# **Unsupervised Embedding Quality Evaluation**

Anton Tsitsulin<sup>1</sup> Marina Munkhoeva<sup>2</sup> Bryan Perozzi<sup>1</sup>

## Abstract

Unsupervised learning has recently significantly gained in popularity, especially with deep learning-based approaches. Despite numerous successes and approaching supervised-level performance on a variety of academic benchmarks, it is still hard to train and evaluate SSL models in practice due to the unsupervised nature of the problem. Even with networks trained in a supervised fashion, it is often unclear whether they will perform well when transferred to another domain.

Past works are generally limited to assessing the amount of information contained in embeddings, which is most relevant for self-supervised learning of deep neural networks. This works chooses to follow a different approach: can we quantify how easy it is to linearly separate the data in a stable way? We survey the literature and uncover three methods that could be potentially used for evaluating quality of representations. We also introduce one novel method based on recent advances in understanding the high-dimensional geometric structure of self-supervised learning.

We conduct extensive experiments and study the properties of these metrics and ones introduced in the previous work. Our results suggest that while there is no free lunch, there are metrics that can robustly estimate embedding quality in an unsupervised way.

# 1. Introduction

With proliferation of unsupervised and self-supervised deep learning methods in the recent years, there is an increasing need to quantify the quality of representations produced by such methods. Across different domains, this is commonly done with training linear classifiers (*probes*) against known labels (Perozzi et al., 2014; Chen et al., 2020). However, in unsupervised settings *there are no labels* to begin with. How can we do model selection, optimize methods' hyperparameters, or even verify the method worked at all?

In search of such metrics, we turn our attention to different sub-fields of numerical linear algebra, machine learning and optimization, and high-dimensional probability. We identify three promising candidate metrics and introduce one based on the expected distribution of embedding distances. We then proceed to test them on two conceptually novel domains: *supervised* model selection and shallow singlelayer graph embedding learning.

Our experimental results indicate there is no "free lunch" a metric that is universally dominating—thus calling for a comprehensive suite of evaluation metrics. Despite that, metrics introduced in this work exhibit, like stable rank and coherence, display stronger correlation to downstream task performance of the supervised models, are more computationally stable, and suit shallow embedding models much better than state-of-the-art ones.

We summarize our key contributions as follows:

- We identify three different perspectives on evaluation of embedding quality in unsupervised manner and introduce four metrics based on these perspectives.
- We experimentally study two novel settings for embedding quality evaluation, showing that standard metrics often fail when shallow models are being studied.
- We conduct a study on computational stability of all metrics and identify the minimum viable sample sizes.
- We demonstrate that the proposed metrics are at least as effective as state-of-the-art ones in terms of downstream quality prediction while having more intuitive behavior for shallow embedding models.

## 2. Related Work

The literature on evaluating representations in unsupervised way is still sparse. Arguably, *dimensional collapse* (Hua et al., 2021) has sparked initial interest in the area. In dimensional collapse, some dimensions become non-meaningful (collapse) during training. Because of that problem, three concurrent metrics, which we introduce below, all study the problem of measuring such collapse from different angles.

<sup>&</sup>lt;sup>1</sup>Google Research, New York, USA <sup>2</sup>Max Planck Institute for Intelligent Systems, Tübingen, Germany. Correspondence to: Anton Tsitsulin <a href="https://www.sitsulin.example.com">tsitsulin.example.com</a>.

Proceedings of the  $2^{nd}$  Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML) at the  $40^{th}$  International Conference on Machine Learning, Honolulu, Hawaii, USA. 2023. Copyright 2023 by the author(s).

 $\alpha$ -**ReQ** (Agrawal et al., 2022) fits a power-law to the singular values of representations, meaning  $\lambda_i \propto i^{-\alpha}$ . Logarithmic decay of the spectrum with slope  $\alpha = 1$  was recently proven to provide the best generalization in infinitedimensional analysis of linear regression (Bartlett et al., 2020). In practice, a simple linear regression estimator on a log-log scale is used to estimate the value of  $\alpha$ . This approach for estimating the power-law exponent is considered inaccurate (Clauset et al., 2009).

**RankMe** (Garrido et al., 2022; Roy & Vetterli, 2007) is a method based on estimating the effective rank of a matrix. In a strict numerical linear algebraic sense, most embedding matrices are full-rank. "Softer" definitions allow to capture not only fully collapsed dimensions but also general underutilization of the parameter space.

**Definition 2.1.** Given a matrix  $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$  with SVD  $\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$ , its effective rank is the entropy of its normalized singular values, defined as

RankMe(M) = 
$$-\sum_{i} p_i \log p_i, \quad p_i = \frac{\sigma_i}{\|\Sigma\|_1}.$$

**NESum** (He & Ozay, 2022) analyzes eigenspectrum of the covariance matrix of representations. It is introduced as a heuristic metric complementing the analysis of features learned by the barlow twins loss (Zbontar et al., 2021).

**Definition 2.2.** Given a matrix  $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$  with covariance that can be decomposed as  $\mathbf{C} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\top}$ :

$$\operatorname{NESum}(\mathbf{M}) = \sum_{i} \frac{\lambda_i}{\lambda_0},$$

with convention of  $\frac{0}{0} = 0$ .

# 3. Three Perspectives on Embedding Quality

We now study three different perspectives on estimating embedding "quality". All measures we have discussed so far aim to answer an information-theoretic question on representations: *Do embedding carry as much information as their size allows?* However, there are different questions worth answering. This paper introduces four novel metrics for embedding quality evaluation based on different perspectives on the embedding quality.

The following section pursues the linear classifier perspective on representation quality (Mohri & Talwalkar, 2011). It asks: *How hard it is to find a suitable transformation from the representations to the targets of the downstream task?* We show that this is an inherent property of the representations themselves (and the target matrix too, if it's not a classification task).

#### 3.1. Linear Classifier Perspective

Let our downstream task be a classification with a target matrix  $\mathbf{Y} \in \{0, 1\}^{n \times c}$  and a linear probe  $h = \mathbf{XW} + \mathbf{b}$  with weight matrix  $\mathbf{W}$  and bias vector  $\mathbf{b}$ . In what follows, we argue that it is easier to find h that yields high accuracy when applied to the input matrix  $\mathbf{X}$  with higher coherence.

Without loss of generality, we can drop the bias term. For the ease of exposition, we will adopt the Mean-Squared Error loss  $(\mathcal{L} = ||\mathbf{Y} - \mathbf{X}\mathbf{W}||_F^2)$  for a downstream task. The optimal weight matrix will then depend on the target and representation matrices, i.e. from the derivative condition  $\mathbf{X}^{\top}\mathbf{Y} = \mathbf{X}^{\top}\mathbf{X}\mathbf{W}$ . Given some  $\mathbf{A} \in \ker(\mathbf{X})$ , i.e. a matrix comprised of vectors from the null space of  $\mathbf{X}$ , we rewrite the condition as  $\mathbf{X}^{\top}\mathbf{Y} = \mathbf{X}^{\top}(\mathbf{A} + \mathbf{X}^{\dagger}\mathbf{Y})$  and get  $\mathbf{W}^* = \mathbf{X}^{\dagger}\mathbf{Y} + \mathbf{A}$  for any  $\mathbf{A} \in \ker(\mathbf{X})$ .

Assuming we can always find an optimal weight matrix, to minimize the loss  $\mathcal{L}$ , the representations **X** should be aligned with the target matrix **Y**, i.e. the left singular vectors **U** of **X** = **UXV** should span **U**<sub>Y</sub> of **Y** = **U**<sub>Y</sub>**\Sigma**<sub>Y</sub>**V**<sub>Y</sub>, where **V**<sub>Y</sub> = **I**<sub>c</sub> when **Y** is a classification target matrix.

Plugging in the optimal  $\mathbf{W}^*$  into the loss,

$$\begin{aligned} ||\mathbf{Y} - \mathbf{X}(\mathbf{X}^{\dagger}\mathbf{Y} + \mathbf{A})||_{F}^{2} &= ||\mathbf{Y} - \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^{\dagger}\mathbf{U}^{\top}\mathbf{Y}||_{F}^{2} \\ &= ||(\mathbf{I} - \mathbf{U}\mathbf{I}_{d}\mathbf{U}^{\top})\mathbf{Y}||_{F}^{2} \\ &= ||(\mathbf{I} - \mathbf{I}_{d})\mathbf{U}^{\top}\mathbf{Y}||_{F}^{2} \\ &= ||\mathbf{Y}||_{F}^{2} - ||\mathbf{U}_{d}^{\top}\mathbf{U}_{\mathbf{Y}}\mathbf{\Sigma}_{\mathbf{Y}}||_{F}^{2}, \end{aligned}$$

where  $\mathbf{I}_d \in \mathbb{R}^{n \times n}$  with d ones on the diagonal, and the minimum is reached whenever columns in  $\mathbf{U}$  are aligned with columns in  $\mathbf{U}_{\mathbf{Y}}$ .

Intuitively, if the representation dimensionality is larger than number of classes in the downstream task, i.e. d > c, and **X** has full rank (a consequence of most methods being spectral embedding), then the representation basis covers the target basis with high probability. However, to quantify the extent of this coverage, we will need to introduce a notion of incoherence.

**Definition 3.1** ( $\mu_0$ -incoherence). Given matrix  $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$  with rank-r and SVD  $\mathbf{M} = \mathbf{U} \Sigma \mathbf{V}^{\top}$ ,  $\mathbf{M}$  is said to satisfy the *standard incoherence* condition with parameter  $\mu_0$  if

$$\max_{1 \le i \le n_1} ||\mathbf{U}^{\top} e_i||_2 \le \sqrt{\frac{\mu_0 r}{n_1}}, \ \max_{1 \le i \le n_2} ||\mathbf{V}^{\top} e_j||_2 \le \sqrt{\frac{\mu_0 r}{n_2}},$$

where  $e_i$  is the *i*-th standard basis vector of a respective dimension. Note that  $1 \le \mu_0 \le \max(n_1, n_2)/r$ .

Informally, standard incoherence characterizes the extent of alignment of the singular vectors to the standard basis. Incoherence is typically used in low-rank matrix completion problems to estimate a complexity of matrix recovery (Mohri & Talwalkar, 2011). In our setting, *lower* incoherence will be indicative of high alignment with target matrix and, thus, *better* performance.

Ideally, if we had access to the targets, we could use joint incoherence  $\mu_1(\mathbf{Z}, \mathbf{Y})$  to measure the alignment directly. More practical is the case when true labels are not available. There, we will need to rely on the standard coherence  $\mu_0(\mathbf{Z})$ which measures alignment to the standard basis. Our experiments show that there is indeed a correlation between standard incoherence of the representations and performance on the downstream tasks (almost perfect in some cases).

### 3.2. Numerical Linear Algebra Perspective

Numerical linear algebra provides us with more tools for analysing behaviors of linear classifiers. One of the classic ones is the condition number, or, in the case of non-square matrices, its generalized version (Ben-Israel, 1966). For example,  $\kappa_2$  is used to detect multicollinearity in linear and logistic regression (Belsley et al., 2005).

**Definition 3.2.** Pseudo-condition number of a matrix M with SVD  $\mathbf{M} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$  is defined as

$$\kappa_p(\mathbf{M}) = \|\mathbf{M}\|_p \|\mathbf{M}^{\dagger}\|_p \stackrel{p=2}{=} \frac{\sigma_1}{\sigma_n}.$$

We are particularly interested in  $\kappa_2$ , since it is easily computable with SVD, as the pseudo-inverse of **M** is  $(\mathbf{M}^{\top}\mathbf{M})^{-1}\mathbf{M} = \mathbf{U}\boldsymbol{\Sigma}^{-1}\mathbf{V}^{\top}$ , meaning  $\|\mathbf{M}^{\dagger}\|_2 = 1/\sigma_n$ .

In the analysis of linear regression,  $\kappa_2$  can be used to bound the sensitivity of the system to the change in the input. Consider a linear system  $(\mathbf{A} + \Delta \mathbf{A})\hat{\mathbf{x}} = \mathbf{b}$  and its perturbed version  $\mathbf{A}\hat{\mathbf{x}} = \mathbf{b} + \Delta \mathbf{b}$ . Then,

$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(\mathbf{A})}{1 - \kappa(\mathbf{A}) \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|}} \left( \frac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|} + \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|} \right).$$

We use  $\kappa_2$  to measure stability of learned representations.

#### 3.2.1. STABLE RANK

Stable rank (also called *effective* rank or intrinsic dimension of a matrix) is another fundamental quality in numerical analysis of random matrices.

Definition 3.3. Numerical rank of a matrix M is defined as

$$r(\mathbf{M}) = \frac{\|\mathbf{M}\|_F}{\|\mathbf{M}\|_2^2}$$

Note that  $r(\mathbf{M}) \leq \operatorname{rank}(\mathbf{M})$ , and that bound is sharp. Stable rank is a useful tool that guides fundamental numerical problems, including matrix sampling and covariance estimation.

Let us restate Theorem 1.1 from Rudelson & Vershynin (2007):

**Theorem 3.4.** Let **A** be an  $n \times d$  matrix with stable rank r. Let  $\varepsilon, \delta \in (0, 1)$ , and let  $m \le n$  be an integer such that

$$m \geq C\left(\frac{r}{\varepsilon^4 \delta}\right) \log\left(\frac{r}{\varepsilon^4 \delta}\right).$$

Consider a  $m \times d$  matrix  $\tilde{\mathbf{A}}$ , which consists of m normalized rows of  $\mathbf{A}$  picked independently with replacement, with probabilities proportional to the squares of their Euclidean lengths. Then with probability at least  $1 - 2\exp(-c/\delta)$  the following holds. For a positive integer k, let  $\mathbf{P}_k$  be the orthogonal projection onto the top k left singular vectors of  $\tilde{\mathbf{A}}$ . Then,

$$\|\mathbf{A} - \mathbf{A}\mathbf{P}_k\| = \sigma_{k+1}(\mathbf{A}) + \varepsilon \|\mathbf{A}\|_2$$

This suggests that the numerical rank determines how hard it is to estimate the matrix by subsampling its rows. Intuitively, a well-distributed representations should be hard to estimate; we will observe that this is indeed the case in practice.

#### 3.3. High-dimensional Probability Perspective

In self-supervised learning, Assran et al. (2023) shows that several contrastive learning methods try to distribute representations equally in the space. High-dimensional probability can provide us with an estimate of pairwise distances when embeddings are distributed uniformly on a *d*-dimensional unit sphere  $\mathbb{S}^d$ .

Given  $L_2$  normalized embeddings  $\mathbf{W} \in \mathbb{R}^{n \times d}$ , a measure of clustering can be defined using the norm of the pairwise dot product matrix  $Q = \|\mathbf{W}\mathbf{W}^{\top}\|_F$ . Since the expected dot product of high-dimensional isotropic random vectors  $\langle \mathbf{x}, \mathbf{y} \rangle \approx \frac{1}{n}$  (Vershynin, 2018, Remark 3.2.5), we can estimate  $\mathbb{E}[Q] = n + \frac{n(n-1)}{d}$ . The maximum metric value  $Q = n^2$  can only be achieved in the collapsed case. Combining all normalizations to get a metric upper-bounded that is upper-bounded by 1, we get:

### Definition 3.5.

SelfCluster(
$$\mathbf{W}$$
) =  $\frac{\|\mathbf{W}\mathbf{W}^{\top}\|_{F} - n - \frac{n*(n-1)}{d}}{n^{2} - n - \frac{n*(n-1)}{d}}$   
=  $\frac{d\|\mathbf{W}\mathbf{W}^{\top}\|_{F} - n(d+n-1)}{(d-1)(n-1)n}$ 

SelfCluster allows us to estimate how much the embeddings are clustered in the embedding space compared to random distribution on a sphere. The downside of this metric is the requirement of pairwise computations, which is expensive for large number of points. We now proceed to study the proposed metrics on real-world data.

# 4. Experiments

In contrast to previous work (Agrawal et al., 2022; Garrido et al., 2022), we shift our attention from self-supervised learning to novel, more generally applicable settings. We experimentally study proposed metrics on two novel use-cases: (i) supervised representation learning with deep neural networks and (ii) unsupervised graph embeddings. Supervised representation learning allows us to gain insights into performance of semi-supervised learning systems. Graph embedding, on the other hand, has very different architecture shallow single-layer network—and optimization.

Section 4.1.2 further provides a novel study on computational stability of different embedding quality evaluation metrics. Stability is important for many practical application, since the most computationally stable metrics can be even computed during training for monitoring purposes.

### 4.1. Supervised Network Performance Prediction

We used Wightman (2019) repository of supervised PyTorch models, accessed May 2023. (Deng et al., 2009) We ran inference of all available models, as permitted by GPU memory, on the validation set, and a subset of models<sup>1</sup>—on the full training set. Inference was performed on a single 16-core machine with NVIDIA RTX 4090 and 64Gb RAM.

#### 4.1.1. DOWNSTREAM QUALITY CORRELATION

Figures 1 and 2 present rank correlation of the different embedding quality metrics to downstream prediction quality on ImageNet, measured for training and validation set embeddings respectively. We do not report SelfCluster metric results on the training set because of its quadratic time complexity. Since RankMe is dependent on the dimensionality of the data, we normalize its values and call the metric RankMe<sup>\*</sup>. This new metric has the range between 0 and 1, and represents relative utilization of the embedding space.

On the training set evaluation,  $\alpha$ -ReQ, NESum, pseudocondition number, and coherence all show significant correlation to the test set performance. Out of these metrics,  $\alpha$ -ReQ is the only metric with significant outliers, possibly due to the power law estimation issues (Clauset et al., 2009). High stable rank, NESum, and coherence seem to indicate good test test performance of the model. Note that the models we selected for training set evaluation are pareto-optimal in terms of either parameter size or inference speed. This allowed us to significantly restrict the model set size without affecting representativeness of selected models.

On the validation set performance with expanded model set, the correlation between many metrics and test set performance drops to near-zero. This can be attributed to both



*Figure 1.* Representation quality metrics on the ImageNet training set for over 30 pre-trained models. Spearman rank correlation  $\rho$  to the test set accuracy displayed per metric in the title. Methods introduced in this work are highlighted in **colored bold**.

expanded model set, which has many under-performing models as well as the general instability of the computation on the smaller example set. We further examine the computational stability considerations in the next section. Only NESum, stable rank and self clustering achieve significant correlation to the test set performance. Across both training and validation sets, NESum demonstrates strong downstream performance correlation while both variants of RankMe are not able to successfully predict supervised task performance.

#### 4.1.2. METRIC STABILITY

It is important to have stable metrics for embedding quality evaluation, especially in low-data regimes. Moreover, if a metric is stable up to very small batch sizes, it can be evaluated during training, greatly enhancing its usability.

<sup>&</sup>lt;sup>1</sup>Full list available in the Appendix.



Figure 2. Representation quality metrics on the ImageNet validation set of over 1000 pre-trained models. Spearman rank correlation  $\rho$  to the test set accuracy displayed per metric in the title. Methods introduced in this work are highlighted in **colored bold**.

To do that, we sample embeddings for ImageNet training set with batch sizes from 128 to 65536, log-space  $(2^7-2^{16})$  and compare the sampled metric value to the value computed on the whole dataset. The results are presented in Table 1. Numerical rank-based methods are among the most stable, followed by NESum. One advantage of RankMe over its numerical rank estimation counterpart is that it offers a strong lower-bound in terms of the sample size. Coherence appears to be strongly data-dependent and least stable.

#### 4.2. Graph Embedding Quality Prediction

Graph embedding is a common way to solve many tasks arising in the graph mining domain from node classification, link prediction, and community detection. In the graph embedding process, each node in a graph is mapped to a vector in  $\mathbb{R}^d$ , and distances in the embedding space should resemble some similarity metric defined between the nodes

|               |              | Approximation factor |      |       |       |  |
|---------------|--------------|----------------------|------|-------|-------|--|
| metric        | Bounded      | 0.5                  | 0.7  | 0.9   | 0.95  |  |
| $\alpha$ -ReQ | ×            | 512                  | 4096 | 32768 | _     |  |
| NESum         | *            | 1024                 | 2048 | 8192  | 32768 |  |
| RankMe        | $\checkmark$ | 2048                 | 2048 | 8192  | 16384 |  |
| Stable rank   | *            | 512                  | 2048 | 8192  | 16384 |  |
| Cond. numbe   | er 🗡         | 4096                 | 4096 | 32768 | 65536 |  |
| Coherence     | $\checkmark$ | —                    |      |       |       |  |

Table 2. Dataset statistics. We report total number of nodes |V|, average node degree  $\bar{d}$ , number of labels |Y|.

| dataset      | V      | $\bar{d}$ | Y  |
|--------------|--------|-----------|----|
| Cora         | 19793  | 3.20      | 7  |
| Citeseer     | 3327   | 1.37      | 6  |
| PubMed       | 19717  | 2.25      | 3  |
| Amazon PC    | 13752  | 17.88     | 10 |
| Amazon Photo | 7650   | 15.57     | 8  |
| MSA-Physics  | 34493  | 7.19      | 5  |
| OGB-arXiv    | 169343 | 6.84      | 40 |
| CIFAR-10     | 50000  | 99        | 10 |
| MNIST        | 60000  | 99        | 10 |

in the original graph (Tsitsulin et al., 2018). For an in-depth review of modern graph embedding approaches, readers are referred to Chami et al. (2022) survey.

For our experiments, we study representations of the Deep-Walk (Perozzi et al., 2014) model as it is a de-facto standard in the field of unsupervised embedding of graphs with no features. We use 10 different graph datasets that include both natural and constructed graphs. We report the dataset statistics in Table 2 and provide a brief description below:

- Cora, Citeseer, and Pubmed (Sen et al., 2008) are citation networks; nodes represent papers connected by citation edges; features are bag-of-word abstracts, and labels represent paper topics. We use a re-processed version of Cora from (Shchur et al., 2018) due to errors in the processing of the original dataset.
- Amazon {PC, Photo} (Shchur et al., 2018) are two subsets of the Amazon co-purchase graph for the computers and photo sections of the website, where nodes represent goods with edges between ones frequently purchased together; node features are bag-of-word reviews, and class labels are product category.
- OGB-ArXiv (Hu et al., 2020) is a paper co-citation dataset based on arXiv papers indexed by the Microsoft Academic graph. Nodes are papers; edges are citations, and class labels indicate the main category of the paper.

|               | Cora  | 1                   | Cite  | eseer | Pubi      | ned   | Amazon | PC       | Amazor | n Photo |
|---------------|-------|---------------------|-------|-------|-----------|-------|--------|----------|--------|---------|
| metric        | Ν     | С                   | Ν     | С     | Ν         | С     | Ν      | С        | Ν      | С       |
| $\alpha$ -ReQ | -1.00 | -1.00               | -1.00 | -1.00 | -1.00     | 0.43  | 0.01   | 0.98     | 0.01   | 0.97    |
| NESum         | 1.00  | 0.03                | 1.00  | 0.10  | 0.94      | -0.66 | 0.09   | -1.00    | -0.15  | -1.00   |
| RankMe        | 1.00  | 1.00                | 1.00  | 1.00  | 1.00      | -0.37 | -0.05  | -0.99    | -0.43  | -0.99   |
| Stable rank   | 1.00  | 0.66                | 1.00  | 0.30  | 1.00      | 0.66  | 0.31   | -1.00    | 0.09   | -1.00   |
| Cond. number  | 1.00  | 0.83                | 1.00  | 1.00  | 1.00      | 0.26  | 0.20   | -0.99    | 0.10   | -1.00   |
| SelfCluster   | -1.00 | -1.00               | -1.00 | -0.60 | 1.00      | 1.00  | 1.00   | 0.99     | 1.00   | 1.00    |
| Coherence     | 1.00  | 1.00                | 0.90  | 1.00  | 0.94      | 1.00  | 0.99   | 0.98     | 0.99   | 0.98    |
|               | MSA-l | MSA-Physics OGB-ar2 |       | Xiv   | Jiv MNIST |       |        | CIFAR-10 |        |         |
| metric        | Ν     | С                   |       | Ν     | С         | Ν     | С      |          | N      | С       |
| $\alpha$ -ReQ | -0.70 | 0.                  | 94    | -0.81 | 1.00      | -1.00 | ) 0.9  | 8        | 0.96   | 0.99    |
| NESum         | 0.51  | -0.                 | 98    | 0.84  | -1.00     | 0.99  | -0.9   | 2        | -0.84  | -0.99   |
| RankMe        | 0.59  | -0.                 | 92    | 0.85  | -1.00     | 1.00  | ) -0.9 | 6        | -0.94  | -1.00   |
| Stable rank   | 0.52  | -0.                 | 97    | 0.99  | -0.99     | 1.00  | ) -0.7 | 8        | -0.85  | -0.99   |
| Cond. number  | 0.52  | -0.                 | 97    | 0.92  | -1.00     | 1.00  | ) -0.9 | 6        | -0.95  | -0.99   |
| SelfCluster   | 0.96  | 0.                  | 98    | 1.00  | 1.00      | 1.00  | ) 1.0  | 0        | 1.00   | 0.99    |
| Coherence     | 0.97  | 0.                  | 99    | 0.90  | 1.00      | 0.89  | ) 1.0  | 0        | 0.98   | 0.99    |

*Table 3.* Average Spearman rank correlation on two dataset corruption types: naïve (N) and component-preserving (C). We highlight datasets where there is a consistent correlation pattern, meaning the same sign and approximately the same magnitude of correlation. Methods proposed in this work exhibit stronger and more consistent correlation patterns across all datasets.

CIFAR and MNIST (Krizhevsky et al., 2009; LeCun et al., 1998) are ε-nearest neighbor graphs with ε such that the average node degree is 100.

Instead of changing the parameters of the model, we controllably change the quality of data itself. We sparsify each graph in two different ways:

- Naïve sparsification: we randomly pick  $n\bar{d}$  edges from the original edge set. This method may produce disconnected components, which are known to be difficult to embed correctly.
- Component-preserving sparsification: we first ensure the resulting graph is connected by sampling a random spanning tree. Then, we sample  $n(\bar{d} 1)$  edges randomly and output the combined graph.

It is easy to see both versions create a controllably worse version of the data. As such, one could expect that representation quality degrades with the sparsity of the input graph, perhaps faster for the naïve algorithm, since it does not preserve the component information. As we will observe later, surprisingly, this is very much not the case for many embedding quality metrics we study.

We sparsify to a fixed number of edges corresponding to a target average node degree from the range [1.1, 10]. Some graphs in our studies have an average node degree < 10 naturally (cf. Table 2), in this case, we stop at that number. We embed each graph 10 times, run a downstream node classification 100 times, and average the result. We report Spearman rank correlation coefficient  $\rho$  (Spearman, 1904) between the classification accuracy and each quality metric.

*Table 4.* Average Spearman rank correlation on two dataset corruption types: naïve and component-preserving. We highlight rows where there is a consistent correlation pattern. Two methods introduced in this work strongly and consistently correlate with the downstream classification performance.

| metric        | Naïve | Connected |
|---------------|-------|-----------|
| $\alpha$ -ReQ | -0.50 | 0.48      |
| NESum         | 0.49  | -0.71     |
| RankMe        | 0.45  | -0.47     |
| Stable rank   | 0.56  | -0.46     |
| Cond. number  | 0.53  | -0.43     |
| SelfCluster   | 0.55  | 0.60      |
| Coherence     | 0.95  | 0.99      |

First, we report aggregated results across all datasets in Table 4. Surprisingly, most metrics completely revert the correlation sign between two sparsification strategies. Only SelfCluster and Coherence are aligned with the downstream evaluation, and between them, Coherence displays a nearperfect correlation with the downstream task performance.

Table 3 provides a more nuanced per-dataset view. We can observe that while some metrics have strong and consistent correlation patterns on some datasets, the trend can be completely reversed on others. This calls for more comprehensive evaluations on multiple datasets and machine learning tasks for embedding quality evaluation metrics. Overall, only coherence provides strong signal in a single direction across all the datasets and perturbation methods.



*Figure 3.* Pairwise density plots of ImageNet representations, as measured on training and validation sets. NEsum is well-correlated to Stable rank. Coherence is moderately correlated to  $\alpha$ -ReQ and RankMe.

## 4.3. Metric Similarity

Since there are no clear winners in the experiments, it is important to use multiple metrics in real-world applications. Figure 3 presents pairwise correlations and kernel densities of different metrics on the training and validation sets of ImageNet. Overall, there are two clusters of the metrics: NESum and Stable rank as one and Coherence,  $\alpha$ -ReQ, RankMe and condition number in another.

## **5.** Conclusions

Is it possible to estimate embedding quality based on its statistical properties? This paper demonstrates it is possible in two scenarios outside of the known one of self-supervised learning. We introduced four new metrics based on ideas from numerical linear algebra, analysis of linear regression and high-dimensional probability. We conducted a large-scale study on two novel domains for unsupervised embedding quality evaluation: prediction of supervised test set performance and predicting performance of much simpler single-layer graph embedding methods. In case of supervised models, there seem to be no one-sizefits-all dominant solution, however, we identify numerically stable metrics that have strong correlation with downstream task performance. In the shallow model case, metrics introduced in this work show favorable downstream performance correlation consistently across 9 different datasets.

## References

Agrawal, K. K., Mondal, A. K., Ghosh, A., and Richards,
B. α-ReQ: Assessing representation quality in self-supervised learning by measuring eigenspectrum decay. *NeurIPS*, 2022. Cited on pages 2 and 4.

- Assran, M., Balestriero, R., Duval, Q., Bordes, F., Misra,
  I., Bojanowski, P., Vincent, P., Rabbat, M., and Ballas,
  N. The hidden uniform cluster prior in self-supervised learning. In *ICLR*, 2023. Cited on page 3.
- Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A. Benign overfitting in linear regression. *PNAS*, 2020. Cited on page 2.
- Belsley, D. A., Kuh, E., and Welsch, R. E. Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley & Sons, 2005. Cited on page 3.
- Ben-Israel, A. On error bounds for generalized inverses. *SIAM Journal on Numerical Analysis*, 1966. Cited on page 3.
- Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., and Murphy, K. Machine learning on graphs: A model and comprehensive taxonomy. *JMLR*, 2022. Cited on page 5.
- Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning of visual representations. In *ICML*, 2020. Cited on page 1.
- Clauset, A., Shalizi, C. R., and Newman, M. E. Power-law distributions in empirical data. *SIAM review*, 2009. Cited on pages 2 and 4.
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In *CVPR*, 2009. Cited on page 4.
- Garrido, Q., Balestriero, R., Najman, L., and Lecun, Y. Rankme: Assessing the downstream performance of pretrained self-supervised representations by their rank. *arXiv preprint arXiv:2210.02885*, 2022. Cited on pages 2 and 4.
- He, B. and Ozay, M. Exploring the gap between collapsed & whitened features in self-supervised learning. In *ICML*, 2022. Cited on page 2.
- Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open graph benchmark: Datasets for machine learning on graphs. *arXiv preprint arXiv:2005.00687*, 2020. Cited on page 5.
- Hua, T., Wang, W., Xue, Z., Ren, S., Wang, Y., and Zhao, H. On feature decorrelation in self-supervised learning. In *CVPR*, 2021. Cited on page 1.
- Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009. Cited on page 6.
- LeCun, Y., Cortes, C., and Burges, C. J. C. The MNIST database of handwritten digits. *http://yann. lecun. com/exdb/mnist/*, 1998. Cited on page 6.

- Mohri, M. and Talwalkar, A. Can matrix coherence be efficiently and accurately estimated? In *AISTATS*, 2011. Cited on pages 2 and 3.
- Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of social representations. In *KDD*, 2014. Cited on pages 1 and 5.
- Roy, O. and Vetterli, M. The effective rank: A measure of effective dimensionality. In *European signal processing conference*. IEEE, 2007. Cited on page 2.
- Rudelson, M. and Vershynin, R. Sampling from large matrices: An approach through geometric functional analysis. *Journal of the ACM*, 2007. Cited on page 3.
- Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. Collective classification in network data. *AI magazine*, 2008. Cited on page 5.
- Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. Pitfalls of graph neural network evaluation. *arXiv* preprint arXiv:1811.05868, 2018. Cited on page 5.
- Spearman, C. The proof and measurement of association between two things. 1904. Cited on page 6.
- Tsitsulin, A., Mottin, D., Karras, P., and Müller, E. Verse: Versatile graph embeddings from similarity measures. In *WWW*, 2018. Cited on page 5.
- Vershynin, R. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge university press, 2018. Cited on page 3.
- Wightman, R. Pytorch image models. https://github. com/rwightman/pytorch-image-models, 2019. Cited on page 4.
- Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S. Barlow twins: Self-supervised learning via redundancy reduction. In *ICML*, 2021. Cited on page 2.

# A. Appendix.

Here we present the list of models we used for experimenting on the training and validation sets of ImageNet.

#### **Training set models**

```
beitv2_base_patch16_224.in1k_ft_in22k_in1k
coat_tiny
convnext_base.fb_in22k_ft_in1k_384
convnext_femto_ols.d1_in1k
dla46x_c
edgenext_base
edgenext_small
edgenext_x_small
edgenext_xx_small
eva_giant_patch14_560.m30m_ft_in22k_in1k
eva_large_patch14_196.in22k_ft_in22k_in1k
eva_large_patch14_336.in22k_ft_in22k_in1k
lcnet_050.ra2_in1k
lcnet_075.ra2_in1k
lcnet_100.ra2_in1k
levit_128s
maxvit_base_tf_512.in21k_ft_in1k
maxvit_large_tf_512.in21k_ft_in1k
mobilenetv3_large_100.miil_in21k_ft_in1k
mobilenetv3_small_075.lamb_in1k
mobilenetv3_small_100.lamb_in1k
mobilevit_xs
mobilevit xxs
mobilevitv2 100
mobilevitv2_150_384_in22ft1k
regnetz d8
rexnet_100
swin_large_patch4_window12_384
tf_efficientnet_b0.ns_jft_in1k
tf_efficientnet_b3.ns_jft_in1k
tf_efficientnet_b4.ns_jft_in1k
tf_efficientnet_b5.ns_jft_in1k
tf_efficientnet_b6.ns_jft_in1k
tf_efficientnet_b7.ns_jft_in1k
tf_efficientnetv2_b0.in1k
tf_mobilenetv3_small_100.in1k
tinynet_e.in1k
vit_base_patch16_clip_224.laion2b_ft_in12k_in1k
vit_base_patch16_clip_384.laion2b_ft_in12k_in1k
vit_base_patch32_clip_224.laion2b_ft_in12k_in1k
vit_base_patch32_clip_384.laion2b_ft_in12k_in1k
volo_d1_384
volo d2 384
volo_d3_448
volo_d4_448
xcit_nano_12_p8_384_dist
xcit_small_12_p8_384_dist
xcit_small_24_p8_384_dist
xcit_tiny_12_p8_384_dist
xcit_tiny_24_p8_384_dist
```

#### Validation set models

adv inception v3 beit\_base\_patch16\_224.in22k\_ft\_in22k beit\_base\_patch16\_384.in22k\_ft\_in22k\_in1k beit\_large\_patch16\_224.in22k\_ft\_in22k\_in1k beit\_large\_patch16\_512.in22k\_ft\_in22k\_in1k beitv2\_base\_patch16\_224.in1k\_ft\_in22k\_in1k beitv2\_large\_patch16\_224.in1k\_ft\_in22k\_in1k cait m36 384 cait s24 224 cait\_s36\_384 cait\_xxs24\_224 cait\_xxs36\_224 coat\_lite\_mini coat lite tinv coat\_tiny coatnet\_1\_rw\_224.sw\_in1k coatnet\_2\_rw\_224.sw\_in12k\_ft\_in1k coatnet\_bn\_0\_rw\_224.sw\_inlk coatnet\_rmlp\_1\_rw2\_224.sw\_in12k coatnet\_rmlp\_1\_rw\_224.sw\_in1k coatnet\_rmlp\_2\_rw\_224.sw\_in12k\_ft\_in1k coatnet\_rmlp\_2\_rw\_384.sw\_in12k\_ft\_in1k coatnext\_nano\_rw\_224.sw\_in1k convit small convmixer\_1024\_20\_ks9\_p14 convmixer\_768\_32 convnext\_atto\_ols.a2\_in1k convnext\_base.clip\_laion2b\_augreg convnext base.clip laion2b augreg ft in12k in1k convnext\_base.clip\_laion2b\_augreg\_ft\_in1k convnext base.clip laiona 320 convnext\_base.clip\_laiona\_augreg\_ft\_in1k\_384 convnext base.fb in22k convnext\_base.fb\_in22k\_ft\_in1k\_384 convnext\_femto\_ols.d1\_in1k convnext\_large.fb\_in22k convnext\_large.fb\_in22k\_ft\_in1k\_384 convnext\_large\_mlp.clip\_laion2b\_augreg\_ft\_in12k\_384 convnext\_large\_mlp.clip\_laion2b\_augreg\_ft\_in1k\_384 convnext\_large\_mlp.clip\_laion2b\_ft\_soup\_320 convnext\_large\_mlp.clip\_laion2b\_soup\_ft\_in12k\_384 convnext\_large\_mlp.clip\_laion2b\_soup\_ft\_in12k\_in1k\_384 convnext nano.in12k convnext\_nano\_ols.dlh\_inlk convnext\_pico\_ols.d1\_in1k convnext\_small.fb\_in22k convnext\_small.fb\_in22k\_ft\_in1k\_384 convnext small.in12k ft in1k convnext\_tiny.fb\_in1k convnext tiny.fb in22k ft in1k

bat respect26ts.ch in1k beit\_base\_patch16\_224.in22k\_ft\_in22k\_in1k beit\_large\_patch16\_224.in22k\_ft\_in22k beit\_large\_patch16\_384.in22k\_ft\_in22k\_in1k beitv2\_base\_patch16\_224.in1k\_ft\_in22k beitv2\_large\_patch16\_224.in1k\_ft\_in22k botnet26t\_256 cait\_m48\_448 cait s24 384 cait\_xs24\_384 cait\_xxs24\_384 cait\_xxs36\_384 coat\_lite\_small coat mini coatnet\_0\_rw\_224.sw\_in1k coatnet 2 rw 224.sw in12k coatnet\_3\_rw\_224.sw\_in12k coatnet\_nano\_rw\_224.sw\_in1k coatnet\_rmlp\_1\_rw2\_224.sw\_in12k\_ft\_in1k coatnet\_rmlp\_2\_rw\_224.sw\_in12k coatnet\_rmlp\_2\_rw\_224.sw\_in1k coatnet\_rmlp\_nano\_rw\_224.sw\_in1k convit\_base convit\_tiny convmixer\_1536\_20 convnext\_atto.d2\_in1k convnext\_base.clip\_laion2b convnext\_base.clip\_laion2b\_augreg\_ft\_in12k convnext base.clip laion2b augreg ft in12k in1k 384 convnext\_base.clip\_laiona convnext base.clip laiona augreg 320 convnext\_base.fb\_in1k convnext base.fb in22k ft in1k convnext\_femto.d1\_in1k convnext large.fb in1k convnext\_large.fb\_in22k\_ft\_in1k convnext\_large\_mlp.clip\_laion2b\_augreg convnext\_large\_mlp.clip\_laion2b\_augreg\_ft\_in1k convnext\_large\_mlp.clip\_laion2b\_ft\_320 convnext\_large\_mlp.clip\_laion2b\_soup\_ft\_in12k\_320 convnext\_large\_mlp.clip\_laion2b\_soup\_ft\_in12k\_in1k\_320 convnext\_nano.d1h\_in1k convnext\_nano.in12k\_ft\_in1k convnext\_pico.d1\_in1k convnext\_small.fb\_in1k convnext\_small.fb\_in22k\_ft\_in1k convnext\_small.in12k convnext small.in12k ft in1k 384 convnext\_tiny.fb\_in22k convnext tiny.fb in22k ft in1k 384

convnext\_tinv.in12k convnext\_tiny.in12k\_ft\_in1k\_384 convnext xlarge.fb in22k convnext\_xlarge.fb\_in22k\_ft\_in1k\_384 convnext\_xxlarge.clip\_laion2b\_soup convnextv2\_atto.fcmae convnextv2\_base.fcmae convnextv2\_base.fcmae\_ft\_in22k\_in1k convnextv2\_femto.fcmae convnextv2\_huge.fcmae convnextv2\_huge.fcmae\_ft\_in22k\_in1k\_384 convnextv2 large.fcmae convnextv2\_large.fcmae\_ft\_in22k\_in1k convnextv2 nano.fcmae convnextv2\_nano.fcmae\_ft\_in22k\_in1k convnextv2\_pico.fcmae convnextv2\_tiny.fcmae convnextv2\_tiny.fcmae\_ft\_in22k\_in1k crossvit 15 240 crossvit\_15\_dagger\_408 crossvit\_18\_dagger\_240 crossvit\_9\_240 crossvit\_base\_240 crossvit\_tiny\_240 cs3darknet\_focus\_m cs3darknet m cs3edgenet\_x cs3sedarknet\_1 cspdarknet53 cspresnext50 darknetaa53 davit\_small.msft\_in1k deit3 base patch16 224.fb in1k deit3\_base\_patch16\_384.fb\_in1k deit3\_huge\_patch14\_224.fb\_in1k deit3\_large\_patch16\_224.fb\_in1k deit3\_large\_patch16\_384.fb\_in1k deit3\_medium\_patch16\_224.fb\_in1k deit3\_small\_patch16\_224.fb\_in1k deit3\_small\_patch16\_384.fb\_in1k deit\_base\_distilled\_patch16\_224.fb\_in1k deit\_base\_patch16\_224.fb\_in1k deit\_small\_distilled\_patch16\_224.fb\_in1k deit\_tiny\_distilled\_patch16\_224.fb\_in1k densenet121 densenet169 densenetblur121d dla102x dla169 dla46 c dla60 dla60 res2next dla60x\_c dm nfnet fl.dm inlk

convnext tiny.in12k ft in1k convnext\_tiny\_hnf.a2h\_in1k convnext\_xlarge.fb\_in22k\_ft\_in1k convnext\_xxlarge.clip\_laion2b\_rewind convnext\_xxlarge.clip\_laion2b\_soup\_ft\_in1k convnextv2\_atto.fcmae\_ft\_in1k convnextv2\_base.fcmae\_ft\_in1k convnextv2\_base.fcmae\_ft\_in22k\_in1k\_384 convnextv2\_femto.fcmae\_ft\_in1k convnextv2\_huge.fcmae\_ft\_in1k convnextv2\_huge.fcmae\_ft\_in22k\_in1k\_512 convnextv2\_large.fcmae\_ft\_in1k convnextv2\_large.fcmae\_ft\_in22k\_in1k\_384 convnextv2 nano.fcmae ft in1k convnextv2\_nano.fcmae\_ft\_in22k\_in1k\_384 convnextv2\_pico.fcmae\_ft\_in1k convnextv2\_tiny.fcmae\_ft\_in1k convnextv2\_tiny.fcmae\_ft\_in22k\_in1k\_384 crossvit\_15\_dagger\_240 crossvit\_18\_240 crossvit\_18\_dagger\_408 crossvit\_9\_dagger\_240 crossvit\_small\_240 cs3darknet\_focus\_l cs3darknet\_l cs3darknet x cs3se\_edgenet\_x cs3sedarknet\_x cspresnet50 darknet53 davit base.msft in1k davit\_tiny.msft\_in1k deit3\_base\_patch16\_224.fb\_in22k\_ft\_in1k deit3\_base\_patch16\_384.fb\_in22k\_ft\_in1k deit3\_huge\_patch14\_224.fb\_in22k\_ft\_in1k deit3\_large\_patch16\_224.fb\_in22k\_ft\_in1k deit3\_large\_patch16\_384.fb\_in22k\_ft\_in1k deit3\_medium\_patch16\_224.fb\_in22k\_ft\_in1k deit3\_small\_patch16\_224.fb\_in22k\_ft\_in1k deit3\_small\_patch16\_384.fb\_in22k\_ft\_in1k deit\_base\_distilled\_patch16\_384.fb\_in1k deit\_base\_patch16\_384.fb\_in1k deit\_small\_patch16\_224.fb\_in1k deit\_tiny\_patch16\_224.fb\_in1k densenet161 densenet201 dla102 dla102x2 dla34 dla46x c dla60\_res2net dla60x dm\_nfnet\_f0.dm\_in1k

dm\_nfnet\_f2.dm\_in1k

dm\_nfnet\_f3.dm\_in1k dm\_nfnet\_f5.dm\_in1k dpn107 dpn68 dpn92 eca\_botnext26ts\_256 eca\_nfnet\_10.ra2\_in1k eca\_nfnet\_12.ra3\_in1k eca\_resnext26ts.ch\_in1k ecaresnet101d\_pruned.miil\_in1k ecaresnet26t.ra2\_in1k ecaresnet50d\_pruned.miil\_in1k ecaresnet50t.a2\_in1k ecaresnet50t.ra2\_in1k edgenext\_base edgenext\_small\_rw edgenext\_xx\_small efficientformer 13.snap dist in1k efficientformerv2\_l.snap\_dist\_in1k efficientformerv2\_s1.snap\_dist\_in1k efficientnet\_b0.ra\_in1k efficientnet b1 pruned.in1k efficientnet\_b2\_pruned.in1k efficientnet\_b3\_pruned.in1k efficientnet\_b5.in12k efficientnet\_el.ra\_in1k efficientnet\_em.ra2\_in1k efficientnet\_es\_pruned.in1k efficientnetv2\_rw\_m.agc\_in1k efficientnetv2\_rw\_t.ra2\_in1k ese\_vovnet19b\_dw eva02\_base\_patch14\_224.mim\_in22k eva02\_base\_patch14\_448.mim\_in22k\_ft\_in22k eva02\_large\_patch14\_224.mim\_in22k eva02\_large\_patch14\_448.mim\_in22k\_ft\_in1k eva02\_large\_patch14\_448.mim\_in22k\_ft\_in22k\_in1k eva02 large patch14 448.mim m38m ft in22k eva02\_small\_patch14\_224.mim\_in22k eva02\_tiny\_patch14\_224.mim\_in22k eva\_giant\_patch14\_224.clip\_ft\_in1k eva\_giant\_patch14\_336.m30m\_ft\_in22k\_in1k eva\_large\_patch14\_196.in22k\_ft\_in1k eva\_large\_patch14\_336.in22k\_ft\_in1k fbnetc\_100.rmsp\_in1k fbnetv3\_d.ra2\_in1k flexivit\_base.1000ep\_in21k flexivit\_base.300ep\_in1k flexivit base.600ep in1k flexivit\_base.patch30\_in21k flexivit\_large.300ep\_in1k flexivit\_small.1200ep\_in1k flexivit small.600ep in1k focalnet\_base\_srf.ms\_in1k focalnet huge fl4.ms in22k

dm nfnet f4.dm in1k dm\_nfnet\_f6.dm\_in1k dpn131 dpn68b dpn98 eca\_halonext26ts eca\_nfnet\_l1.ra2\_in1k eca\_resnet33ts.ra2\_in1k ecaresnet101d.miil in1k ecaresnet269d.ra2\_in1k ecaresnet50d.miil in1k ecaresnet50t.a1\_in1k ecaresnet50t.a3\_in1k ecaresnetlight.miil\_in1k edgenext\_small edgenext\_x\_small efficientformer\_ll.snap\_dist\_in1k efficientformer\_17.snap\_dist\_in1k efficientformerv2\_s0.snap\_dist\_in1k efficientformerv2\_s2.snap\_dist\_in1k efficientnet\_b1.ft\_in1k efficientnet b2.ra in1k efficientnet\_b3.ra2\_in1k efficientnet\_b4.ra2\_in1k efficientnet\_b5.in12k\_ft\_in1k efficientnet\_el\_pruned.in1k efficientnet\_es.ra\_in1k efficientnet\_lite0.ra\_in1k efficientnetv2\_rw\_s.ra2\_in1k ens\_adv\_inception\_resnet\_v2 ese vovnet39b eva02\_base\_patch14\_448.mim\_in22k\_ft\_in1k eva02\_base\_patch14\_448.mim\_in22k\_ft\_in22k\_in1k eva02\_large\_patch14\_224.mim\_m38m eva02 large patch14 448.mim in22k ft in22k eva02\_large\_patch14\_448.mim\_m38m\_ft\_in1k eva02 large patch14 448.mim m38m ft in22k in1k eva02\_small\_patch14\_336.mim\_in22k\_ft\_in1k eva02\_tiny\_patch14\_336.mim\_in22k\_ft\_in1k eva\_giant\_patch14\_336.clip\_ft\_in1k eva\_giant\_patch14\_560.m30m\_ft\_in22k\_in1k eva\_large\_patch14\_196.in22k\_ft\_in22k\_in1k eva\_large\_patch14\_336.in22k\_ft\_in22k\_in1k fbnetv3\_b.ra2\_in1k fbnetv3\_g.ra2\_in1k flexivit\_base.1200ep\_in1k flexivit\_base.300ep\_in21k flexivit base.patch16 in21k flexivit\_large.1200ep\_in1k flexivit\_large.600ep\_in1k flexivit\_small.300ep\_in1k focalnet base lrf.ms in1k focalnet\_huge\_fl3.ms\_in22k focalnet\_large\_fl3.ms\_in22k

focalnet\_large\_fl4.ms\_in22k focalnet\_small\_srf.ms\_in1k focalnet\_tiny\_srf.ms\_in1k focalnet\_xlarge\_fl4.ms\_in22k gcresnet33ts.ra2\_in1k gcresnext26ts.ch\_in1k gcvit\_base gcvit\_tiny gcvit\_xxtiny gernet\_m.idstcv\_in1k ghostnet\_100 gluon\_xception65 gmlp\_s16\_224.ra3\_in1k halonet26t haloregnetz\_b hardcorenas b hardcorenas\_d hardcorenas f hrnet\_w18\_small hrnet w30 hrnet\_w40 hrnet w48 inception\_resnet\_v2 inception\_v4 jx\_nest\_small lambda\_resnet26rpt\_256 lambda\_resnet50ts lcnet\_050.ra2\_in1k lcnet\_100.ra2\_in1k legacy\_seresnet101 legacy\_seresnet18 legacy\_seresnet50 legacy seresnext26 32x4d levit\_128.fb\_dist\_in1k levit 128s levit\_256.fb\_dist\_in1k levit\_conv\_128.fb\_dist\_in1k levit\_conv\_192.fb\_dist\_in1k levit\_conv\_384.fb\_dist\_in1k maxvit\_base\_tf\_384.in1k maxvit\_base\_tf\_512.in1k maxvit\_large\_tf\_224.in1k maxvit\_large\_tf\_384.in21k\_ft\_in1k maxvit\_large\_tf\_512.in21k\_ft\_in1k maxvit\_rmlp\_base\_rw\_224.sw\_in12k maxvit\_rmlp\_base\_rw\_384.sw\_in12k\_ft\_in1k maxvit\_rmlp\_pico\_rw\_256.sw\_in1k maxvit\_rmlp\_tiny\_rw\_256.sw\_in1k maxvit\_small\_tf\_384.in1k maxvit\_tiny\_rw\_224.sw\_in1k maxvit\_tiny\_tf\_384.in1k maxvit\_xlarge\_tf\_384.in21k\_ft\_in1k maxxvit\_rmlp\_nano\_rw\_256.sw\_in1k maxxvitv2\_nano\_rw\_256.sw\_in1k

focalnet small lrf.ms in1k focalnet\_tiny\_lrf.ms\_in1k focalnet xlarge fl3.ms in22k gc\_efficientnetv2\_rw\_t.agc\_in1k gcresnet50t.ra2\_in1k gcresnext50ts.ch\_in1k gcvit\_small gcvit xtiny gernet\_l.idstcv\_in1k gernet\_s.idstcv\_in1k gluon\_inception\_v3 gmixer\_24\_224.ra3\_in1k halo2botnet50ts\_256 halonet50ts hardcorenas\_a hardcorenas c hardcorenas\_e hrnet w18 hrnet\_w18\_small\_v2 hrnet w32 hrnet\_w44 hrnet w64 inception\_v3 jx\_nest\_base jx\_nest\_tiny lambda resnet26t lamhalobotnet50ts\_256 lcnet\_075.ra2\_in1k legacy\_senet154 legacy\_seresnet152 legacy seresnet34 legacy\_seresnext101\_32x4d legacy seresnext50 32x4d levit\_128s.fb\_dist\_in1k levit\_192.fb\_dist\_in1k levit\_384.fb\_dist\_in1k levit\_conv\_128s.fb\_dist\_in1k levit\_conv\_256.fb\_dist\_in1k maxvit\_base\_tf\_224.in1k maxvit\_base\_tf\_384.in21k\_ft\_in1k maxvit\_base\_tf\_512.in21k\_ft\_in1k maxvit\_large\_tf\_384.in1k maxvit\_large\_tf\_512.in1k maxvit\_nano\_rw\_256.sw\_in1k maxvit\_rmlp\_base\_rw\_224.sw\_in12k\_ft\_in1k maxvit\_rmlp\_nano\_rw\_256.sw\_in1k maxvit\_rmlp\_small\_rw\_224.sw\_in1k maxvit\_small\_tf\_224.in1k maxvit\_small\_tf\_512.in1k maxvit\_tiny\_tf\_224.in1k maxvit\_tiny\_tf\_512.in1k maxvit\_xlarge\_tf\_512.in21k\_ft\_in1k maxxvit\_rmlp\_small\_rw\_256.sw\_in1k maxxvitv2\_rmlp\_base\_rw\_224.sw\_in12k

maxxvitv2\_rmlp\_base\_rw\_224.sw\_in12k\_ft\_in1k mixer\_b16\_224.goog\_in21k mixer\_b16\_224.miil\_in21k mixer\_116\_224.goog\_in21k mixnet\_l.ft\_in1k mixnet\_s.ft\_in1k mnasnet\_100.rmsp\_in1k mobilenetv2\_050.lamb\_in1k mobilenetv2\_110d.ra\_in1k mobilenetv2\_140.ra\_in1k mobilenetv3\_large\_100.miil\_in21k\_ft\_in1k mobilenetv3\_rw.rmsp\_in1k mobilenetv3\_small\_075.lamb\_in1k mobilevit\_s mobilevit\_xxs mobilevitv2\_075 mobilevitv2\_125 mobilevitv2 150 384 in22ft1k mobilevitv2\_175 mobilevitv2\_175\_in22ft1k mobilevitv2\_200\_384\_in22ft1k mvitv2 base mvitv2\_small nasnetalarge nf\_resnet50.ra2\_in1k pit b 224 pit\_s\_224 pit\_ti\_224 pit\_xs\_224 pnasnet5large poolformer m48 poolformer\_s24 pvt v2 b0 pvt\_v2\_b2 pvt\_v2\_b3 pvt\_v2\_b5 regnetv\_064.ra3\_in1k regnetx\_004.pycls\_in1k regnetx\_006.pycls\_in1k regnetx\_008.tv2\_in1k regnetx\_016.tv2\_in1k regnetx\_032.tv2\_in1k regnetx\_064.pycls\_in1k regnetx\_080.tv2\_in1k regnetx\_160.pycls\_in1k regnetx\_320.pycls\_in1k regnety\_002.pycls\_in1k regnety\_004.tv2\_in1k regnety\_008.pycls\_in1k regnety\_016.pycls\_in1k regnety\_032.pycls\_in1k reqnety 032.tv2 in1k regnety\_040.ra3\_in1k regnety\_064.ra3\_in1k

maxxvitv2\_rmlp\_base\_rw\_384.sw\_in12k\_ft\_in1k mixer\_b16\_224.goog\_in21k\_ft\_in1k mixer b16 224.miil in21k ft in1k mixer\_116\_224.goog\_in21k\_ft\_in1k mixnet\_m.ft\_in1k mixnet\_xl.ra\_in1k mnasnet\_small.lamb\_in1k mobilenetv2\_100.ra\_in1k mobilenetv2\_120d.ra\_in1k mobilenetv3\_large\_100.miil\_in21k mobilenetv3\_large\_100.ra\_in1k mobilenetv3\_small\_050.lamb\_in1k mobilenetv3\_small\_100.lamb\_in1k mobilevit xs mobilevitv2\_050 mobilevitv2 100 mobilevitv2\_150 mobilevitv2 150 in22ft1k mobilevitv2\_175\_384\_in22ft1k mobilevitv2 200 mobilevitv2\_200\_in22ft1k mvitv2 large mvitv2\_tiny nf\_regnet\_b1.ra2\_in1k nfnet\_10.ra2\_in1k pit\_b\_distilled\_224 pit\_s\_distilled\_224 pit\_ti\_distilled\_224 pit\_xs\_distilled\_224 poolformer\_m36 poolformer s12 poolformer\_s36 pvt\_v2\_b1 pvt\_v2\_b2\_li pvt\_v2\_b4 regnetv\_040.ra3\_in1k regnetx\_002.pycls\_in1k regnetx\_004\_tv.tv2\_in1k regnetx\_008.pycls\_in1k regnetx\_016.pycls\_in1k regnetx\_032.pycls\_in1k regnetx\_040.pycls\_in1k regnetx\_080.pycls\_in1k regnetx\_120.pycls\_in1k regnetx\_160.tv2\_in1k regnetx\_320.tv2\_in1k regnety\_004.pycls\_in1k regnety\_006.pycls\_in1k regnety\_008\_tv.tv2\_in1k regnety\_016.tv2\_in1k regnety\_032.ra\_in1k regnety\_040.pycls\_in1k regnety\_064.pycls\_in1k regnety\_080.pycls\_in1k

reqnety 080.ra3 in1k regnety\_120.pycls\_in1k regnety\_120.sw\_in12k\_ft\_in1k regnety\_1280.seer\_ft\_in1k regnety\_1280.swag\_lc\_in1k regnety\_160.lion\_in12k\_ft\_in1k regnety\_160.sw\_in12k regnety\_160.swag\_ft\_in1k regnety\_160.tv2\_in1k regnety\_320.pycls\_in1k regnety\_320.seer\_ft\_in1k regnety\_320.swag\_lc\_in1k regnety\_640.seer regnetz\_040.ra3\_in1k regnetz\_b16.ra3\_in1k regnetz\_c16\_evos.ch\_in1k regnetz\_d8 requetz d8 evos.ch in1k repvgg\_a2.rvgg\_in1k repvgg\_b1.rvgg\_in1k repvgg\_b2.rvgg\_in1k repvgg\_b3.rvgg\_in1k res2net101\_26w\_4s res2net50\_26w\_4s res2net50\_26w\_8s res2next50 resmlp\_12\_224.fb\_distilled\_in1k resmlp\_24\_224.fb\_dino resmlp\_24\_224.fb\_in1k resmlp\_36\_224.fb\_in1k resmlp\_big\_24\_224.fb\_inlk resnest101e resnest200e resnest26d resnest50d 1s4x24d resnet101.a1\_in1k resnet101.a2\_in1k resnet101.gluon\_in1k resnet101.tv\_in1k resnet101d.gluon\_in1k resnet101s.gluon in1k resnet14t.c3\_in1k resnet152.alh\_in1k resnet152.a3\_in1k resnet152.tv2\_in1k resnet152c.gluon\_in1k resnet152d.ra2\_in1k resnet18.a1\_in1k resnet18.a3\_in1k resnet18.fb\_swsl\_ig1b\_ft\_in1k resnet18.tv\_in1k resnet200d.ra2 in1k resnet26d.bt\_in1k resnet32ts.ra2\_in1k

regnety\_080\_tv.tv2\_in1k regnety\_120.sw\_in12k regnety 1280.seer regnety\_1280.swag\_ft\_in1k regnety\_160.deit\_in1k regnety\_160.pycls\_in1k regnety\_160.sw\_in12k\_ft\_in1k regnety\_160.swag\_lc\_in1k regnety\_2560.seer\_ft\_in1k regnety\_320.seer regnety\_320.swag\_ft\_in1k regnety\_320.tv2\_in1k regnety\_640.seer\_ft\_in1k regnetz\_040\_h.ra3\_in1k regnetz\_c16.ra3\_in1k regnetz\_d32.ra3\_in1k regnetz\_d8.ra3\_in1k regnetz\_e8.ra3\_in1k repvgg\_b0.rvgg\_in1k repvgg\_b1g4.rvgg\_in1k repvgg\_b2g4.rvgg\_in1k repvgg\_b3g4.rvgg\_in1k res2net50\_14w\_8s res2net50\_26w\_6s res2net50\_48w\_2s resmlp\_12\_224.fb\_dino resmlp\_12\_224.fb\_in1k resmlp\_24\_224.fb\_distilled\_in1k resmlp\_36\_224.fb\_distilled\_in1k resmlp\_big\_24\_224.fb\_distilled\_in1k resmlp\_big\_24\_224.fb\_in22k\_ft\_in1k resnest14d resnest269e resnest50d resnest50d 4s2x40d resnet101.a1h\_in1k resnet101.a3\_in1k resnet101.tv2\_in1k resnet101c.gluon\_in1k resnet101d.ra2\_in1k resnet10t.c3 in1k resnet152.a1\_in1k resnet152.a2\_in1k resnet152.gluon\_in1k resnet152.tv\_in1k resnet152d.gluon\_in1k resnet152s.gluon\_in1k resnet18.a2\_in1k resnet18.fb\_ssl\_yfcc100m\_ft\_in1k resnet18.gluon in1k resnet18d.ra2\_in1k resnet26.bt in1k resnet26t.ra2\_in1k resnet33ts.ra2\_in1k

respet34.al in1k resnet34.a3\_in1k resnet34.gluon in1k resnet34d.ra2\_in1k resnet50.alh\_in1k resnet50.a3\_in1k resnet50.blk\_in1k resnet50.bt\_in1k resnet50.c2\_in1k resnet50.fb\_ssl\_yfcc100m\_ft\_in1k resnet50.gluon\_in1k resnet50.ram\_in1k resnet50.tv\_in1k resnet50c.gluon\_in1k resnet50d.a2\_in1k resnet50d.gluon in1k resnet50s.gluon\_in1k resnet61g.ra2 in1k resnetaa101d.sw\_in12k\_ft\_in1k resnetaa50d.d\_in12k resnetaa50d.sw\_in12k\_ft\_in1k resnetrs101.tf\_in1k resnetrs200.tf\_in1k resnetrs350.tf\_in1k resnetrs50.tf\_in1k resnetv2\_101x1\_bit.goog\_in21k resnetv2\_101x3\_bit.goog\_in21k resnetv2\_152x2\_bit.goog\_in21k resnetv2\_152x2\_bit.goog\_teacher\_in21k\_ft\_in1k resnetv2\_152x4\_bit.goog\_in21k resnetv2\_50.alh\_in1k resnetv2\_50d\_gn.ah\_in1k resnetv2\_50x1\_bit.goog\_in21k resnetv2\_50x3\_bit.goog\_in21k resnext101 32x16d.fb ssl yfcc100m ft in1k resnext101\_32x16d.fb\_wsl\_ig1b\_ft\_in1k resnext101\_32x4d.fb\_ssl\_yfcc100m\_ft\_in1k resnext101\_32x4d.gluon\_in1k resnext101\_32x8d.fb\_swsl\_ig1b\_ft\_in1k resnext101\_32x8d.tv2\_in1k resnext101\_64x4d.c1\_in1k resnext101\_64x4d.tv\_in1k resnext50\_32x4d.a1\_in1k resnext50\_32x4d.a2\_in1k resnext50\_32x4d.fb\_ssl\_yfcc100m\_ft\_in1k resnext50\_32x4d.gluon\_in1k resnext50\_32x4d.tv2\_in1k resnext50d\_32x4d.bt\_in1k rexnet\_100 rexnet 150.nav in1k rexnet\_300.nav\_in1k rexnetr 200.sw in12k ft in1k rexnetr\_300.sw\_in12k\_ft\_in1k sehalonet33ts

respet34.a2 in1k resnet34.bt\_in1k resnet34.tv in1k resnet50.a1\_in1k resnet50.a2\_in1k resnet50.am\_in1k resnet50.b2k in1k resnet50.c1\_in1k resnet50.d\_in1k resnet50.fb\_swsl\_ig1b\_ft\_in1k resnet50.ra in1k resnet50.tv2\_in1k resnet50\_gn.alh\_in1k resnet50d.a1\_in1k resnet50d.a3\_in1k resnet50d.ra2 in1k resnet51q.ra2\_in1k resnetaa101d.sw in12k resnetaa50.a1h\_in1k resnetaa50d.sw in12k resnetblur50.bt\_in1k resnetrs152.tf in1k resnetrs270.tf\_in1k resnetrs420.tf in1k resnetv2\_101.alh\_in1k resnetv2\_101x1\_bit.goog\_in21k\_ft\_in1k resnetv2\_101x3\_bit.goog\_in21k\_ft\_in1k resnetv2\_152x2\_bit.goog\_in21k\_ft\_in1k resnetv2\_152x2\_bit.goog\_teacher\_in21k\_ft\_in1k\_384 resnetv2\_152x4\_bit.goog\_in21k\_ft\_in1k resnetv2 50d evos.ah in1k resnetv2\_50x1\_bit.goog\_distilled\_in1k resnetv2\_50x1\_bit.goog\_in21k\_ft\_in1k resnetv2\_50x3\_bit.goog\_in21k\_ft\_in1k resnext101 32x16d.fb swsl ig1b ft in1k resnext101\_32x32d.fb\_wsl\_ig1b\_ft\_in1k resnext101\_32x4d.fb\_swsl\_ig1b\_ft\_in1k resnext101\_32x8d.fb\_ssl\_yfcc100m\_ft\_in1k resnext101\_32x8d.fb\_wsl\_ig1b\_ft\_in1k resnext101\_32x8d.tv\_in1k resnext101 64x4d.gluon in1k resnext26ts.ra2\_in1k resnext50\_32x4d.alh\_in1k resnext50\_32x4d.a3\_in1k resnext50\_32x4d.fb\_swsl\_ig1b\_ft\_in1k resnext50\_32x4d.ra\_in1k resnext50\_32x4d.tv\_in1k rexnet 100.nav in1k rexnet\_130.nav\_in1k rexnet 200.nav in1k rexnetr\_200.sw\_in12k rexnetr 300.sw in12k sebotnet33ts\_256 selecs1s42b

selecs1s60 semnasnet\_075.rmsp\_in1k senet154.gluon in1k sequencer2d m seresnet152d.ra2 in1k seresnet50.a1\_in1k seresnet50.a3 in1k seresnext101\_32x4d.gluon\_in1k seresnext101\_64x4d.gluon\_in1k seresnext26d\_32x4d.bt\_in1k seresnext26ts.ch\_in1k seresnext50\_32x4d.racm\_in1k seresnextaa101d\_32x8d.sw\_in12k seresnextaa101d 32x8d.sw in12k ft in1k 288 skresnet34 spnasnet\_100.rmsp\_in1k swin\_base\_patch4\_window12\_384.ms\_in22k swin base patch4 window7 224.ms in1k swin\_base\_patch4\_window7\_224.ms\_in22k\_ft\_in1k swin\_large\_patch4\_window12\_384.ms\_in22k\_ft\_in1k swin\_large\_patch4\_window7\_224.ms\_in22k swin\_s3\_base\_224.ms\_in1k swin\_s3\_tiny\_224.ms\_in1k swin\_small\_patch4\_window7\_224.ms\_in22k swin\_tiny\_patch4\_window7\_224.ms\_in1k swin\_tiny\_patch4\_window7\_224.ms\_in22k\_ft\_in1k swinv2\_base\_window12to16\_192to256.ms\_in22k\_ft\_in1k swinv2\_base\_window16\_256.ms\_in1k swinv2\_cr\_small\_224.sw\_in1k swinv2\_cr\_tiny\_ns\_224.sw\_in1k swinv2 large window12to16 192to256.ms in22k ft in1k swinv2\_small\_window16\_256.ms\_in1k swinv2 tiny window16 256.ms in1k tf\_efficientnet\_b0.aa\_in1k tf efficientnet b0.ns jft in1k tf\_efficientnet\_b1.ap\_in1k tf efficientnet b2.aa in1k tf\_efficientnet\_b2.ns\_jft\_in1k tf\_efficientnet\_b3.ap\_in1k tf\_efficientnet\_b4.aa\_in1k tf\_efficientnet\_b4.ns\_jft\_in1k tf\_efficientnet\_b5.ns\_jft\_in1k tf\_efficientnet\_b6.aa\_in1k tf\_efficientnet\_b6.ns\_jft\_in1k tf\_efficientnet\_b7.ns\_jft\_in1k tf\_efficientnet\_b8.ap\_in1k tf\_efficientnet\_cc\_b0\_4e.in1k tf\_efficientnet\_cc\_b1\_8e.in1k tf\_efficientnet\_em.in1k tf\_efficientnet\_lite0.in1k tf\_efficientnet\_lite2.in1k tf efficientnet lite4.in1k tf\_efficientnetv2\_b1.in1k tf efficientnetv2 b3.in1k

selecs1s60b semnasnet\_100.rmsp\_in1k sequencer2d 1 sequencer2d\_s seresnet33ts.ra2 in1k seresnet50.a2\_in1k seresnet50.ra2 in1k seresnext101\_32x8d.ah\_in1k seresnext101d\_32x8d.ah\_in1k seresnext26t\_32x4d.bt\_in1k seresnext50\_32x4d.gluon\_in1k seresnextaa101d\_32x8d.ah\_in1k seresnextaa101d\_32x8d.sw\_in12k\_ft\_in1k skresnet18 skresnext50\_32x4d swin\_base\_patch4\_window12\_384.ms\_in1k swin\_base\_patch4\_window12\_384.ms\_in22k\_ft\_in1k swin base patch4 window7 224.ms in22k swin\_large\_patch4\_window12\_384.ms\_in22k swin\_large\_patch4\_window12\_384 swin\_large\_patch4\_window7\_224.ms\_in22k\_ft\_in1k swin\_s3\_small\_224.ms\_in1k swin\_small\_patch4\_window7\_224.ms\_in1k swin\_small\_patch4\_window7\_224.ms\_in22k\_ft\_in1k swin\_tiny\_patch4\_window7\_224.ms\_in22k swinv2\_base\_window12\_192.ms\_in22k swinv2\_base\_window12to24\_192to384.ms\_in22k\_ft\_in1k swinv2\_base\_window8\_256.ms\_in1k swinv2\_cr\_small\_ns\_224.sw\_in1k swinv2\_large\_window12\_192.ms\_in22k swinv2 large window12to24 192to384.ms in22k ft in1k swinv2\_small\_window8\_256.ms\_in1k swinv2 tinv window8 256.ms in1k tf\_efficientnet\_b0.ap\_in1k tf efficientnet bl.aa inlk tf\_efficientnet\_bl.ns\_jft\_inlk tf efficientnet b2.ap in1k tf\_efficientnet\_b3.aa\_in1k tf\_efficientnet\_b3.ns\_jft\_in1k tf\_efficientnet\_b4.ap\_in1k tf\_efficientnet\_b5.ap\_in1k tf\_efficientnet\_b5.ra\_in1k tf\_efficientnet\_b6.ap\_in1k tf\_efficientnet\_b7.ap\_in1k tf\_efficientnet\_b7.ra\_in1k tf\_efficientnet\_b8.ra\_in1k tf\_efficientnet\_cc\_b0\_8e.in1k tf\_efficientnet\_el.in1k tf\_efficientnet\_es.in1k tf efficientnet lite1.in1k tf\_efficientnet\_lite3.in1k tf efficientnetv2 b0.in1k tf\_efficientnetv2\_b2.in1k tf efficientnetv2 b3.in21k

tf efficientnetv2 b3.in21k ft in1k tf\_efficientnetv2\_l.in21k tf efficientnetv2 m.in1k tf\_efficientnetv2\_m.in21k\_ft\_in1k tf\_efficientnetv2\_s.in21k tf\_efficientnetv2\_xl.in21k tf\_inception\_v3 tf\_mixnet\_m.in1k tf\_mobilenetv3\_large\_075.in1k tf\_mobilenetv3\_large\_minimal\_100.in1k tf\_mobilenetv3\_small\_100.in1k tinynet\_a.in1k tinynet\_c.in1k tinynet\_e.in1k tv\_densenet121 twins\_pcpvt\_large twins\_svt\_base twins svt small vqq11 bn vqq13 bn vqq16 bn vqq19 bn vit\_base\_patch16\_224.augreg2\_in21k\_ft\_in1k vit\_base\_patch16\_224.augreg\_in21k vit\_base\_patch16\_224.dino vit\_base\_patch16\_224.sam vit\_base\_patch16\_224\_miil.in21k\_ft\_in1k vit\_base\_patch16\_384.augreg\_in21k\_ft\_in1k vit\_base\_patch16\_clip\_224.laion2b vit\_base\_patch16\_clip\_224.laion2b\_ft\_in12k\_in1k vit base patch16 clip 224.openai vit\_base\_patch16\_clip\_224.openai\_ft\_in12k\_in1k vit\_base\_patch16\_clip\_384.laion2b\_ft\_in12k\_in1k vit\_base\_patch16\_clip\_384.openai\_ft\_in12k\_in1k vit\_base\_patch16\_rpn\_224.in1k vit\_base\_patch32\_224.augreg\_in21k vit base patch32 224.sam vit\_base\_patch32\_384.augreg\_in21k\_ft\_in1k vit\_base\_patch32\_clip\_224.laion2b\_ft\_in12k\_in1k vit\_base\_patch32\_clip\_224.openai vit\_base\_patch32\_clip\_384.laion2b\_ft\_in12k\_in1k vit\_base\_patch32\_clip\_448.laion2b\_ft\_in12k\_in1k vit\_base\_patch8\_224.augreg\_in21k vit\_base\_patch8\_224.dino vit\_base\_r50\_s16\_384.orig\_in21k\_ft\_in1k vit\_gigantic\_patch14\_clip\_224.laion2b vit\_huge\_patch14\_clip\_224.laion2b vit\_huge\_patch14\_clip\_224.laion2b\_ft\_in12k\_in1k vit\_huge\_patch14\_clip\_336.laion2b\_ft\_in12k\_in1k vit\_large\_patch14\_clip\_224.laion2b\_ft\_in12k vit\_large\_patch14\_clip\_224.laion2b\_ft\_in1k vit large patch14 clip 224.openai ft in12k vit\_large\_patch14\_clip\_224.openai\_ft\_in1k vit\_large\_patch14\_clip\_336.laion2b\_ft\_in1k

tf efficientnetv2 l.in1k tf\_efficientnetv2\_l.in21k\_ft\_in1k tf efficientnetv2 m.in21k tf\_efficientnetv2\_s.in1k tf\_efficientnetv2\_s.in21k\_ft\_in1k tf\_efficientnetv2\_xl.in21k\_ft\_in1k tf\_mixnet\_l.in1k tf\_mixnet\_s.in1k tf\_mobilenetv3\_large\_100.in1k tf\_mobilenetv3\_small\_075.in1k tf mobilenetv3 small minimal 100.in1k tinynet\_b.in1k tinynet\_d.in1k tnt\_s\_patch16\_224 twins\_pcpvt\_base twins\_pcpvt\_small twins\_svt\_large vqq11 vqq13 vqq16 vqq19 visformer small vit\_base\_patch16\_224.augreg\_in1k vit\_base\_patch16\_224.augreg\_in21k\_ft\_in1k vit\_base\_patch16\_224.orig\_in21k\_ft\_in1k vit\_base\_patch16\_224\_miil.in21k vit\_base\_patch16\_384.augreg\_in1k vit\_base\_patch16\_384.orig\_in21k\_ft\_in1k vit\_base\_patch16\_clip\_224.laion2b\_ft\_in12k vit\_base\_patch16\_clip\_224.laion2b\_ft\_in1k vit\_base\_patch16\_clip\_224.openai\_ft\_in12k vit\_base\_patch16\_clip\_224.openai\_ft\_in1k vit\_base\_patch16\_clip\_384.laion2b\_ft\_in1k vit\_base\_patch16\_clip\_384.openai\_ft\_in1k vit\_base\_patch32\_224.augreg\_in1k vit\_base\_patch32\_224.augreg\_in21k\_ft\_in1k vit\_base\_patch32\_384.augreg\_in1k vit\_base\_patch32\_clip\_224.laion2b vit\_base\_patch32\_clip\_224.laion2b\_ft\_in1k vit\_base\_patch32\_clip\_224.openai\_ft\_in1k vit\_base\_patch32\_clip\_384.openai\_ft\_in12k\_in1k vit\_base\_patch8\_224.augreg2\_in21k\_ft\_in1k vit\_base\_patch8\_224.augreg\_in21k\_ft\_in1k vit\_base\_r50\_s16\_224.orig\_in21k vit\_giant\_patch14\_clip\_224.laion2b vit\_huge\_patch14\_224.orig\_in21k vit\_huge\_patch14\_clip\_224.laion2b\_ft\_in12k vit\_huge\_patch14\_clip\_224.laion2b\_ft\_in1k vit\_large\_patch14\_clip\_224.laion2b vit\_large\_patch14\_clip\_224.laion2b\_ft\_in12k\_in1k vit\_large\_patch14\_clip\_224.openai vit large patch14 clip 224.openai ft in12k in1k vit\_large\_patch14\_clip\_336.laion2b\_ft\_in12k\_in1k vit\_large\_patch14\_clip\_336.openai\_ft\_in12k\_in1k

vit large patch16 224.augreg in21k vit\_large\_patch16\_384.augreg\_in21k\_ft\_in1k vit\_large\_patch32\_384.orig\_in21k\_ft\_in1k vit\_large\_r50\_s32\_224.augreg\_in21k\_ft\_in1k vit\_medium\_patch16\_gap\_240.in12k vit\_medium\_patch16\_gap\_384.in12k\_ft\_in1k vit\_relpos\_base\_patch16\_clsgap\_224.sw\_in1k vit\_relpos\_medium\_patch16\_224.sw\_in1k vit\_relpos\_medium\_patch16\_rpn\_224.sw\_in1k vit\_small\_patch16\_224.augreg\_in1k vit\_small\_patch16\_224.augreg\_in21k\_ft\_in1k vit\_small\_patch16\_384.augreg\_in1k vit\_small\_patch32\_224.augreg\_in21k vit\_small\_patch32\_384.augreg\_in21k\_ft\_in1k vit\_small\_r26\_s32\_224.augreg\_in21k vit\_small\_r26\_s32\_384.augreg\_in21k\_ft\_in1k vit\_srelpos\_small\_patch16\_224.sw\_in1k vit\_tiny\_patch16\_224.augreg\_in21k\_ft\_in1k vit\_tiny\_r\_s16\_p8\_224.augreg\_in21k vit\_tiny\_r\_s16\_p8\_384.augreg\_in21k\_ft\_in1k volo\_d1\_384 volo d2 384 volo\_d3\_448 volo\_d4\_448 volo\_d5\_448 wide\_resnet101\_2.tv2\_in1k wide\_resnet50\_2.racm\_in1k wide\_resnet50\_2.tv\_in1k xception41 xception65 xception71 xcit\_large\_24\_p16\_224\_dist xcit\_large\_24\_p8\_224 xcit\_large\_24\_p8\_384\_dist xcit medium 24 p16 224 dist xcit\_medium\_24\_p8\_224 xcit\_medium\_24\_p8\_384\_dist xcit\_nano\_12\_p16\_224\_dist xcit\_nano\_12\_p8\_224 xcit\_nano\_12\_p8\_384\_dist xcit\_small\_12\_p16\_224\_dist xcit\_small\_12\_p8\_224 xcit\_small\_12\_p8\_384\_dist xcit\_small\_24\_p16\_224\_dist xcit\_small\_24\_p8\_224 xcit\_small\_24\_p8\_384\_dist xcit\_tiny\_12\_p16\_224\_dist xcit\_tiny\_12\_p8\_224 xcit\_tiny\_12\_p8\_384\_dist xcit\_tiny\_24\_p16\_224\_dist xcit\_tiny\_24\_p8\_224 xcit\_tiny\_24\_p8\_384\_dist

vit large patch16 224.augreg in21k ft in1k vit\_large\_patch32\_224.orig\_in21k vit\_large\_r50\_s32\_224.augreg\_in21k vit\_large\_r50\_s32\_384.augreg\_in21k\_ft\_in1k vit\_medium\_patch16\_gap\_256.in12k\_ft\_in1k vit\_relpos\_base\_patch16\_224.sw\_in1k vit\_relpos\_base\_patch32\_plus\_rpn\_256.sw\_in1k vit\_relpos\_medium\_patch16\_cls\_224.sw\_in1k vit\_relpos\_small\_patch16\_224.sw\_in1k vit\_small\_patch16\_224.augreg\_in21k vit\_small\_patch16\_224.dino vit\_small\_patch16\_384.augreg\_in21k\_ft\_in1k vit\_small\_patch32\_224.augreg\_in21k\_ft\_in1k vit small patch8 224.dino vit\_small\_r26\_s32\_224.augreg\_in21k\_ft\_in1k vit\_srelpos\_medium\_patch16\_224.sw\_in1k vit\_tiny\_patch16\_224.augreg\_in21k vit\_tiny\_patch16\_384.augreg\_in21k\_ft\_in1k vit\_tiny\_r\_s16\_p8\_224.augreg\_in21k\_ft\_in1k volo d1 224 volo\_d2\_224 volo d3 224 volo\_d4\_224 volo\_d5\_224 volo\_d5\_512 wide\_resnet101\_2.tv\_in1k wide\_resnet50\_2.tv2\_in1k xception xception41p xception65p xcit large 24 p16 224 xcit\_large\_24\_p16\_384\_dist xcit\_large\_24\_p8\_224\_dist xcit\_medium\_24\_p16\_224 xcit medium 24 p16 384 dist xcit\_medium\_24\_p8\_224\_dist xcit nano 12 p16 224 xcit\_nano\_12\_p16\_384\_dist xcit\_nano\_12\_p8\_224\_dist xcit\_small\_12\_p16\_224 xcit\_small\_12\_p16\_384\_dist xcit\_small\_12\_p8\_224\_dist xcit\_small\_24\_p16\_224 xcit\_small\_24\_p16\_384\_dist xcit\_small\_24\_p8\_224\_dist xcit\_tiny\_12\_p16\_224 xcit\_tiny\_12\_p16\_384\_dist xcit\_tiny\_12\_p8\_224\_dist xcit\_tiny\_24\_p16\_224 xcit\_tiny\_24\_p16\_384\_dist xcit\_tiny\_24\_p8\_224\_dist