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Abstract
Data sets of multivariate normal distributions
abound in many scientific areas like diffusion ten-
sor medical imaging, structure tensor computer
vision, radar signal processing, machine learn-
ing, etc. In order to process those data sets for
downstream tasks like filtering, classification or
clustering, one needs to define proper notions of
dissimilarities and paths joining normal distribu-
tions. The Fisher-Rao distance defined as the Rie-
mannian geodesic distance induced by the Fisher
information is such a principled distance which
however is not known in closed-form excepts on a
few particular cases. We first report a fast and ro-
bust method to approximate arbitrarily finely the
Fisher-Rao distance between normal distributions.
Second, we introduce a distance based on a diffeo-
morphic embedding of the Gaussian manifold into
a submanifold of the higher-dimensional symmet-
ric positive-definite cone. We show that the pro-
jective Hilbert distance on the cone is a metric on
the embedded Gaussian submanifold and pullback
that distance with the straight line Hilbert cone
geodesics to obtain a distance and paths between
normal distributions. Compared to the Fisher-Rao
distance approximation, the pullback Hilbert cone
distance is computationally light since it requires
to compute only extreme eigenvalues of matrices.
Finally, we show how to use those distances in
clustering tasks.

1. Introduction
Data sets of multivariate normal distributions (MVNs) are
increasing frequent in many scientific areas like medical
imaging (diffusion tensor imaging (Han & Park, 2014)),
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computer vision (image segmentation (Carson et al., 2002)
or structure tensor imaging (Porikli et al., 2006)), signal pro-
cessing (covariance matrices (Barbaresco, 2013) in radar or
brain computer interfaces (Barachant et al., 2011)), and ma-
chine learning (Gaussian mixtures or kernel density estima-
tors (Davis & Dhillon, 2006)). These data sets can be viewed
as (weighted) point sets on a Gaussian manifold and Rie-
mannian and information-geometric structures (Skovgaard,
1984; Yoshizawa & Tanabe, 1999) on that manifold allows
one to define geodesics and distances or divergences which
allows on to build algorithms like filtering, classification,
clustering or optimization techniques (Tuzel et al., 2008; Ab-
sil et al., 2008; Hosseini & Sra, 2015). For example, we may
simplify a Gaussian mixture model (Davis & Dhillon, 2006;
Goldberger et al., 2008; Zhang & Kwok, 2010) (GMM)
with n components by viewing the mixture as a weighted
point set and simplify the mixture by clustering the point
set into k clusters using k-means or k-medioids (Davis &
Dhillon, 2006) (as known as discrete k-means). We may
also consider n GMMs with potentially different compo-
nents and build a codebook of all mixture components to
quantize and compress the representation of these GMMs.
In this work, we consider two kinds of metric distances
and metric geodesics: The Fisher-Rao distance (Strapasson
et al., 2016) and a new distance obtained by pulling back
the Hilbert cone projective distance on an embedding of the
Gaussian manifold into the higher-dimensional symmetric
positive-definite matrix cone (Calvo & Oller, 1990).

The paper is organized as follows: In Section 2, we recall
the Fisher-Rao geodesic distance and mention its lack of
general closed-form formula on the Gaussian manifold. We
then build on a recent breakthrough which studied the MVN
Fisher-Rao geodesics (Kobayashi, 2023) (§2.2) to design an
approximation method which upper bounds the true Fisher-
Rao distance with arbitrary precision (§2.3). We present
applications to simplification and quantization of GMMs in
Section 3 using fast clustering methods relying on nearest
neighbor query data structures (Yianilos, 1993) and smallest
enclosing balls in metric spaces. In Section 4, we introduce
the novel pullback Hilbert cone distance which is fast to
compute and enjoys simple expression of geodesics.
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2. Fisher-Rao geodesics and distances
A normal distribution N(µ,Σ) has probability density func-
tion (pdf) pµ,Σ(x) defined on the full support Rd given by:

pµ,Σ(x) =
(2π)−

d
2√

det(Σ)
exp

(
− (x− µ)>Σ−1(x− µ)

2

)
.

Consider the statistical model consisting of all d-variate
normal distributions:

N (d) =
{
N(λ) : λ = (µ,Σ) ∈ Λ(d) = Rd × Sym+(d,R)

}
,

where Sym+(d,R) denote the set of d× d positive-definite
matrices. The dimension of N (d) is m = dim(Λ(d)) =

d + d(d+1)
2 = d(d+3)

2 . When the dimension is clear from
context, we omit to specify the dimension and write N for
short.

Let lλ(x) = log pλ(x) denote the log-likelihood function.
The MVN model is both identifiable (bijection between λ
and pλ) and regular (Calin & Udrişte, 2014; Amari, 2016),
i.e., the Fisher information matrix I(θ) = −Eθ[∇2lθ(x)]
is positive-definite and defines a Riemannian metric gFisher

called the Fisher information metric. The Riemannian mani-
fold (N , gFisher) is called the Fisher-Rao Gaussian manifold
with squared infinitesimal length element (Skovgaard, 1984)
ds2

Fisher at (µ,Σ) given by:

ds2
Fisher = dµ>Σ−1dµ+

1

2
tr
((

Σ−1dΣ
)2)

,

where dµ ∈ Rd and dΣ ∈ Sym(d,R) (vector space of
symmetric d× d matrices).

The Fisher-Rao length of a smooth curve c(t) with t ∈ [a, b]
is defined by integrating the infinitesimal Fisher-Rao length
element along the curve: Len(c) =

∫ b
a

dsFisher(c(t)) dt,
and the Fisher-Rao distance (Hotelling, 1930; Rao, 1945)
between N0 = N(µ0,Σ0) and N1 = N(µ1,Σ1) is the
geodesic distance on (N , gFisher), i.e., the length of the
Riemannian geodesic γNFR(N0, N1; t):

ρFR(N0, N1) =

∫ 1

0

dsFisher(γ
N
FR(N0, N1; t)) dt. (1)

In Riemannian geometry (Godinho & Natário, 2012),
geodesics with boundary conditions N0 = γNFR(N0, N1; 0)
and N1 = γFR(N0, N1; 1) are length minimizing curves
among all curves c(t) satisfying c(0) = N(µ0,Σ0) and
c(1) = N(µ1,Σ1):

ρFR(N0, N1) = inf
c(t)

c(0)=pµ0,Σ0

c(1)=pµ1,Σ1

{Len(c)} .

Riemannian geodesics are parameterized by (normalized)
arc length t which ensures that

ρ(γρ(P0, P1; s), γρ(P0, P1; t)) = |s− t| ρ(P0, P1). (2)

More generally, geodesics in differential geometry (Calin
& Udrişte, 2014) are auto-parallel curves with respect to an
affine connection ∇: ∇γ̇ γ̇ = 0, where ˙ = d

dt and ∇XY
is the covariant derivative induced by the connection. In
Riemannian geometry, the default connection is the unique
Levi-Civita metric connection (Godinho & Natário, 2012)
∇g induced by the metric g.

In general, the Fisher-Rao distance between MVNs is not
known in closed-form (Pinele et al., 2020; Nielsen, 2023).
However, there are two main cases where closed-form for-
mula are known:

• The case d = 1: The Fisher-Rao distance between uni-
variate normal distributions (Yoshizawa, 1972) N0 =
N(µ0, σ

2
0) and N1 = N(µ1, σ

2
1) is

ρN (N0, N1) =
√

2 log

(
1 + ∆(µ0, σ0;µ1, σ1)

1−∆(µ0, σ0;µ1, σ1)

)
,

(3)
where for (a, b, c, d) ∈ R4\{0},

∆(a, b; c, d) =

√
(c− a)2 + 2(d− b)2

(c− a)2 + 2(d+ b)2
(4)

is a Möbius distance (Burbea & Rao, 1982).

• The case where MVNs N0 and N1 share the same
mean (James, 1973; Skovgaard, 1984), i.e., they be-
long to some submanifold Nµ = {N(µ,Σ) : Σ ∈
Sym+(d,R)}. When µ = 0, we let P(d) = N0(d).
We have:

ρNµ(N0, N1) =

√√√√1

2

d∑
i=1

log2 λi(Σ
− 1

2
0 Σ1Σ

− 1
2

0 ),

where λi(M) denotes the i-th largest eigenvalue
of matrix M . Observe that matrix Σ−1

0 Σ1 may

not be symmetric but Σ
− 1

2
0 Σ1Σ

− 1
2

0 is always SPD

and λi(Σ
−1
0 Σ1) = λi(Σ

− 1
2

0 Σ1Σ
− 1

2
0 ). The sub-

manifolds Nµ are totally geodesic in N , and
the Fisher-Rao geodesics are known in closed
form: γNFR(N0, N1; t) = N(µ,Σt) with Σt =

Σ
1
2
0 (Σ

− 1
2

0 Σ1Σ
− 1

2
0 )t Σ

1
2
0 . See also Appendix C.

Notice that all submanifolds Nµ are non-positive curvature
manifolds (NPC) (Bridson & Haefliger, 2013; Cheng et al.,
2016), i.e. sectional curvatures are non-positive. However,
N (d) is not a NPC manifold when d > 1 since some sec-
tional curvatures can be positive (Skovgaard, 1984). NPC
property is important for designing optimization algorithms
on manifolds with guaranteed convergence (Cheng et al.,
2016). In a NPC manifold (M, g), we can write the Rie-
mannian distance using the Riemannian logarithm map
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Logp : M → TpM : ρg(p1, p2) = ‖Logp1
(p2)‖p1

, where
‖v‖p =

√
gp(v, v). On the NPC SPD cone Sym+(d,R)

equipped with the trace metric (Moakher, 2005; Dolcetti &
Pertici, 2021)

gtrace
P (P1, P2) := tr(P−1P1P

−1P2),

the Riemannian logarithm map is expressed using the matrix
logarithm Log, and we have

ρgtrace
(P1, P2) = ‖LogP1

(P2)‖P1
= ‖Log(P−1

1 P2)‖F ,

where ‖ · ‖F =
√
〈·, ·〉F is the Fröbenius norm induced by

the Fröbenius inner product: 〈A,B〉F = tr(A>B) (Hilbert-
Schmidt inner product). The SPD cone is also a Bruhat-Tits
space (Lang & Lang, 1999).

Historically, the SPD Riemannian trace metric distance was
studied by Siegel (Siegel, 1964) in the wider context of the
complex manifold of symmetric complex square matrices
with positive-definite imaginary part: The so-called Siegel
upper half space (Friedland & Freitas, 2004) which gener-
alizes the Poincaré upper plane. It was shown recently that
the Siegel upper half space is NPC (Cabanes & Nielsen,
2021). Another popular distance in machine learning in the
Wasserstein distance for which the underlying geometry on
the Gaussian space was studied in (Takatsu, 2011).

2.1. Invariance under action of the positive affine group

The length element dsFisher is invariant under the action of
the positive affine group (Eriksen, 1986)

Aff+(d,R):=
{

(a,A) : a ∈ Rd, A ∈ GL+(d,R)
}
,

where GL+(d,R) denotes the group of d × d matrices
with positive determinant. The group identity element
of Aff+(d,R) is e = (0, I) and the group operation is
(a1, A1).(a2, A2) = (a1 +A1a2, A1A2) with inverse opera-
tion (a,A)−1 = (−A−1a,A−1)). The positive affine group
may be handled as a matrix group by mapping elements

(a,A) to (d + 1) × (d + 1) matrices M(a,A):=

[
A a
0 1

]
.

Then the matrix group operation is the matrix multiplication
and inverse operation is given by the matrix inverse. Let us
consider the following group action (denoted by the dot .)
of the positive affine group on the Gaussian manifold N :

(a,A).N(µ,Σ) = N(a+Aµ,AΣA>).

This action corresponds to the affine transformation
of random variables: Y = a + AX ∼ N(a +
Aµ,AΣA>) where X ∼ N(µ,Σ). The statistical model
N can thus be interpreted as a group with identity el-
ement the standard MVN Nstd = N(0, I): N (d) =
{(a,A).Nstd : (a,A) ∈ Aff+(d)}. We get a Lie group dif-
ferential structure onN (Kwon et al., 2009) which moreover

(a) (b)

Figure 1. Some Fisher-Rao geodesics with boundary conditions
(displayed in red) on the bivariate Gaussian manifold. The sample
space R2 is visualized for the range [−0.3, 1.2] × [−0.3, 1.2].

extends to a statistical Lie group structure in information
geometry (Furuhata et al., 2021).

It can be checked that the Fisher-Rao length element is in-
variant under the action of Aff+(d,R) and therefore the
Fisher-Rao distance is also invariant: ρFR((a,A).N0 :
(a,A).N1) = ρFR(N0, N1). It follows that the Fisher-Rao
geodesics in N are equivariant (Eriksen, 1986; Kobayashi,
2023) γNFR(B.N0, B.N1; t) = B.γNFR(N0, N1; t) for any
B ∈ Aff+(d,R) and we can therefore consider without loss
of generality that N0 is the standard normal distribution and
N1 → N ′1 = N

(
Σ
− 1

2
0 (µ1,−µ0),Σ

− 1
2

0 Σ1Σ
− 1

2
0

)
.

2.2. Fisher-Rao geodesics with boundary conditions

The Fisher-Rao geodesic Ordinary Differential Equation
(ODE) for MVNs was first studied by Skovgaard (Skov-
gaard, 1984):{

µ̈− Σ̇Σ−1µ̇ = 0,

Σ̈ + µ̇µ̇> − Σ̇Σ−1Σ̇ = 0.
(5)

Eriksen (Eriksen, 1986) first reported a solution of the
geodesic equation with initial conditions: That is Fisher-
Rao geodesics emanating from source N0 with initial pre-
scribed tangent vector v0 = γ̇(0) in the tangent plane TN0

.
Eriksen’s solution required to compute a matrix exponen-
tial of a matrix of size (2d+ 1)× (2d+ 1) and the use of
square matrices of dimension 2d+ 1 was mysterious (Imai
et al., 2011). Calvo and Oller (Calvo & Oller, 1991) later
studied a more general differential equation system than
in Eq. 5 and reported a closed-form solution without us-
ing extra dimensions (see Appendix A). For many years,
the Fisher-Rao geodesics with boundary conditions N0 and
N1 were not known in closed-form and had to be approxi-
mated using geodesic shooting methods (Han & Park, 2014;
Pilté & Barbaresco, 2016): Those geodesic shooting meth-
ods were time consuming and numerically unstable, thus
limiting their use in applications (Han & Park, 2014). A
recent breakthrough by Kobayashi (Kobayashi, 2023) full
explains and extends geometrically the rationale of Erik-
sen and obtains a method to compute in closed-form the
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Fisher-Rao geodesic with boundary conditions. Namely,
Kobayashi (Kobayashi, 2023) proved that the Fisher-Rao
geodesics can be obtained by a Riemannian submersion of
horizontal geodesics of the non-compact Riemannian sym-
metric space of dimension 2d + 1. We report concisely
below the recipe which we extracted from Kobayashi’s prin-
cipled geometric method to derive Nt = γNFR(N0, N1; t) as
follows:

Fisher-Rao geodesic Nt = N(µ(t),Σ(t)) = γNFR(N0, N1; t):

• For i ∈ {0, 1}, let Gi = MiDiM
>
i , where

Mi =

 Σ−1
i 0 0

0 1 0
0 0 Σi

, (6)

Di =

 Id 0 0
µ>i 1 0
0 −µi Id

, (7)

where Id denotes the identity matrix of shape d × d.
That is, matrices G0 and G1 ∈ Sym+(2d+ 1,R) can
be expressed by block Cholesky factorizations.

• Consider the Riemannian geodesic in Sym+(2d+1,R)
with respect to the trace metric:

G(t) = G
1
2
0

(
G
− 1

2
0 G1G

− 1
2

0

)t
G

1
2
0 .

In order to compute the matrix powerGp for p ∈ R, we
first calculate the Singular Value Decomposition (SVD)
of G: G = OLO> (where O is an orthogonal matrix
and L = diag(λ1, . . . , λ2d+1) a diagonal matrix) and
then get the matrix power as Gp = OLpO> with
Lp = diag(λp1, . . . , λ

p
2d+1).

• Retrieve N(t) = γNFR(N0, N1; t) = N(µ(t),Σ(t))
from G(t):

Σ(t) = [G(t)]−1
1:d,1:d, (8)

µ(t) = Σ(t) [G(t)]1:d,d+1, (9)

where [G]1:d,1:d denotes the block matrix with rows
and columns ranging from 1 to d extracted from (2d+
1)× (2d+ 1) matrix G, and [G]1:d,d+1 is similarly the
column vector of Rd extracted from G.

Note that this technique also proves that the MVN geodesics
are unique althoughN is not NPC. It is proven in (Furuhata
et al., 2021) that the Gaussian manifold admits a solvable
Lie group and hence is diffeomorphic to some Euclidean
space. Figure 1 displays several bivariate normal Fisher-Rao
geodesics with boundary conditions obtained by implement-
ing this method (Kobayashi, 2023). We display N(µ,Σ) by
an ellipse E = {µ + Lx : ‖x‖2 = 1} where Σ = LL>

(Cholesky decomposition).

2.3. Fisher-Rao distances

The previous section reported the closed-form solutions for
the Fisher-Rao geodesics γNFR(N0, N1; t). We shall now
explain a method to approximate their lengths and hence
the Fisher-Rao distances:

ρFR(N0, N1) = Len(γNFR(N0, N1; t)).

Consider discretizating regularly t ∈ [0, 1] using T+1 steps:
0
T = 0, 1

T , . . . ,
T−1
T , TT = 1. Since geodesics are totally 1D

submanifolds, we have

ρFR(N0, N1) =

T−1∑
i=0

ρFR(γFR

(
N i
T
, N i+1

T

)
).

By choosing T large enough, we have N = N i
T

close to
N ′ = N i+1

T
, and we can approximate the geodesic distance

as follows:

ρFR(N,N ′) ≈ dsFisher(N) ≈

√
2

f ′′(1)
If (N,N ′),

where If (p, q) is any f -divergence (Ali & Silvey, 1966;
Csiszár, 1967) between pdfs p(x) and q(x) induced by a
strictly convex generator f(u) satisfying f(1) = 0:

If (p, q) =

∫
p(x)f

(
q(x)

p(x)

)
dx.

Indeed, we have for two close distributions pθ and
pθ+dθ (Amari, 2016): If (pθ, pθ+dθ) ≈ f ′′(1)

2 ds2
Fisher.

We choose the Jeffreys f -divergence which is the arith-
metic symmetrization of the Kullback-Leibler divergence
obtained for the generator fJ(u) = (u − 1) log u with
f ′′J (1) = 2. It follows that DJ(N1, N2) = IfJ (N1, N2) =

tr
(

Σ−1
2 Σ1+Σ−1

1 Σ2

2 − I
)

+ (µ2 − µ1)>
Σ−1

1 +Σ−1
2

2 (µ2 − µ1).

Thus we get the following overall approximation of the
Fisher-Rao distance:

ρ̃T (N0, N1) =

T−1∑
i=0

√
DJ

(
N i
T
, N i+1

T

)
≈ ρFR(N0, N1).

(10)

In (Gao & Chaudhari, 2021), the authors choose
dsFisher(p) =

√
2DKL(pθ, pθ+dθ) where DKL = IfKL is

the Kullback-Leibler divergence, a f -divergence obtained
for fKL(u) = − log u.
Property 1 (Fisher-Rao upper bound). The Fisher-Rao dis-
tance between normal distributions is upper bounded by
the square root of the Jeffreys divergence: ρFR(N0, N1) ≤√
DJ(N0, N1).
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mix. geo. γNm Fisher-Rao geo. γFR
N exp. geo. γNe

Figure 2. Visualizing geodesics with respect to the mixture, Levi-
Civita (Fisher-Rao), and exponential connections.

The proof can be found in many places, e.g. (Grosse et al.,
2013; Amari, 2016; Rong et al., 2017). Yet we report an-
other proof in Appendix B.

Notice that we have ρFR(N0, N1) ≤ ρ̃T (N0, N1) for all
T > 1. Define the energy of a curve c(t) with t ∈ [a, b] by
E(c) =

∫ b
a

ds2
Fisher(t)dt. We have

E(γNe (N0, N1; t)) = E(γNm (N0, N1; t)) = DJ(N0, N1),

where γNe (N0, N1; t) = N(µet ,Σ
e
t ) and γNm (N0, N1; t) =

N(µmt ,Σ
m
t ) are the exponential and mixture geodesics in

information geometry (Yoshizawa & Tanabe, 1999) given
by µmt = µ̄t and Σmt = Σ̄t+ tµ1µ

>
1 +(1− t)µ2µ

>
2 − µ̄tµ̄>t

where µ̄t = tµ1 +(1− t)µ2 and Σ̄t = tΣ1 +(1− t)Σ2, and
µet = Σ̄Ht (tΣ−1

1 µ1 + (1− t)Σ−1
2 µ2) and Σet = Σ̄Ht where

Σ̄Ht = (tΣ−1
1 +(1−t)Σ−1

2 )−1 is the matrix harmonic mean.
See Figure 2. The mixture, Fisher-Rao, and exponential
geodesics are α-connection geodesics (Furuhata et al., 2021)
for α = −1, α = 0 and α = 1, respectively. Notice that
these e/m geodesics are computationally less intensive to
evaluate than the Fisher-Rao geodesics.

Since the upper bound of Property 1 is tight infinitesimally,
we get in the limit convergence to the Fisher-Rao distance:

lim
T→∞

ρ̃T (N0, N1) = ρFR(N0, N1).

Example 1. Let us consider the example of Han
and Park (Han & Park, 2014) (displayed in Fig-

ure 1(b)): N0 = N

([
0
0

]
,

[
1 0
0 0.1

])
and N1 =

N

([
1
1

]
,

[
0.1 0
0 1

])
. The time consuming geodesic

shooting algorithm of (Han & Park, 2014) evaluates the
Fisher-Rao distance to ρN (N0, N1) ≈ 3.1329. We get
the following approximations: ρ̃T (N0, N1) = 3.1996 for
T = 100. See Figure 3 for the convergence curve of
ρ̃T (N0, N1) as a function of T .

3. Fisher-Rao clustering
We shall consider two applications of the Fisher-Rao dis-
tance between MVNs using clustering:

3

3.2

3.4

3.6

3.8

4

4.2

4.4

0 10 20 30 40 50 60 70 80 90 100

ρ̃T

T

Fisher-Rao distance approximations+

+

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

Figure 3. Convergence of ρ̃T (N0, N1) to ρFR(N0, N1).

The first application considers clustering weighted MVNs
which is useful to simplify Gaussian Mixture Models (Davis
& Dhillon, 2006; Strapasson et al., 2016) (GMMs): A
GMM m(x) =

∑n
i=1 wipµi,Σi(x) with n components is

a weighted set of n MVNs N(µi,Σi) and clustering this
set into k-clusters allows one to simplify the GMM m(x).
For this task, we may use the k-means clustering (Lloyd,
1982) when centroids are available in closed-form (Davis &
Dhillon, 2006) (using the Kullback-Leibler divergence) or
the k-medioid clustering (Kaufman, 1990) when we choose
the representative of clusters from the input otherwise (using
the Fisher-Rao distance).

The second application considers the quantization
of sets of MVNs which is useful to further com-
press a set {m1, . . . ,mn} of n GMMs mi(x) =∑ni
j=1 wi,jpµi,j ,Σi,j (x) with overall N =

∑n
i=1 ni MVNs

N(µi,j ,Σi,j). We build a codebook of k MVNs N(mi, Si)
by quantizing the N non-weighted MVNs using the guar-
anteed k-center clustering of (Gonzalez, 1985) (also called
k-centers clustering (Dueck & Frey, 2007)). Then each
mixture mi(x) is quantized into a mixture m̃wi(x) =∑k
i=1 wi,jpmi,Si(x). The advantage of quantization is that

the original set {m1, . . . ,mn} of GMMs is compactly rep-
resented by n points in the (k − 1)-dimensional standard
simplex ∆k−1 encoding {m̃1, . . . , m̃n} since they share the
same components. The set {m̃w : w ∈ ∆k−1} form a mix-
ture family in information geometry (Amari, 2016; Nielsen
& Hadjeres, 2019) with a dually flat space which can be
exploited algorithmically.

Notice that minimizing the objective functions of these k-
means, k-medioid and k-center clustering objective are NP-
hard when dealing with MVNs.

3.1. Nearest neighbor queries

In order to speed up these center-based clustering, we shall
find for a given MVN N(µ,Σ) (a query) its closest cluster
center among k MVNs {N(mi, Si)} using Nearest Neigh-
bor (NN) query search (Andoni, 2009; Bhatia et al., 2010).
There exist many data-structures for exact and approximate
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NN queries. For example, the vantage point (VP) tree struc-
ture is well-suited in metric spaces (Yianilos, 1993) and
has also been considered for NN queries with respect to
the Kullback-Leibler divergence between MVNs (Nielsen
et al., 2009). Although NN queries based on VP-trees
still require linear time in the worst-case, they can also
achieve logarithmic time in best cases. At the heart of NN
search using VP-trees, we are given a query ball Ball(p, r)
with center p and radius r, and we need to find poten-
tial intersections with balls Ball(v, rv) stored at nodes v
of the VP tree. Thus when using the (fine approximation
ρ̃T ) Fisher-Rao metric distance, we need to answer pred-
icates of whether two Fisher-Rao balls BallFR(N, r) and
BallFR(N ′, r′) intersect or not: This can be done by deter-
mining the sign of ρFR(N,N ′)− (r + r′). When positive
the balls do not intersect and when negative the balls inter-
sect. Since we handle some approximation errors by using
ρ̃T instead of ρFR, but since ρ̃T ≥ ρFR we need to explore
both branches of a VP-tree if the balls BallFR(N, r) and
BallFR(N ′, r′) stored at the two siblings of a node v are
such that ρ̃T (N,N ′) ≤ r + r′.

3.2. k-center and miniball

For the quantization tasks, the k-center clustering heuristic
of Gonzalez (Gonzalez, 1985) guarantees to find a good
k-center clustering in metric spaces with an approximation
factor upper bounded by 2. We can further refine the cluster
representative of each cluster by computing approximations
of the smallest enclosing Fisher-Rao balls (miniballs) of
clusters.

A simple Riemannian approximation technique has been
reported for approximating the smallest enclosing ball of
n points {p1, . . . , pn} on a Riemannian manifold (M, g)
with geodesic distance ρg(p, p′) and geodesics γg(p, p′; t)
in (Arnaudon & Nielsen, 2013):

Miniball({p1, . . . , pn}, ρg, T ):

• Let c1 ← p1

• For t = 1 to T

– Compute the index of the point which is farthest
to current circumcenter ct:

ft = arg max
i∈{1,...,n}

ρg(ct, pi)

– Update the circumcenter by walking along the
geodesic linking ct to pft :

ct+1 = γg

(
ct, pft ;

1

t+ 1

)
Recall that geodesics are parameterized by
normalized arc length so that ρg(ct, ct+1) =

1
t+1ρg(ct, pft).

• Return cT

Conditions of convergence are analyzed in (Arnaudon &
Nielsen, 2013): For example, it always converge for Cartan-
Hadamard manifolds (complete simply connected NPC man-
ifolds like the SPD cone).

The Fisher-Rao distance ρFR(NΣ(µ0), NΣ(µ1)) between
two MVNs with same covariance matrix Σ is

ρFR(NΣ(µ0), NΣ(µ1)) =
√

2 arccosh

(
1 +

1

4
∆2

Σ(µ0, µ1)

)
,

where ∆Σ(µ0, µ1) =
√

(µ0 − µ1)>Σ−1(µ20− µ1) is the
Mahalanobis distance. Therefore when all MVNs belong
to the non-totally flat submanifold NΣ = {N(µ,Σ) : µ ∈
Rd}, the smallest enclosing ball amounts to an Euclidean
smallest enclosing ball (Welzl, 2005) since in that case ρFR

is an increasing function of the Mahalanobis distance.

Since the computations of ρ̃T approximating ρFR is costly,
the following section shall consider a new fast metric dis-
tance on N which further relates to the Fisher-Rao distance.

4. Pullback Hilbert cone distance
Let us define dissimilarities and paths on N (d) from dis-
similarities and geodesics on P(d + 1) = N0(d) by con-
sidering the following family of diffeomorphic embeddings
fa : N (d)→ P(d+ 1) for a ∈ R>0 proposed in (Calvo &
Oller, 1990):

fa(N(µ,Σ)):=

[
Σ + aµµ> aµ
aµ> a

]
∈ P(d+ 1). (11)

Let N a(d) = {fa(N) : N ∈ N (d)} ⊂ P(d + 1) de-
note the embedded Gaussian submanifold in P(d + 1) of
codimension 1. We let f inv

a : N a(d) → N (d) denote the
functional inverse so that fa ◦ f inv

a = idN is the identity
function idN : N → N . The notation inv in f inv

a is chosen
to avoid confusion with the matrix inverse fa(N(µ,Σ))−1:

fa(N(µ,Σ))−1 =

[
Σ−1 −Σ−1µ
−µ>Σ−1 µ>Σ−1µ+ 1

a

]
.

The open SPD cone P(d + 1) can thus be foliated by the
family of submanifolds N a (Calvo & Oller, 1990): P(d+
1) =

{
a×N a : a ∈ R>0

}
. We let f = f1 and f inv =

f inv
1 , and N = N 1.

Calvo and Oller (Calvo & Oller, 1990) proved that
(N (d), gFisher) is isometrically embedded into (P(d +
1), 1

2gtrace) but that N is not totally geodesic. Thus we
have

ρCO(N0, N1) = ρFR(N(0, f(N0)), N(0, f(N1))),

= ρP(N 0,N 1) ≥ ρFR(N0, N1),

6
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where N i = f(Ni). See Eq. 5. It follows that we get a
series of lower bound for ρFR(N0, N1):

ρCO,T (N0, N1) =

T−1∑
i=0

ρP

(
N i
T
, N i+1

T

)
,

such that for all T , ρ̃T ≥ ρFR ≥ ρCO,T .

We can also approximate the smallest enclosing Fisher-Rao
ball of {N(µi,Σi)} on N (d) by embedding the normals
into N as {P̄i = f(N(µi,Σi))}. We then apply the above
iterative smallest enclosing ball approximation Miniball (Ar-
naudon & Nielsen, 2013) to get C̃T ∈ P(d + 1) after T
iterations. Then we project orthogonally with respect to the
trace metric C̃T onto N as C̄T = projN (C̃T ) and maps
back to the Gaussian manifold using f inv to get the approx-
imate normal circumcenter.

The following proposition describes the orthogonal projec-
tion operation P̄⊥ = projN (P ) of P = [Pi,j ] ∈ P(d+ 1)
onto N based on the analysis reported in the Appendix
of (Calvo & Oller, 1990) (page 239):

Proposition 4.1. Let β = Pd+1,d+1 and write P =[
Σ + βµµ> βµ
βµ> β

]
. Then the orthogonal projection at

P ∈ P onto N is:

P̄⊥ := projN (P ) =

[
Σ + µµ> µ>

µ 1

]
, (12)

and the SPD trace distance between P and P̄⊥ is

ρP(P, P̄⊥) = | log β|. (13)

Consider pulling back SPD cone dissimilarities and
geodesics of P(d+ 1) onto N (d) as follows:

Definition 4.2 (Pullback dissimilarities). A dissimilarity
D(N0, N1) (not necessarily be a metric distance nor a
smooth divergence) on N (d) (with N0:=N(µ0,Σ0) and
N1:=N(µ1,Σ1)) can be obtained from any dissimilarity
D(·, ·) on the SPD cone by pulling back the SPD matrix
cone dissimilarity using f :

D(N0, N1):=D(f(N0), f(N1)). (14)

Similarly, we pullback cone geodesics onto N :

Definition 4.3 (Pullback curves). A path cγ(N0, N1; t) join-
ing N0 = cγ(N0, N1; 0) and N1 = cγ(N0, N1; 1) can be
defined by the pullback of any geodesic γ(f(N0), f(N1); t)
on the SPD cone:

cγ(N0, N1; t):=f inv(γ(f(N0), f(N1); t)). (15)

Hence, we can leverage the rich literature on dissimilar-
ities and geodesics on the SPD cone (e.g., (Hero et al.,

Figure 4. Comparing the pullback Hilbert geodesic (orange, co-
inciding with the mixture geodesic) with the exact Fisher-Rao
geodesic displayed in black.

2001; Chebbi & Moakher, 2012; Sra, 2016; Baggio et al.,
2018; Chen et al., 2021)). Note that the Riemannian
SPD trace metric geodesic is also the geodesic for Fins-
lerian distances ρh(P0, P1):=

∥∥∥Log
(
P
− 1

2
0 P1 P

− 1
2

0

)∥∥∥
h

where h is a totally symmetric gauge function (i.e.,
h(x1, . . . , xn) = h(σ(x1, . . . , xn)) for any permutation
σ)) and ‖P‖h:=h(λ1(P ), . . . , λd(P )). When h(x) =

hp(x) = ‖x‖p =
(∑d

i=1 x
p
i

) 1
p

is the p-norm for 1 ≤
p <∞, we get the Schatten matrix p-norms (Bhatia, 2009).

The Hilbert projective cone distance (Hilbert, 1895;
Birkhoff, 1957; Chen et al., 2021) on the SPD cone
Sym+(d,R) is defined by

ρHilbert(P0, P1) = log

(
λmax(P

− 1
2

0 P1P
− 1

2
0 )

λmin(P
− 1

2
0 P1P

− 1
2

0 )

)
,

= log

(
λmax(P−1

0 P1)

λmin(P−1
0 P1)

)
.

It is a projective distance (or quasi-metric distance) because
it is symmetric and satisfies the triangular inequality but
we have ρHilbert(P0, P1) = 0 if and only if P0 = λP1 for
some λ > 0. However, the pullback Hilbert distance on N ,
ρHilbert(N0, N1) := ρHilbert(f(N0), f(N1)), is a proper
metric distance on N since f(N0) = f(N1) if and only if
λ = 1 because the array element at last row and last column
[f(N0)]d+1,d+1 = [f(N1)]d+1,d+1 = 1 is identical. Thus
f(N0) = λf(N1) for λ = 1. The pullback Hilbert cone
distance only requires to calculate the extreme eigenvalues
of the matrix product f(N0)−1f(N1). Thus we can bypass
a costly SVD and compute approximately these extreme
eigenvalues using the power method (Trevisan, 2017) (Ap-
pendix D).

The geodesic in the Hilbert SPD cone are straight
lines (Nussbaum, 1994) parameterized as follows:

γHilbert(P0, P1; t) :=

(
βαt − αβt

β − α

)
P0+

(
βt − αt

β − α

)
P1,

7
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Figure 5. Approximating the Hilbert smallest enclosing ball of a
set of bivariate normal distributions. The approximated minimax
center is shown in green.

where α = λmin(P−1
1 P0) and β = λmax(P−1

1 P0). Fig-
ure 4 compares the pullback Hilbert geodesic curve with the
Fisher-Rao geodesic.

A pregeodesic is a geodesic which may be arbitrarily repa-
rameterized by another parameter u = r(t) for some smooth
function r. That is, a pregeodesic is not necessarily param-
eterized by arc length. Let us notice that the weighted
arithmetic mean LERP(P0, P1;u) = (1 − u)P0 + uP1 is
a pregeodesic of γHilbert(P0, P1; t). Although Hilbert SPD
space is not a Riemannian space, it enjoys non-positive
curvature properties according to various definitions of cur-
vatures (Alabdulsada & Kozma, 2019; Karlsson & Noskov,
2000).

We can adapt the approximation of the minimum enclosing
Hilbert ball by replacing ρFR by ρHilbert and cutting metric
geodesic γHilbert instead of geodesics γNFR (see Figure 5).

First, the diffeomorphic embedding f exhibits several inter-
esting features:

Proposition 4.4. The Jeffreys divergence between pµ1,Σ1

and pµ2,Σ2
amounts to the Jeffreys divergence between

qP̄1
= p0,f(µ1,Σ1) and qP̄2

= p0,f(µ2,Σ2) where P̄i =
f(µi,Σi): DJ(pµ1,Σ1

, pµ2,Σ2
) = DJ(qP̄1

, qP̄2
).

Proof. Since DJ(p, q) = DKL(p, q) +DKL(q, p), we shall
prove that DKL(pµ1,Σ1

, pµ2,Σ2
) = DKL(qP̄1

, qP̄2
). The

KLD between two centered (d+ 1)-variate normals qP1
=

p0,P1 and qP2 = p0,P2 is

DKL(qP1
, qP2

) =
1

2

(
tr(P−1

2 P1)− d− 1 + log
|P2|
|P1|

)
.

This divergence can be interpreted as the matrix ver-
sion of the Itakura-Saito divergence (Davis & Dhillon,
2006). It is a matrix spectral distance since we can
write DKL(qP1

, qP2
) = (hKL ◦ λsp)(Σ−1

2 Σ1), where
λsp(S) = (λ1(S), . . . , λd(S)) and hKL(u1, . . . , ud) =
1
2 (ui − 1− log ui) (a gauge function). Similarly, the
Jeffreys divergence between two centered MVNs is a
matrix spectral distance with gauge function hJ(u) =

∑d
i=1

(√
ui − 1√

ui

)2

.

The SPD cone equipped with 1
2 of the trace metric can

be interpreted as Fisher-Rao centered normal manifolds
(isometry): ∀µ, (Nµ, gFisher

Nµ ) ∼= (P, 1
2g

trace).

Since the determinant of a block matrix is

det

([
A B
C D

])
= det

(
A−BD−1C

)
, we get with

D = 1: det(f(µ,Σ)) = det(Σ + µµ> − µµ>) = det(Σ).

Let P̄1 = f(µ1,Σ1) and P̄2 = f(µ2,Σ2). Checking
DKL[pµ1,Σ1

: pµ2,Σ2
] = DKL[qP̄1

: qP̄2
] where qP̄ = p0,P̄

amounts to verify that tr(P̄−1
2 P̄1) = 1 + tr(Σ−1

2 Σ1 +
∆>µΣ−1

2 ∆µ). Indeed, using the inverse matrix

f(µ,Σ)−1 =

[
Σ−1 −Σ−1µ
−µ>Σ−1 1 + µ>Σ−1µ

]
,

we have tr(P̄−1
2 P̄1) =

tr

([
Σ−1

2 −Σ−1
2 µ2

−µ>2 Σ−1
2 1 + µ>2 Σ−1

2 µ2

] [
Σ1 + µ1µ

>
1 µ1

µ>1 1

])
=

1 + tr(Σ−1
2 Σ1 + ∆>µΣ−1

2 ∆µ). Thus even if the dimension
of the sample spaces of pµ,Σ and qP̄=f(µ,Σ) differs by one,
we get the same KLD and Jeffreys divergence by Calvo and
Oller’s isometric mapping f .

Second, the mixture geodesics are preserved by the embed-
ding f :

Proposition 4.5. The mixture geodesics are preserved by the
embedding f : f(γNm (N0, N1; t)) = γPm(f(N0), f(N1); t).

We check that f(LERP(N0, N1; t)) = LERP(P̄0, P̄1; t).
Thus the pullback of the Hilbert cone geodesics are thus
coinciding with the mixture geodesics on N .

Therefore all algorithms on N which only require m-
geodesics or m-projections (Amari, 2016) by minimizing
the right-hand side of the KLD can be implemented by
algorithms on P by using the f -embedding. On P , the
minimizing problems amounts to a logdet minimization
problem well-studied in the both optimization community
and information geometry community information projec-
tions (Tsuda et al., 2003).

However, the exponential geodesics are preserved only for
submanifolds Nµ of N with fixed mean µ. Thus N µ pre-
serve both mixture and exponential geodesics: The sub-
manifolds N µ are said to be doubly auto-parallel (Ohara,
2019).

Online materials are available at https://
franknielsen.github.io/FisherRaoMVN/
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A. Fisher-Rao geodesics between MVNs with initial value conditions
The Fisher-Rao geodesics γ(t) are smooth curves which are autoparallel with respect to the Levi-Civita connection ∇g
induced by the metric tensor g: ∇gγ̇ γ̇ = 0. On the MVN manifold, the system of Riemannian geodesic equations (Skovgaard,
1984) is {

µ̈− Σ̇Σ−1µ̇ = 0,

Σ̈ + µ̇µ̇> − Σ̇Σ−1Σ̇ = 0.

We may solve the above differential equation system either using initial value conditions (IVPs) by prescribing N0 =
(µ(0),Σ(0)) and a tangent vector Ṅ(0) = (µ̇(0), Σ̇(0)), or with boundary value conditions (BVPs) by prescribing N0 =
(µ(0),Σ(0)) and N1 = (µ(1),Σ(1)). Let γFisher

N (N0, Ṅ0; t) and γFisher
N (N0, N01; t) denote these two types of geodesics.

Without loss of generality, let us assume N0 = N(0, I) (standard normal distribution). The task is to perform geodesic
shooting, i.e., calculate N(t) = γFisher

N (N0, v0; t) with some prescribed initial condition (v, S) = γ̇Fisher
N (N0, v0; 0) ∈

TNstdM and t ≥ 0. We report the solution given in (Calvo & Oller, 1991) which relies on the following natural
parameterization of the normal distributions (

ξ = Σ−1µ,Ξ = Σ−1
)
.

The initial conditions are given by (a = ξ̇(0), B = Ξ̇(0)) = γ̇Fisher
N (N0, v0; 0).

The method of (Calvo & Oller, 1991) first calculate those quantities:

B = −Ξ(0)−
1
2 Ξ̇(0) Ξ(0)−

1
2 ,

a = Ξ(0)−
1
2 ξ̇(0) +BΞ

− 1
2

0 ξ(0),

G = (B2 + 2aa>)
1
2 .

Furthermore, let G† = G−1 when G is invertible or G† = (G>G)−1G> the Moore-Penrose generalized pseudo-inverse
matrix of G otherwise (or any kind of generalized matrix inverse G− (Calvo & Oller, 1991), see).

Then we have (ξ(t),Ξ(t)) = γFisher
N (N0, v0; t) with

Ξ(t) = Ξ(0)
1
2 R(t)R(t)> Ξ(0)

1
2 ,

ξ(t) = 2Ξ(0)
1
2 R(t)Sinh

(
1

2
Gt

)
G†a+ Ξ(t)Ξ−1(0)ξ(0),

and

R(t) = Cosh

(
1

2
Gt

)
−BG†Sinh

(
1

2
Gt

)
.

The matrix hyperbolic cosine and sinus functions of M are calculated from the eigen decomposition of M =
O diag(λ1, . . . , λd)O

> as follows:

Sinh(M) = O diag(sinh(λ1), . . . , sinh(λd))O
>, sinh(u) =

eu − e−u

2
=

∞∑
i=0

u2i+1

(2i+ 1)!
,

Cosh(M) = O diag(cosh(λ1), . . . , cosh(λd))O
>, cosh(u) =

eu + e−u

2
=

∞∑
i=0

u2i

(2i)!
.

For the general case γFisher
N (N, v0; t) with arbitrary N = (Σ, µ), we use the affine equivariance property of the Fisher-Rao

geodesics with P = Σ−
1
2 :

γFisher
N (N, v0; t) = (−Pµ, P−1).γFisher

N (Nstd, (Pa,−PBP>); t). (16)

Figure 6 displays several examples of geodesics from the standard normal distribution with various initial value conditions.
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Figure 6. Examples of Fisher-Rao geodesics (µ(t),Σ(t)) emanating from the standard bivariate normal distribution (µ(0),Σ(0)) =
N(0, I) with initial value conditions (µ̇(0), Σ̇(0)). Vectors µ̇(0) are shown in blue and symmetric matrices Σ̇(0) = λ1v1v

>
1 + λ2v2v

>
2

are visualized by their two scaled eigenvectors λ1v1 and λ2v2 shown in green.

The geodesics with initial values let us define the Riemannian exponential map exp : TNM→M:

expN (v) = γFisher
N (N, v; 1).

The inverse map is the Riemannian logarithm map. In a geodesically complete manifold (e.g., Nµ), we can express the
Fisher-Rao distance as:

ρN (N1, N2) = ‖LogN1
(N2)‖N1

.

Thus computing the Fisher-Rao distance can be done by computing the Riemannian MVN logarithm.

B. Proof of square root of Jeffreys upper bound
Let us prove that the Fisher-Rao distance between normal distributions is upper bounded by the square root of the Jeffreys
divergence:

ρN (N1, N2) ≤
√
DJ(N1, N2).

Property 2. We have

DJ [pλ1
, pλ2

] =

∫ 1

0

ds2
N (γmN (pλ1

, pλ2
; t))dt =

∫ 1

0

ds2
N (γeN (pλ1

, pλ2
; t))dt.

Let SF (θ1; θ2) = BF (θ1 : θ2) + BF (θ2 : θ1) be a symmetrized Bregman divergence. Let ds2 = dθ>∇2F (θ)dθ denote
the squared length element on the Bregman manifold and denote by γ(t) and γ∗(t) the dual geodesics connecting θ1 to θ2.
We can express SF (θ1; θ2) as integral energies on dual geodesics:

Property 3. We have SF (θ1; θ2) =
∫ 1

0
ds2(γ(t))dt =

∫ 1

0
ds2(γ∗(t))dt.

Proof. The proof that the symmetrized Bregman divergence amount to these energy integrals is based on the first-order and
second-order directional derivatives. The first-order directional derivative∇uF (θ) with respect to vector u is defined by

∇uF (θ) = lim
t→0

F (θ + tv)− F (θ)

t
= v>∇F (θ).

13
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The second-order directional derivatives∇2
u,vF (θ) is

∇2
u,vF (θ) = ∇u∇vF (θ),

= lim
t→0

v>∇F (θ + tu)− v>∇F (θ)

t
,

= u>∇2F (θ)v.

Now consider the squared length element ds2(γ(t)) on the primal geodesic γ(t) expressed using the primal coordinate
system θ: ds2(γ(t)) = dθ(t)>∇2F (θ(t))dθ(t) with θ(γ(t)) = θ1 + t(θ2 − θ1) and dθ(t) = θ2 − θ1. Let us express the
ds2(γ(t)) using the second-order directional derivative:

ds2(γ(t)) = ∇2
θ2−θ1F (θ(t)).

Thus we have
∫ 1

0
ds2(γ(t))dt = [∇θ2−θ1F (θ(t))]10, where the first-order directional derivative is ∇θ2−θ1F (θ(t)) =

(θ2 − θ1)>∇F (θ(t)). Therefore we get
∫ 1

0
ds2(γ(t))dt = (θ2 − θ1)>(∇F (θ2)−∇F (θ1)) = SF (θ1; θ2).

Similarly, we express the squared length element ds2(γ∗(t)) using the dual coordinate system η as the second-order
directional derivative of F ∗(η(t)) with η(γ∗(t)) = η1 + t(η2 − η1):

ds2(γ∗(t)) = ∇2
η2−η1

F ∗(η(t)).

Therefore, we have
∫ 1

0
ds2(γ∗(t))dt = [∇η2−η1

F ∗(η(t))]10 = SF∗(η1; η2). Since SF∗(η1; η2) = SF (θ1; θ2), we conclude
that

SF (θ1; θ2) =

∫ 1

0

ds2(γ(t))dt =

∫ 1

0

ds2(γ∗(t))dt

Note that in 1D, both pregeodesics γ(t) and γ∗(t) coincide. We have ds2(t) = (θ2−θ1)2f ′′(θ(t)) = (η2−η1)f∗′′(η(t)) so
that we check that SF (θ1; θ2) =

∫ 1

0
ds2(γ(t))dt = (θ2−θ1)[f ′(θ(t))]10 = (η2−η1)[f∗′(η(t))]10 = (η2−η1)(θ2−θ2).

Property 4 ((Amari, 2016)). We have

DJ [pλ1 , pλ2 ] =

∫ 1

0

ds2
N (γmN (pλ1 , pλ2 ; t))dt =

∫ 1

0

ds2
N (γeN (pλ1 , pλ2 ; t))dt.

Proof. Let us report a proof of this remarkable fact in the general setting of Bregman manifolds. Indeed, since

DJ [pλ1 , pλ2 ] = DKL[pλ1 : pλ2 ] +DKL[pλ2 : pλ1 ],

and DKL[pλ1 : pλ2 ] = BF (θ(λ2) : θ(λ1)), where BF denotes the Bregman divergence induced by the cumulant function
of the multivariate normals and θ(λ) is the natural parameter corresponding to λ, we have

DJ [pλ1
, pλ2

] = BF (θ1 : θ2) +BF (θ2 : θ1),

= SF (θ1; θ2) = (θ2 − θ1)>(η2 − η1) = SF∗(η1; η2),

where η = ∇F (θ) and θ = ∇F ∗(η) denote the dual parameterizations obtained by the Legendre-Fenchel convex conjugate
F ∗(η) of F (θ). Moreover, we have F ∗(η) = −h(pµ,Σ) (Amari, 2016), i.e., the convex conjugate function is Shannon
negentropy.

Then we conclude by using the fact that SF (θ1; θ2) =
∫ 1

0
ds2(γ(t))dt =

∫ 1

0
ds2(γ∗(t))dt, i.e., the symmetrized Bregman

divergence amounts to integral energies on dual geodesics on a Bregman manifold. The proof of this general property is
reported in Appendix B.

Property 5 (Fisher–Rao upper bound). The Fisher-Rao distance between normal distributions is upper bounded by the
square root of the Jeffreys divergence: ρN (N1, N2) ≤

√
DJ(N1, N2).
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Proof. Consider the Cauchy-Schwarz inequality for positive functions f(t) and g(t):
∫ 1

0
f(t)g(t)dt ≤√

(
∫ 1

0
f(t)2dt)(

∫ 1

0
g(t)2dt)), and let f(t) = dsN (γcN (pλ1 , pλ2 ; t) and g(t) = 1. Then we get:

(∫ 1

0

dsN (γcN (pλ1
, pλ2

; t)dt

)2

≤
(∫ 1

0

ds2
N (γcN (pλ1

, pλ2
; t)dt

)∫ 1

0

12dt︸ ︷︷ ︸
=1

 .

Furthermore since by definition of γFR
N , we have∫ 1

0

dsN (γcN (pλ1
, pλ2

; t)dt ≥
∫ 1

0

dsN (γFR
N (pλ1

, pλ2
; t)dt =: ρN (N1, N2).

It follows for c = γeN (i.e., e-geodesic) using Property 4 that we have:

ρN (N1, N2)2 ≤
∫ 1

0

ds2
N (γeN (pλ1 , pλ2 ; t)dt = DJ(N1, N2).

Thus we conclude that ρN (N1, N2) ≤
√
DJ(N1, N2).

Note that in Riemannian geometry, a curve γ minimizes the energy E(γ) =
∫ 1

0
‖γ̇(t)‖2dt if it minimizes the length

Len(γ) =
∫ 1

0
‖γ̇(t)‖dt and ‖γ̇(t)‖ is constant. Using Cauchy-Schwartz inequality, we can show that Len(γ) ≤ E(γ).

C. Riemannian SPD geodesic and the arithmetic-harmonic inductive mean
The Riemannian SPD geodesic γ(X,Y ; t) joining two SPD matrices X and Y with respect to the trace metric can be
expressed using the weighted matrix geometric mean:

γ(X,Y ; t) = X#tY = X
1
2

(
X−

1
2 Y X−

1
2

)t
X

1
2 . (17)

We denote by X#Y = X# 1
2
Y =.

The matrix geometric mean can be computed inductively using the following arithmetic-harmonic sequence:

At+1 = A(At, Ht),

Ht+1 = H(At, Ht),

where the matrix arithmetic mean is A(X,Y ) = X+Y
2 and the matrix harmonic mean is H(X,Y ) = 2(X−1 + Y −1)−1.

The sequence is initialized with A0 = X and H0 = Y . We have AHM(X,Y ) = limt→∞At = limt→∞Ht = X# 1
2
Y ,

and the convergence is of quadratic order (Nakamura, 2001). This iterative method converges to X#Y , the non-weighted
matrix geometric mean. In general, taking weighted arithmetic and harmonic means A(X,Y ) = (1 − α)X + αY and
H(X,Y ) = ((1− α)X−1 + αY −1)−1 yields convergence to a matrix which is not the weighted geometric mean X#αY
(except when α = 1

2 . The method requires to compute the matrix harmonic mean which requires to inverse matrices. The
closed-form formula of the matrix weighted geometric mean of Eq. 17 requires to compute a matrix fractional power which
can be done from a matrix eigen decomposition.

D. Power method to approximate the largest and smallest eigenvalues
We concisely recall the power method and its computational complexity to approximate the largest eigenvalue λ1 of a d× d
symmetric positive-definite matrix P following (Trevisan, 2017):

• Pick uniformly at random x(0) ∈ {−1, 1}d

• For t ∈ (1, . . . , T ) do x(t) ← P x(t−1)

15



Submission and Formatting Instructions for ICML 2023

• Return λ̃1 = 〈x(T ),Px(T )〉
〈x(T ),x(T )〉 , where 〈x, y〉 = x>y denotes the dot product.

The complexity of the power method with T iterations is O(T (d+m)) where m = O(d2) is the number of non-zero entries
of P . Furthermore, with probability≥ 3

16 , the iterative power method with T = O
(
d
ε d
)

iterations yields λ̃1 ≥ (1− ε)λ1 for
any ε > 0 (Trevisan, 2017). Due to its vector-matrix product operations, the power method can be efficiently implemented
on GPU (Ballard et al., 2011).

To compute an approximation λ̃d of the smallest eigenvalues λd of P , we first compute the matrix inverse P−1 and then
compute the approximation of the largest eigenvalue of P−1. We report λ̃d(P ) = λ̃1(P−1). The complexity of computing a
matrix inverse is as hard as computing the matrix product (Cormen et al., 2022). The current best algorithm requires O(dω)
operations with ω = 2.373 (Alman & Williams, 2021).
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