D∗ and with each observation µ1, . . . , µn having
a unique nearest neighbor inD∗, the optimal solution Λ∗ is a
matrix whose rows are binary and 1-sparse, which is exactly
of the same form as the binary assignment in Wasserstein
K-means. When the aforementioned assumption does not
hold, uniqueness is not guaranteed but the 1-sparse solution
is in the family of optimal solutions.

In this sense, incorporating the geometric regularizer (5)
into the main objective in (4) with a scaling parameter ρ
enables interpolation between learning a dictionary for pure
reconstruction (ρ = 0) and one with sparsity promoted via
K-means (ρ ≫ 0). Indeed, (5) is like a soft Wasserstein
K-means objective, in that it promotes assigning coefficient
energy to a single, closest atom.

Learning Coefficients in a Fixed Dictionary: To evalu-
ate the effect of (5), we consider the case where multiple
barycentric weights may reconstruct a measure. For a fixed
dictionary {Dj}mj=1 ⊂ P(Rd) and a target measure µ, we
consider the following problem:

argmin
λ∈∆m

m∑
j=1

λjW
2
2 (Dj , µ) (7)

subject to µ = Bary(D,λ).

This is a coding problem under the constraint that µ is ex-
actly reconstructed in the sense of Wasserstein barycenters.
The barycentric coding model analyzed in (Werenski et al.,
2022) gives a characterization of when µ = Bary(D,λ),
which can be leveraged to rephrase (7) as follows; a precise
statement with explicit regularity assumptions and proof
appear in the Appendix.

Proposition 3.1. Let µ be fixed and let {Dj}mj=1 ⊂ P(Rd)
be a fixed dictionary. Under suitable regularity assumptions
on µ and {Dj}mj=1, the solution to (7) is given by

argmin
λ∈∆m

λT c subject to Aλ = 0, (8)

where c and A ∈ Rm×m are uniquely determined by
µ, {Dj}mj=1.

Importantly, c and A are determined by {D}mj=1 for a fixed
µ, so that (8) is a linear program in λ. In general for fixedD
and µ, solving Aλ = 0 subject to λ ∈ ∆m may have mul-
tiple solutions (Werenski et al., 2022). Among all the pos-
sible barycentric representations of µ, (8) chooses the one
“closest” to the dictionary atoms themselves, and thereby
promotes unique codes under the hard reconstruction con-
straint. We note that λ is generally robust to perturbations
of D; see the Appendix for details.

Characterization of Optimal Solutions to (7): For
barycenters whose weights are primarily supported on their
nearest neighbors, we can show that solving (7) will obtain
weights that are also concentrated on their nearest neigh-
bors. Let D = {Dj}mj=1 ⊂ P(Rd) be a fixed dictionary.
For a positive integer k ≤ n, consider the generative model
µ = Bary(D,b) where b ∈ ∆m is a vector supported on
Nk ⊂ {1, 2., , .,m}, the indices of the atoms which are the
k-nearest neighbours of µ with respect to W2. That is, µ is
a barycenter of its k-nearest neighbours in {Dj}mj=1.

The following Proposition shows that solutions to (7) con-
centrate near Nk; its proof appears in the Appendix.

Proposition 3.2. Let µ = Bary(D,b) with b supported
on the indices of the k-nearest neighbors of µ among
D. Suppose without loss of generality that the dictio-
nary elements are ordered in increasing order from µ:
W 2

2 (D1, µ) ≤ W 2
2 (D2, µ) ≤ · · · ≤ W 2

2 (Dm, µ). Let λ∗

be the solution of (7).

Then for all i ∈ {1, . . . ,m} such that W 2
2 (Di, µ) >

W 2
2 (D1, µ),

λ∗
i ≤

W 2
2 (Dk, µ)−W 2

2 (D1, µ)

W 2
2 (Di, µ)−W 2

2 (D1, µ)
.

Proposition 3.2 is vacuous when referring to the coefficients
corresponding to the k-nearest neighbors of µ (the measures
used to generate µ), but it provides a bound on how much
coefficient mass can concentrate off these nearest neigh-
bors. As an illustration, consider two representative cases.
First, if W 2

2 (Dk+1, µ) ≫ W 2
2 (Dk, µ), then λi ≪ 1 for all

i ≥ k + 1 (i.e., very little coefficient mass comes from
reference measures outside the k nearest neighbors of µ).
Second, if W 2

2 (D1, µ) = W 2
2 (D2, µ) = · · · = W 2

2 (Dk, µ),
then for any i ≥ k + 1 such that W 2

2 (Di, µ) > W 2
2 (D1, µ),

it follows that λi = 0. In particular in this case, if
W 2

2 (Dk+1, µ) > W 2
2 (Dk, µ), then the support set of the

generating coefficients is correctly identified.

RG(D,Λ) Promotes Unique Solutions to WDL: The un-
regularized WDL problem (4) does not in general have
a unique solution. This can be seen intuitively in the
case where the data are generated as barycenters of two
measures µ, ν ∈ P(Rd). In this case, any barycenter
coincides with a point along the McCann interpolation:
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µ̃

µ
µt

ν
ν̃

(Pa)#π̃
∗

(Pb)#π̃
∗

Figure 1. The measures µ̃ and ν̃ have the capacity to represent any
barycenter µt of µ = (Pa)#π̃, ν = (Pb)#π̃, but they do it in a
manner that our geometric regularizer penalizes.

Bary({µ, ν}, (1 − t, t)) = (Pt)#π
∗ where π∗ is the op-

timal transport plan between µ, ν. Then any measures µ̃, ν̃
whose McCann interpolation passes through µ, ν will also
generate any barycenters of µ, ν. This is visualized in Fig-
ure 1. We will show that in this special case, our geometric
regularizer (3.1) addresses this ill-posedness of WDL.

Note, this is an issue of non-uniqueness over dictionariesD;
the simpler issue of non-uniqueness for a fixedD is analyzed
in Proposition 3.1. Indeed, the non-uniqueness for a fixed
D is characterized (Werenski et al., 2022) by the solution
space to Aλ = 0 intersecting ∆m in multiple places. On the
other hand, our analysis of non-uniqueness over dictionaries
requires an analysis of McCann interpolations.

Definition 3.3. Let µ, ν ∈ P(Rd) have optimal trans-
portation plan π∗ and µ̃, ν̃ ∈ P(Rd) have optimal trans-
portation plan π̃∗. The measures µ̃, ν̃ are said to con-
tain the McCann interpolation {(Pt)#π

∗}t∈[0,1] between
µ and ν if there exists an interval [a, b] ⊂ [0, 1] such that
∀t ∈ [0, 1], ∃s ∈ [a, b] such that (Ps)#π̃

∗ = (Pt)#π
∗.

We define the set of all pairs of measures (µ̃, ν̃) that con-
tain the McCann interpolation between µ and ν as M(µ, ν).
Pairs of measures in M(µ, ν) can be thought of as gen-
erators of “extensions” of the McCann interpolation be-
tween µ, ν. In this sense, barycenters of (µ̃, ν̃) can per-
fectly reconstruct any barycenter of (µ, ν) if and only if
(µ̃, ν̃) ∈ M(µ, ν). We show that any “extension” of the
McCann interpolation from one side results in an increase
in the geometric regularizer for any measure in the original
interpolation. The proof, which depends on the geodesic
properties of McCann interpolation (Ambrosio et al., 2005),
appears in the Appendix.

Theorem 3.4. Consider measures µ, ν, ν̃ with optimal trans-
portation plan π∗ between µ and ν and and π̃∗ between µ
and ν̃. Suppose (µ, ν̃) ∈ M(µ, ν). For t ∈ [0, 1], let
µt = (Pt)#π

∗ be in the McCann interpolation between µ
and ν, and let s ∈ [0, 1] be such that (Ps)#π̃

∗ = (Pt)#π
∗.

Then

(1− t)W 2
2 (µ, µt) + tW 2

2 (ν, µt)

≤ (1− s)W 2
2 (µ, µt) + sW 2

2 (ν̃, µt)

With this, we can establish that subject to the constraint that
µ̃, ν̃ provide perfect reconstruction (quantified by (µ̃, ν̃) ∈
M(µ, ν)), minimizing the geometric regularizer yields a
unique solution that coincides with the true generating atoms
in the case of all observed data lying on a McCann interpo-
lation.

Corollary 3.5. Let µ ̸= ν be two measures with optimal
transport plan π∗. For any (µ̃, ν̃) ∈M(µ, ν), let π̃∗ be the
associated optimal transport plan. Then for any barycenter
µt = (Pt)#π

∗ generated by µ, ν,

(µ, ν) = argmin
(µ̃,ν̃)∈M(µ,ν),

s s.t. (Ps)#π̃∗=µt

(1− s)W 2
2 (µ̃, µt) + sW 2

2 (ν̃, µt).

Proof. Apply Theorem 3.4 twice, the second time after
reversing parameterization.

In other words, among all pairs of measures that contain the
geodesic between the original data generators µ and ν, the
geometric regularizer for every data point is minimized by
(µ, ν).

4. Proposed Algorithm
Optimization in Wasserstein space has been infeasible out-
side of problems with low-dimensional distributions due
to the computational complexities of solving the transport
problems (Bonneel et al., 2016). We make two primary
design choices to make a tractable algorithm:

Shared Fixed Support: We assume all measures lie on
the same fixed finite support {xi}Ni=1 ⊂ Rd. So, each
distribution µ can be represented as a probability distribution
a ∈ ∆N via µ =

∑N
i=1 aiδxi

. We will abuse notation and
write µ in place of a when referring to discrete measures.
Having a fixed support enables us to compute the pairwise
costs ∥xi − xj∥22 upfront, which are used repeatedly in the
transport and barycenter computations.

Entropic Regularization: We use the entropically regu-
larized Wasserstein distance for all distance and Wasserstein
barycenter computations (Cuturi, 2013; Agueh & Carlier,
2011; Benamou et al., 2015) (in particular, we use the en-
tropic estimate of the distance obtained via the dual formula-
tion of the problem as detailed in Chapter 4.5 of (Peyré et al.,
2019)). This way we can get simple and relatively cheap
estimates of both the Wasserstein distance and barycenter
by a few iterations of the Sinkhorn matrix scaling algorithm.
We refer the reader to the aforementioned references for de-
tailed discussion of the entropic regularization and its effect
on computation. As most operations are now matrix-vector
multiplications, our method is well-suited for automatic dif-
ferentiation and can be efficiently implemented to handle
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variable updates (Paszke et al., 2019). For all transport com-
putations one could use the unbiased Sinkhorn divergences
instead (Feydy et al., 2019; Chizat et al., 2020); we choose
not to in order to compare directly to WDL. The impact of
entropic regularization on our theoretical results is discussed
in the Appendix.

Our main algorithm, which we call Geometric Wasserstein
Dictionary Learning (GeoWDL), is detailed in Algorithm
1. Following the original WDL formulation of (Schmitz
et al., 2018), we optimize over arbitrary vectors in Euclidean
space, each of which represents a unique probability distri-
bution (both for atoms and barycentric weights) via softmax
as a change of variables; in our algorithm these are the vari-
ables α and β for the dictionary and weights, respectively.

Algorithm 1 Geometric Wasserstein Dictionary Learning
(GeoWDL)

1: Input: Training data {µi}ni=1 ⊂ ∆N , L, optimizer
2: Initialize variables α(0) ∈ Rm×N , β(0) ∈ Rn×m{Use

any initialization method}
3: for k ← 1, . . . , L do
4: D(k) ← σ(α), Λ(k) ← σ(β) {Get updated dictio-

nary/weights}
5: loss← G(D(k),Λ(k), {µi}ni=1) {Compute the ob-

jective function}
6: loss.backward() {Compute the gradients with

automatic differentiation}
7: Update α(k),β(k) with optimizer.step()

{Update variables}
8: end for
9: Output: D(L),Λ(L)

Atom Initialization: We consider 3 methods of initial-
ization for the atoms: (i) uniform at random samples from
∆N ; (ii) uniform at random data samples: pick m of the
data used to learn the dictionary as the initialization; (iii) k-
means++ initialization: follow the initialization procedure of
k-means++ algorithm using Wasserstein distances (Arthur
& Vassilvitskii, 2006) and use those choices as the initial
atoms1. We expect the data-based initialization schemes to
converge faster and to better solutions, particularly when
regularizing withRG since the probability distributions that
resemble the data will be favored, as we assume generating
distributions should resemble the data to some degree.

Weight Initialization: We consider 3 methods of initial-
ization for the weights: (i) uniform at random samples from
∆m; (ii) Wasserstein histogram regression (Bonneel et al.,

1For this, one needs distances to be nonnegative. Sinkhorn
“distances”, as approximated by the value of the entropically regu-
larized problem, may be negative. We work around this by adding
the smallest number to the distances to make them positive.

2016) to match each data point to the initialized atoms; (iii)
estimating weights using the quadratic program described
by (Werenski et al., 2022); details of this approach are in
the Appendix. Empirically, atom initialization was more
important than the choice of weight initialization; we use
method (i) for all experiments in Section 5.

In each of the initialization methods described above we
obtain initial values for α and β by passing the initialized
dictionary and weights through log element-wise, which
inverts σ for vectors on the simplex.

5. Experiments
This section summarizes experiments on image and NLP
data; further discussion is in the Appendix.

5.1. Identifying Generating Distributions With
Synthetic MNIST Data

We demonstrate the utility of our geometric regularizer
in identifying the generating probability distributions in
a generative model. In this experiment, we randomly se-
lect 3 samples from each MNIST (LeCun, 1998) data class
{0,1,2,. . . ,9}. We normalize each image to have all pix-
els sum to 1 and interpret them as probability distributions
in R2 with cost given by squared Euclidean distance be-
tween the pixel coordinates. For each of the classes, we use
the 3 samples to generate 50 synthetic samples by forming
barycenters constructed with weights sampled uniformly
from ∆3. This yields 500 total training points, each of
which is a synthetic MNIST digit generated from a total
of 3× 10 = 30 real MNIST digits. We then train a dictio-
nary to learn 30 atoms. An optimal solution is to learn the
original generating set of 30 distributions.

We run Algorithm 1 to compare the effects of geometric
regularization by varying the regularization parameter ρ ∈
{0, 10−3, 10−1, 101}, noting that ρ = 0 corresponds to
WDL (Schmitz et al., 2018). After learning the dictionary,
we match the learned atoms to the true atoms by finding the
assignment that minimizes the sum of the transport costs
between learned and true atoms; for this we solve the non-
entropically regularized transport problem to ensure non-
negative assignment costs (Virtanen et al., 2020; Flamary
et al., 2021). We visualize the learned vs. true atoms as well
as a confusion matrix that demonstrates how well learned
coefficients and atoms align with the true class in Figure 2.

For comparison we use code from (Tankala et al., 2020)—
based on algorithm unrolling—to solve (1) regularized with
the Euclidean geometric regularizer as a comparison to our
similarly regularized nonlinear dictionary learning method.
In essence, this comparison replaces Wasserstein distances
with Euclidean distances in both the reconstruction loss and
regularizer in (6). The results for the linear method are
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visualized in Figure 2 (a), and should be contrasted with
those in (b) for GeoWDL. We see that the linear method
learns much more distorted and in some cases noisy digits,
compared to our proposed GeoWDL method. We also note
that the learned atoms from GeoWDL are more similar
perceptually to the true atoms, aiding in interpretability.

To show robustness of GeoWDL to noise, we add noise to
the synthetic data and show that we can still learn mean-
ingful atoms. Details of the noise model can be found in
the Appendix along with an example noisy digit shown in
Figure 4. Learned atoms under noise are shown in Figure 2
(c).

(a) Top row shows the true generating probability distributions. Subsequent rows show
learned atoms (via linear geometric dictionary learning, namely replacing Wasserstein
distances with by Euclidean distances in (6)) with increasing ρ, after alignment.

(b) Top row shows the true generating probability distributions. Subsequent rows show
learned atoms (via nonlinear GeoWDL) with increasing ρ, after alignment.

(c) With noise: Top row shows the true generating probability distributions. The bottom
shows learned atoms (via nonlinear GeoWDL) with ρ = 0.1.
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(e) In each plot, the value at bin i (ranging from 1 to 30) is the count of data distributions
(500 total) whose learned coefficient vector λ had i entries with value > 10−5. Values
near 1 show high coefficient concentration, while values near 30 show diffuse coefficients.
The plots are ordered with ρ increasing left to right.

Figure 2. The learned digits shown in (a) and (b) are most inter-
pretable in the moderate regularization regime (e.g., ρ > 0 but not
too large). We show robustness to noise in (c). As ρ increases,
(d) shows the concentration of coefficient energy on atoms that
belong to the same class as the test data point, with atoms assigned
by finding their closest training data. Moreover, we see in (e)
that increasing ρ increases the essential sparsity of the coefficients
learned, with many coefficient vectors having most values < 10−5

when ρ = 101.

As observed empirically in Figure 2 (d), increasing ρ only

helps the learned coefficients to be placed more correctly
on their class after matching the atoms. This illustrates
a trade-off associated with increasing ρ: more geometric
regularization promotes concentration of weights on fewer
learned atoms, but the learned atoms may not resemble the
true generating atoms as well. Indeed, in Figure 2 (e) we see
that increasing ρ concentrates the coefficients, as we would
expect given the connection between GeoWDL with large ρ
and Wasserstein K-means as well as Proposition 3.2 which
establishes coefficient concentration; see Section 3. Exam-
ples of the atom learning dynamics, learned reconstructions,
and training loss can be found in Figure 5 in the Appendix.

5.2. Learned Coefficients as Features for Document
Classification

Here we demonstrate the effectiveness of the geometric reg-
ularizer when used for a classification task comparing word
documents. We represent documents as probability distribu-
tions with a bag-of-words (i.e., a vector of counts for each
word in the document normalized to lie in the probability
simplex) approach where we use learned embeddings of the
words from (Huang et al., 2016) as the support (words em-
bedded in R300). The ground cost is the squared Euclidean
distance in the embedding space. The documents considered
come from the BBCSPORT dataset which consists of 737
documents; each document is one of five classes overall.

We learn a fixed size dictionary for each reference class and
then compare our learned dictionaries to equally sized sets
of random reference documents as follows. We vary the
size the dictionary/set of random reference documents from
1 to 12 per class. Each dictionary is learned with a number
of samples proportional to the size of the dictionary; for
a dictionary of m atoms we use 4m training samples. To
compare our learned dictionaries to random documents, we
sample 100 documents for testing and classify them using
the methods described below, where the reference docu-
ments in the classifier are either the output of our GeoWDL
method or chosen randomly from all available documents
of a particular class. Ideally, the learned dictionary atoms
should be better representatives of the class than the ran-
dom documents from the class. The sets of documents used
for (i) learning the dictionaries representing each class (ii)
randomly chosen for baseline comparison in the classifiers
and (iii) testing are mutually disjoint. We repeat this test 30
times and report results averaged across these trials. The
results are visualized in Figure 3 in the main text and Fig-
ure 6 in the Appendix. We note that these plots compare
against two baselines in terms of what reference documents
to use: (i) random samples from the data; (ii) WDL, which
corresponds to ρ = 0 in the GeoWDL framework.

We notice that at all levels of geometric regularization tested,
learned dictionaries enable the barycenter focused methods

7
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to outperform all methods that use random samples of the
data. Perhaps more interestingly, we note that increasing
the level of geometric regularization coincides with an in-
crease in the performance of the “simpler” methods of 1NN
and MAD. This suggests that the geometric regularizer is
promoting dictionary atoms that are more informative gen-
erally as individual atoms as opposed to the information
contained in their collective representational capacity via
Wasserstein barycenters. As mentioned in the discussion
of the geometric regularizer in Section 3, the unregularized
WDL objective is minimized by the dictionary probability
distributions only with respect of their representative ability.
On the other hand, as evidenced here, GeoWDL encourages
the learned atoms to be representative themselves of the data
they model, even generalizing to unseen data.

Classification Methods: Below, we state the 5 classification
methods considered in our NLP experiments, each of which
requires a set of reference documents per class in order to
label the testing data.

1. 1-Nearest Neighbor (1NN): classifies based on the
class of the W2-nearest reference document;

2. Minimum Average Distance (MAD): selects the class
with reference documents on average W2-closest;

3. Minimum Barycentric Loss (MBL): we learn the
barycentric weights to represent the test document by
solving the quadratic program in (Werenski et al., 2022)
for each reference class. We then compute the barycen-
tric representation for each class and classify with the
one that minimizes W2 to the test document;

4. Minimum Barycenter Loss (MBL-QP): selects the
class that minimizes the aforementioned quadratic pro-
gram’s objective (a proxy for the W2 distance between
the barycentric representation and test document);

5. Maximum Coordinate (MC): also solves the afore-
mentioned quadratic program to estimate barycentric
weights when using the reference documents of all
classes to represent the test document. The class is
then assigned based on the class whose total portion of
the estimated weights is largest.

6. Conclusion
We have extended the WDL framework by introducing a
geometric regularizer that interpolates between WDL and
Wasserstein K-means according to a tuneable parameter ρ.
We have shown the geometric regularizer itself is useful in
solving uniqueness and identifiability problems relating to
the dictionary and weights, by leveraging characterizations
of the nonlinear problem of exact barycentric reconstruction
as well as geometric properties of Wasserstein geodesics.
Additionally, we have shown the usefulness of our extension

2 4 6 8 10 12

0.5

0.6

0.7

0.8

0.9

1.0

(a) ρ = 0

2 4 6 8 10 12

0.5

0.6

0.7

0.8

0.9

1.0

(b) ρ = 0.01

2 4 6 8 10 12

0.5

0.6

0.7

0.8

0.9

1.0

(c) ρ = 0.1

2 4 6 8 10 12

0.5

0.6

0.7

0.8

0.9

1.0

(d) ρ = 1.0

2 4 6 8 10 12

0.5

0.6

0.7

0.8

0.9

1.0

(e) ρ = 10.0

1NN
MAD
MBL
MBL-QP
MC

Figure 3. Accuracy vs. number of reference documents. Solid
lines denote reference documents being learned dictionary atoms
while dashed lines denote the baseline of reference documents
being random documents from each class. Here, we group by
regularization parameter and show the impact of different meth-
ods and learning versus random atoms. Increasing ρ brings the
non-barycentric based methods to performance parity with the
barycentric based classification approaches. Note that ρ = 0 is
unregularized WDL (Schmitz et al., 2018).

in providing improvements to classification methods on real
data. In particular our regularized framework improves
over classical WDL in terms of atom interpretability and
performance in classification.

Future Work: Computational runtime remains a burden
for both GeoWDL and classical WDL. While automatic
differentiation provides for simple implementations, there
may exist more specific algorithms to the dictionary learning
framework; in particular the use of the geometric regularizer
may enable faster algorithms as is done in the linear case
(Mallat & Zhang, 1993). Relatedly, notions of linear optimal
transport have important computational potential (Wang
et al., 2013; Moosmüller & Cloninger, 2020; Hamm et al.,
2022) in speeding up runtime of pairwise W2-calculations
for certain classes of measures.
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The analysis of the encoding step in Section 3 does not im-
mediately extend to case when the dictionary D is changing
(which causes A to change). Understanding how the matrix
A changes with D is a topic of ongoing research, and may
allow for a closed-form solution to optimizers of (6). Relat-
edly, Theorem 3.4 applies only to the case when the original
data lie exactly on a Wasserstein barycenter between m = 2
distributions; extending to m ≥ 3 is a topic of ongoing
research.

In the linear setting, the use of the geometric regularizer can
be shown to promote sparsity (in the sense of few non-zero
entries) in coefficients (Tankala et al., 2020). We believe that
it should be possible to show the same in the Wasserstein
setting, which would be a stronger claim than the coefficient
concentration that we show in Proposition 3.2. Figure 2
(e) gives evidence to this claim as well and we believe the
fact that entries are not exactly 0 to be caused by the use of
softmax for change of variables.
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A. Precise Statement and Proof of Proposition 3.1
In order to establish this result, it is essential to note that if measures µ and ν satisfy the constraints that they have finite
second moments and do not give mass to small sets (e.g., are absolutely continuous) (Villani, 2021), their optimal plan π∗

concentrates on the graph of T ∗ = ∇ϕ for a strictly convex ϕ, so that

W 2
2 (µ, ν) =

∫
Rd

∥T ∗(x)− x∥22dµ(x)

where T ∗ satisfies the pushforward constraint T ∗
#µ = ν and is called the optimal transport map (Smith & Knott, 1987;

Brenier, 1991).

In order to precisely state Proposition 3.1, we require a few regularity assumptions A1-A3 on the dictionary D = {Dj}mj=1

and measure µ. These are required to invoke Theorem 1 in (Werenski et al., 2022), which characterizes exactly when

µ = Bary(D,λ)
for some λ ∈ ∆m.

A1: The measures {Dj}mj=1 and µ are absolutely continuous and supported on either all of Rd or a bounded open convex
subset. Call this shared support set Ω.

A2: The measures {Dj}mj=1 and µ have respective densities {gj}mj=1 and g which are bounded above and g1, ..., gm are
strictly positive on Ω.

A3: If Ω = Rd then {gj}mj=1 and g are locally Hölder continuous. Otherwise {gj}mj=1 and g are bounded away from zero
on Ω.
Proposition A.1 (Formal Statement of Proposition 3.1). Let µ be fixed and let {Dj}mj=1 ⊂ P(Rd) be a fixed dictionary.
Consider

argmin
λ∈∆m

m∑
j=1

λjW
2
2 (Dj , µ) subject to µ = Bary(D,λ). (9)

If D and µ satisfy the assumptions A1-A3, the solution to (9) is given by

argmin
λ∈∆m

λT c subject to Aλ = 0, (10)

where c and A ∈ Rm×m are uniquely determined by µ, {Dj}mj=1.

Proof. Let {Tj}mj=1 be the optimal transport maps between µ and Dj . Define A ∈ Rm×m by

Ajℓ =

∫
Rd

⟨Tj(x)− x, Tℓ(x)− x⟩dµ(x).

Then by Theorem 1 in (Werenski et al., 2022), which holds because A1-A3 hold,

µ = Bary(D,λ)⇐⇒ λTAλ = 0.

Since A is symmetric and positive semidefinite (it is in fact a Gram matrix), λTAλ = 0 is equivalent to Aλ = 0. Letting c
be defined as cj = W 2

2 (Dj , µ) gives the result.

We remark that since µ is absolutely continuous and Ajℓ =
∫
Rd⟨Tj(x) − x, Tℓ(x) − x⟩dµ(x), A is robust to small

perturbations in the optimal transport maps. Under certain conditions, ∥Tµ→ν −Tµ→ν̃∥2L2(Rd,µ) ≤ CW q
2 (ν, ν̃) for constants

C, q that depends only on µ and the smoothness and decay properties of the measures ν, ν̃ (e.g., dimension of support,
largest bounded moment); see (Delalande & Merigot, 2021) for a comprehensive survey of results of this type. In particular,
under the assumptions that results of this type can be invoked, the matrix A is stable under small deformations of D for
µ fixed. Let A and A′ denote the original A and perturbed A′ respectively. Assuming that µ = Bary(D′,λ), where D′

denotes perturbed D, we can consider the following program:

argmin
z∈∆m

zT c subject to A′z = 0. (11)

To relate the solution of the above program to the solution of (10), we can use linear programming stability results in
(Robinson, 1977).
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B. Proof of Proposition 3.2
Proof. For clarity, let di = W 2

2 (Di, µ) so that by assumption d1 ≤ d2 ≤ . . . ≤ dm. If λ∗ is an optimal solution then noting
bj = 0 for j ≥ k + 1, we have that:

m∑
j=1

λ∗
jdj ≤

m∑
j=1

bjdj =

k∑
j=1

bjdj .

Isolating λ∗
i from the left hand side above yields

λ∗
i di ≤

k∑
j=1

bjdj −
∑
j ̸=i

λ∗
jdj

≤
k∑

j=1

bjdk −
∑
j ̸=i

λ∗
jd1

≤ dk −
∑
j ̸=i

λ∗
jd1

= dk − (1− λ∗
i )d1

The result follows by solving for λ∗
i .

C. Proof of Theorem 3.4
Proof. Rearranging, we aim to show

0 ≤ (t− s)W 2
2 (µ, µt) + sW 2

2 (µt, ν̃)− tW 2
2 (µt, ν).

Noting that McCann interpolants are in fact constant-speed geodesics in Wasserstein space (Ambrosio et al., 2005), we have
that

t =
W2(µ, µt)

W2(µ, ν)
, s =

W2(µ, µt)

W2(µ, ν̃)

and

W2(µ, ν̃) = W2(µ, ν) +W2(ν, ν̃),

W2(µt, ν̃) = W2(µt, ν) +W2(ν, ν̃).

In particular, s < t and so it suffices to show

tW 2
2 (µt, ν) ≤ sW 2

2 (µt, ν̃)

⇐⇒ W2(µ, µt)

W2(µ, ν)
W 2

2 (µt, ν) ≤
W2(µ, µt)

W2(µ, ν̃)
W 2

2 (µt, ν̃)

⇐⇒ W 2
2 (µt, ν)

W2(µ, ν)
≤ W 2

2 (µt, ν̃)

W2(µ, ν̃)

⇐⇒ W 2
2 (µt, ν)

W2(µ, ν)
≤ (W2(µt, ν) +W2(ν, ν̃))

2

W2(µ, ν) +W2(ν, ν̃)

⇐⇒W 2
2 (µt, ν)(W2(µ, ν) +W2(ν, ν̃)) ≤W2(µ, ν)(W2(µt, ν) +W2(ν, ν̃))

2

⇐⇒W 2
2 (µt, ν)(W2(µ, ν) +W2(ν, ν̃)) ≤W2(µ, ν)(W

2
2 (µt, ν) + 2W2(µt, ν)W2(ν, ν̃) +W 2

2 (ν, ν̃))

⇐⇒W 2
2 (µt, ν)W2(ν, ν̃) ≤W2(µ, ν)(2W2(µt, ν)W2(ν, ν̃) +W 2

2 (ν, ν̃)).

If ν̃ = ν, the result follows trivially. So, assume W2(ν, ν̃) > 0. Then the above reduces to

W 2
2 (µt, ν) ≤W2(µ, ν)(2W2(µt, ν) +W2(ν, ν̃)).

The result follows by noting that W2(µt, ν) ≤W2(µ, ν) and that W2(ν, ν̃) ≥ 0.
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Figure 4. A noisy MNIST digit

C.1. Effect of Entropy on Theoretical Results

In general, and under suitable regularity conditions, entropic quantities converge to their unregularized counterparts as
ϵ → 0+ where ε is the entropic regularization parameter. (Cominetti & Martı́n, 1994) and (Peyré et al., 2019) discuss
convergence of entropic distances and (Pooladian & Niles-Weed, 2021) and (Nutz & Wiesel, 2022) discuss the convergence
of entropic transport maps. Additionally, the work in (Werenski et al., 2022) establishes that the matrix A of (8) is entry-wise
close to its non-entropic counterpart.

The implication of this to our theoretical results is as follows:

Proposition 3.1: If we consider the matrix A to be computed via entropic regularization, Proposition 3.1 does not continue
to hold since the entropically computed A will not likely have the same zero eigenvectors of A. However, we note that
λTAλ = 0 when λ is a true set of barycentric weights. With that, one can relax the optimization problem by considering
instead ρλT c + λTAλ. The entrywise closeness of c and A suggests that for small ε there might be stability in the
computed solution of the relaxed program i.e., solutions obtained for the original and entropic variations may be close.
Precisely quantifying this statement will depend on applying results on the stability of a quadratic program (e.g., (Phu &
Yen, 2001) and (Best & Chakravarti, 1990)) to our setting.

Proposition 3.2: Similarly if one instead considers the relaxed problem discussed above, then we would expect the weights
obtained from the entropic problem to be close and thus have a similar concentration.

Theorem 3.4 and Corollary 3.5: These results strongly depend on the true Wasserstein distance due to the discussion of
geodesics. Empirically, we observe a similar result should be true as evidenced by Figure 2 where the generating measures
are able to be approximately identified.

D. Experimental Details
For each of the experiments we report specific parameters used to generate the results. We also report the timings based on
our code.

D.1. MNIST

Noise Model: We add scaled pixel-wise noise to each data distribution. The noise is ∼ N (0, 1) and scaled by 0.0005.
After adding the noise we clip the entries of the image that became negative to a small positive number, before renormalizing
the image to lie on the probability simplex.

Specific parameter choices:

• Atom initialization: Wasserstein K-Means++.
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• Weight initialization: Uniform samples from the simplex.

• Optimizer: Adam (Kingma & Ba, 2014) with default parameters except for learning rate as 0.25.

• We use L = 250 iterations for reasonable convergence; learned atoms generally show no visual change for about 50
iterations and loss had flat-lined for a similar amount of iterations.

• Entropic regularization parameter set to 0.003 for both Wasserstein distance and barycenter computations.

• We use Ls = 50 Sinkhorn iterations for both Wasserstein distance and barycenter computations.

• Entropic transport computations were accelerated with Convolutional Wasserstein (Solomon et al., 2015).

This experiment took 8 hours total using all cpu cores of an Apple M1 chip (no gpu). This code has not been optimized. We
show more examples in Figure 5.

D.2. NLP

In Figure 6 we plot a different view of the data from Figure 3 to clearly show the effect of the regularization parameter per
experiment. We plot the 1 standard deviation bars for the NLP experiments in Figure 7.

Specific parameter choices:

• Atom initialization: Wasserstein K-Means++.

• Weight initialization: Each weight is initialized as a vector with uniform random samples and then normalized to
lie on the simplex. This differs from uniform samples from the simplex, but in practice there were no performance
differences.

• Optimizer: Adam with default parameters except for learning rate as 0.25.

• We use L = 300 iterations for reasonable convergence; loss had generally flat-lined for about 50 iterations.

• Entropic regularization set to 0.1 for both Wasserstein distance and barycenter computations.

• We use Ls = 25 Sinkhorn iterations for both Wasserstein distance and barycenter computations.

• Since the dictionary atoms must have fixed support, we fix the support as the union of words present in the training
documents for each dictionary.

Running one of the thirty trials of the experiment for all number of the references took at most 2 days on an HPC node using
2 cpu cores and one Nvidia gpu of type T4, RTX 6000, V100, or P100 (depending on node availability). This code has not
been optimized.
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(a) Examples of the synthetic data on the top row along with the learned representations for increasing ρ below.

(b) Examples of how the atoms are learned over the first 50 iterations with ρ = 10−1.

0 200

−0.0250

−0.0245

−0.0240

0 200

−0.0250

−0.0245

−0.0240

0 200

−0.0275

−0.0270

−0.0265

−0.0260

0 200

−0.275

−0.270

−0.265

−0.260

(c) The corresponding training loss plots, displaying (6), associated with the above runs in (a) and (b). Note that the negative objective values are a result of our entropic estimate
being a lower bound on the true value.

Figure 5. (a) Learned Representations: In the top row we include two example synthetic digits per class. In each subsequent row we
show the learned reconstruction of the data point for ρ ∈ {0, 10−3, 10−1, 101} (top-to-bottom). (b) Learning Dynamics: On the top row
we show the generating atoms and each subsequent row shows how the subsequently matched atoms evolve over the learning process
at 10, 20, 30, 40, and 50 iterations. Atoms here are not the same as in the main text, but representative of the learning dynamics. (c)
The corresponding training loss graphs for ρ ∈ {0, 10−3, 10−1, 101} (left-to-right). Note: the sample of digits from MNIST used as
generating atoms here is not the same as shown in the main text.
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Figure 6. Accuracy vs. number of reference documents. Solid lines denote reference documents being learned dictionary atoms while
dashed lines denote the baseline of reference documents being random documents from each class. Here, we group by method and
show the impact of different levels of regularization and learning versus random atoms. Except for small ρ in 1NN, using learned
reference documents significantly outperforms the use randomly sampled documents across all number of references. Note that ρ = 0 is
unregularized WDL (Schmitz et al., 2018).
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Figure 7. Fraction of test documents classified correctly vs number of representative documents. Solid turquoise line corresponds and
dashed tomato line correspond to learned and random reference documents, respectively. Top to bottom: each row corresponds to ρ
increasing in {0.0, 0.01, 0.1, 1.0, 10.0}. Left to right: each column corresponds to the methods {1NN, MAD, MBL, MBL-QP, MC}. We
observe that learned documents outperform random documents in every experiment for all levels of ρ. The smaller variance of the learned
documents is explained by the fact that the learned documents were trained with more documents than were used.
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