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Abstract
1-parameter persistent homology, a cornerstone in
Topological Data Analysis (TDA), studies the evo-
lution of topological features such as connected
components and cycles hidden in data. It has
been applied to enhance the representation power
of deep learning models, such as Graph Neural
Networks (GNNs). To enrich the representations
of topological features, here we propose to study
2-parameter persistence modules induced by bi-
filtration functions. In order to incorporate these
representations into machine learning models, we
introduce a novel vector representation called
Generalized Rank Invariant Landscape (GRIL)
for 2-parameter persistence modules. We show
that this vector representation is 1-Lipschitz stable
and differentiable with respect to underlying fil-
tration functions and can be easily integrated into
machine learning models to augment encoding
topological features. We present an algorithm to
compute the vector representation efficiently. We
also test our methods on synthetic and benchmark
graph datasets, and compare the results with pre-
vious vector representations of 1-parameter and 2-
parameter persistence modules. Further, we aug-
ment GNNs with GRIL features and observe an
increase in performance indicating that GRIL can
capture additional features enriching GNNs. We
make the complete code for the proposed method
available at https://github.com/soham0209/mpml-
graph.

1. Introduction
Machine learning models such as Graph Neural Networks
(GNNs) (Gori et al., 2005; Scarselli et al., 2009; Kipf &
Welling, 2017; Xu et al., 2019) are well-known successful
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tools from the geometric deep learning community. Some
recent research has indicated that the representation power
of such models can be augmented by infusing topological
information (Hofer et al., 2017; Dehmamy et al., 2019; Car-
rière et al., 2020; Horn et al., 2022). One way to do that
is by applying persistent homology, which is a powerful
tool for characterizing the shape of data, rooted in the the-
ory of algebraic topology. It has spawned the flourishing
area of Topological Data Analysis. The classical persistent
homology, also known as, 1-parameter persistence mod-
ule, has attracted plenty of attention from both theory and
applications (Edelsbrunner & Harer, 2010; Oudot, 2015;
Carlsson & Vejdemo-Johansson, 2021; Dey & Wang, 2022).
In essence, a 1-parameter persistence homology captures the
evolution of some topological information within a topolog-
ical space X along an ascending filtration determined by a
scalar function X → R. It can be losslessly summarized by
a complete discrete invariant such as a persistence diagram,
rank invariant or barcode. In recent years, many works have
successfully integrated persistence homology with machine
learning models (Corbet et al., 2019; Chen et al., 2019; Car-
rière et al., 2020; Kim et al., 2020; Gabrielsson et al., 2020;
Zhao et al., 2020; Hofer et al., 2020; Swenson et al., 2020;
Carrière & Blumberg, 2020; Vipond, 2020; Bouritsas et al.,
2022; Horn et al., 2022; Cang & Wei, 2017; Demir et al.,
2022; Zhang et al., 2022; Liu et al., 2022).

To further enhance the capacity of persistent homology, it
is natural to consider a more general multivariate filtration
function X → Rd for d ≥ 2 in place of a real valued
function, and represent its topological information by multi-
parameter persistence modules. However, the structure of
multiparameter persistence modules is much more compli-
cated than 1-parameter persistence modules. In 1-parameter
case, the modules are completely characterized by what is
called barcode or persistence diagram (Chazal et al., 2009a;
Lesnick, 2015). Unfortunately, there is no such discrete
complete invariant which can summarize multiparameter
persistence modules completely (Carlsson & Zomorodian,
2009). Given this limitation, building a useful vector repre-
sentation from multiparameter persistence modules while
capturing as much topological information as possible for
machine learning models becomes an important but chal-
lenging problem.

To address this challenge, different kinds of vector repre-
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sentations have been proposed for 2-parameter persistence
modules (Corbet et al., 2019; Vipond, 2020; Carrière &
Blumberg, 2020). All these works are essentially based on
the invariant called fibered (sliced) barcodes (Lesnick &
Wright, 2015). However, such representations capture as
much topological information as determined by the well-
known incomplete summary called rank invariant (Carlsson
& Zomorodian, 2009) which is equivalent to fibered bar-
codes.

In this paper, we propose a new vector representation to
extend its expressive power in terms of capturing topological
information from a 2-parameter persistence module:

• We introduce Generalized Rank Invariant Landscape
(GRIL), a new vector representation encoding richer
information beyond fibered barcodes for 2-parameter
persistence modules, based on the idea of generalized
rank invariant (Kim & Mémoli, 2021) and its compu-
tation by zigzag persistence (Dey et al., 2022). The
construction of GRIL can be viewed as a generaliza-
tion of persistence landscape (Bubenik, 2015; Vipond,
2020), hence has more discriminating power.

• We show that this vector representation GRIL is 1-
Lipschitz stable and differentiable with respect to the
filtration function f , which allows one to build a topo-
logical representation as a machine learning model.

• We propose an efficient algorithm to compute (GRIL),
demonstrate its use on synthetic and benchmark graph
datasets, and compare the results with previous vector
representations of 1-parameter and 2-parameter persis-
tence modules. Specifically, we present results indi-
cating that GNNs may improve when augmented with
GRIL features for graph classification task.

2. Background
In this section, we start with an overview of single and
multiparameter persistence modules followed by formal
definitions of basic concepts. Then we provide a high-level
idea of how to construct our vector representation GRIL. For
a more comprehensive introduction to persistence modules,
we refer the interested reader to (Edelsbrunner & Harer,
2010; Oudot, 2015; Carlsson & Vejdemo-Johansson, 2021;
Dey & Wang, 2022).

The standard pipeline of 1-parameter persistence module is
as follows: Given a domain of interest X (e.g. a topological
space, point cloud data, a graph, or a simplicial complex)
with a scalar function f : X → R, one filters the domain X
by the sublevel sets Xα ≜ {x ∈ X | f(x) ≤ α} along with
a continuously increasing threshold α ∈ R. The collection
{Xα}, which is called a filtration, forms an increasing se-
quence of subspaces ∅ = X−∞ ⊆ Xα1 ⊆ · · · ⊆ X+∞ = X .

Along with the filtration, topological features appear, persist,
and disappear over a collection of intervals. We consider
pth homology groups Hp(−) over a field, say Z2 , of the
subspaces in this filtration, which results into a sequence
of vector spaces. These vector spaces are connected by
inclusion-induced linear maps forming an algebraic struc-
ture 0 = Hp(X−∞) → Hp(Xα1

) → · · · → Hp(X+∞).
(see (Hatcher, 2000)). This algebraic structure, known as
1-parameter persistence module induced by f and denoted
as Mf , can be uniquely decomposed into a collection of
atomic modules called interval modules, which completely
characterizes the topological features in regard to the three
behaviors–appearance, persistence, and disappearance of
all p-dimensional cycles. This unique decomposition of a
1-parameter persistence module is commonly summarized
as a complete discrete invariant, persistence diagram (Edels-
brunner et al., 2000) or barcode (Zomorodian & Carlsson,
2005). Figure 1 (left) shows a filtration of a simplicial com-
plex that induces a 1-parameter persistence module and its
decomposition into bars.

1 2
3 4 ∞H0

H165

K1 K2 K3 K4 K5 K6

0 1 2

1

2

0

Figure 1: (left) 1-parameter filtration and bars; (right) a
2-parameter filtration inducing a 2-parameter persistence
module whose decomposition is not shown.

Some problems in practice may demand tracking the topo-
logical information in a filtration that is not necessarily
linear. For example, in (Adcock et al., 2014), 2-parameter
persistence modules are shown to be better for classify-
ing hepatic lesions compared to 1-parameter persistence
modules. In (Keller et al., 2018; Demir et al., 2022), a
virtual screening system based on 2-parameter persistence
modules are shown to be effective for searching new can-
didate drugs. In such applications, instead of studying a
sequential filtration filtered by a scalar function, one may
study a grid-filtration induced by a R2-valued bi-filtration
function f : X → R2 with R2 equipped with partial or-
der u ≤ v : u1 ≤ v1, u2 ≤ v2; see Figure 1(right)
for an example of 2-parameter filtration. Following a
similar pipeline as the 1-parameter persistence module,
one will get a collection of vector spaces {Mf

u}u∈R2 in-
dexed by vectors u = (u1, u2) ∈ R2 and linear maps
{Mf

u→v : Mf
u → Mf

v | u ≤ v ∈ R2} for all compa-
rable u ≤ v. The entire structure Mf , in analogy to the
1-parameter case, is called a 2-parameter persistence mod-
ule induced from f . Unlike 1-parameter case, there is no
complete discrete invariant like persistence diagrams or bar-
codes that can losslessly summarize the whole structure of
2-parameter persistence modules (Carlsson & Zomorodian,
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2009). A good non-complete invariant for 2-parameter per-
sistence modules should characterize many non-isomorphic
topological features, ideally as many as possible. At the
same time, it should be stable with respect to small perturba-
tions of filtration functions, which guarantees its important
properties of continuity and differentiability for machine
learning models. Therefore, building a good summary in
general for 2-parameter persistence modules which is also
applicable to machine learning models is an important and
challenging problem.

Overview: Our approach computes a landscape function
over the 2-parameter domain and then vectorizes it. At this
high level, this is similar to the approach in (Vipond, 2020).
However, the landscape function we construct is much more
general and thus potentially has the power of capturing
more topological information. In particular, we use the
concept of generalized rank invariant introduced in (Kim
& Mémoli, 2021), which indeed generalizes the traditional
rank invariant used in (Vipond, 2020). As opposed to simple
rank invariant which is defined over rectangles, generalized
ranks are defined over their generalizations called intervals.
We define it more formally in section 3 below.

One difficulty facing the use of the generalized ranks in TDA
was that its efficient computation was not known. Recently,
in (Dey et al., 2022), the authors showed that generalized
ranks for intervals in 2-parameter persistence modules can
be obtained by considering a persistence module supported
on a linear poset induced by the boundary of the interval in
question. However, this linear poset is not totally ordered
as in 1-parameter persistence, and thus gives rise to what
is called zigzag persistence (Carlsson & De Silva, 2010)
where the inclusions can both be in forward and backward
directions unlike traditional 1-parameter persistence where
they are only in forward directions; With this result, comput-
ing generalized ranks efficiently boils down to computing
zigzag persistence efficiently. For this purpose, we use a
recently discovered fast zigzag algorithm and its efficient
implementation (Dey & Hou, 2022)1.

Our method samples a subset of grid points from the 2-
parameter grid spanned by a given bi-filtration function, and
computes the landscape function values (Definition 3.2) at
those points based on generalized ranks. For this, the algo-
rithm considers an expanding sequence of intervals which
we call worms centered at each point p and computes gen-
eralized rank over them to determine the ‘width’ of the
maximal worm sustaining a chosen rank. This maximiza-
tion is achieved by a binary search over the sequence of
worms centering p; section 4 describes this procedure. The
widths, thus computed for each sample point, constitute the
landscape function values which become the basis for our

1https://github.com/taohou01/fzz

vector representation.

3. Generalized Rank Invariant Landscape
In this section, we introduce Generalized Rank Invariant
Landscape, abbreviated as GRIL, a stable and differentiable
vector representation of 2-parameter persistence modules.

Let M =Mf be a 2-parameter persistence module induced
by a filtration function f . The restriction ofM to an interval
I , denoted as M |I , is the collection of vector spaces {Mu |
u ∈ I} along with linear maps {Mu→v | u ≤ v ∈ I)}.
One can define the generalized rank ofM |I (Kim & Mémoli,
2021) as the rank of the canonical linear map from limit
lim
←−−

M |I to colimit lim
−−→

M |I of M |I (see Appendix A):

rkM (I) ≜ rank[lim
←−−

M |I → lim
−−→

M |I ]

A formal explanation of limit and colimit is beyond the
scope of this article; we refer readers to (MacLane, 1971) for
their definitions and also the construction of the canonical
limit-to-colimit map in category theory. Intuitively, rkM (I)
captures the number of independent topological features
encoded in M with the support over the entire interval I .
Specially, when I = [u,v] ≜ {w ∈ R2 | u ≤ w ≤ v}
is a rectangle, lim

←−−
M |I = Mu and lim

−−→
M |I = Mv. Then

rkM (I) equals the traditional rank of the linear mapMu→v .

Remark 3.1. An interesting property of the generalized rank
invariant is that its value over a larger interval is less than
or equal to its value over any interval contained inside the
larger interval. Formally, I ⊆ J =⇒ rkM (I) ≥ rkM (J).
We implicitly use this monotone property in the definition
of GRIL.

The basic idea of GRIL is to consider a collection of general-
ized ranks {rkM (I)}I∈W over some covering setW on R2,
which is called a generalized rank invariant of M overW .
Let p

δ
≜ {w : ∥p−w∥∞ ≤ δ} be the δ-square centered

at p with side 2δ. For given p ∈ R2, ℓ ≥ 1, δ > 0, we de-
fine an ℓ-worm p

ℓ

δ
to be the union over all δ-squares q

δ
centered at some point q on the off-diagonal line segment
p + α · (1,−1) with |α| ≤ (ℓ − 1)δ. See Figure 2 for an
illustration.

p1 p2 p3
δ δ δ

p2 + (−δ, δ) p3 + (−δ, δ)

p3 + (δ,−δ)

p3 + (2δ,−2δ)

p3 + (−2δ, 2δ)

p2 + (δ,−δ)

1-worm

2-worm

3-worm

Figure 2: Examples of three ℓ-worms with ℓ = 1, 2, 3.
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p1

p2

Simplicial Complex with filtration function:

f(v1) = (0, 1) f(v2) = (1, 0) f(e) = (2, 2)

Simplical filtration Persistence module

Compute max worms

for different (p, k, ℓ)

1

1

2

1

p3

p1 p2 p3
ℓ = 1, k = 1

ℓ = 2, k = 1

ℓ = 2, k = 2

ℓ = 3, k = 1

λMf

δ

δ

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗

∗
∗

∗∗
∗ ∗
∗ ∗ ∗ ∗

∗

∗
∗

∗ ∗
∗ ∗
∗ ∗
∗ ∗

Figure 3: The construction starts from a simplicial complex with a bi-filtration function as shown on the top left. The
simplicial complex consists of two vertices connected by one edge. Based on the bi-filtration, a simplicial bi-filtration can
be defined as shown on the bottom left. On the mid bottom, a 2-parameter persistence module is induced from the above
simplicial filtration. If we check the dimensions of the vector spaces on all points of the plane, there are 1-dimensional
vector spaces on red, blue and light purple regions. On the L-shaped dark purple region, the vector spaces have dimension 2.
For this 2-parameter persistence module, we calculate λM

f

(p, k, ℓ) for all tuples (p, k, ℓ) ∈ P ×K × L to get our GRIL

vector representation. By Definition 3.2 the value λM
f

(p, k, ℓ) corresponds to the width of the maximal ℓ-worm on which
the generalized rank is at least k. On the bottom right, the interval in red is the maximal 2-worm for λM

f

(p1, k = 1, ℓ = 2).
The green interval is the maximal 2-worm for λM

f

(p2, k = 2, ℓ = 2). The yellow square is the maximal 1-worm for
λM

f

(p3, k = 1, ℓ = 1), and the blue interval is the maximal 3-worm for λM
f

(p3, k = 1, ℓ = 3). Finally, on the top right,
we have our GRIL vector representation λM

f

which is a collection of vectors. Each vector corresponding to a different ℓ and
k consists of values as the width of maximal worms at each center point p. As an example, the blue one on the last vector at
position p3 has value δ which is the width of the blue worm.

Formally,
p

ℓ

δ
≜

⋃
q=p+(α,−α)
|α|≤(l−1)δ

q
δ

We call p the center point and δ the width of the ℓ-worm
p

ℓ

δ
. As a special case, when ℓ = 1, p

1

δ
= p

δ
is just the

δ-square with side 2δ.

We chooseW to be a set of Worms defined as follows:

W ≜
{
W = p

ℓ

δ
| δ > 0, ℓ ≥ 1,p ∈ R2

}
Now we are ready to define the main construct in this pa-
per which uses the monotone property of generalized rank
mentioned in Remark 3.1.

Definition 3.2 (Generalized Rank Invariant Landscape
(GRIL)). For a persistence module M , the Generalized
Rank Invariant Landscape (GRIL) of M is a function
λM : R2 × N+ × N+ → R defined as

λM (p, k, ℓ) ≜ sup
δ≥0
{rkM ( p

ℓ

δ
) ≥ k}. (1)

We can see from the definition that given a persistence
module M , a point p, a rank k and ℓ, the value of GRIL
(λM (p, k, ℓ)) is, in essence, the width δ of the "maximal"
ℓ-worm W = p

ℓ

δ
centered at p such that the value of

the generalized rank over W is greater than or equal to k.
See Figure 3 bottom right for some examples of maximal
worms.

It turns out that, GRIL as an invariant is equivalent to the
generalized rank invariant overW .

Proposition 3.3. GRIL is equivalent to the generalized rank
invariant over W . Here the equivalence means bijective
reconstruction from each other.

See Figure 3 for an illustration of the overall pipeline of
our construction of λM starting from a filtration function
on a simplicial complex. Figure 4 shows the discriminating
power of GRIL where we see that GRIL can differentiate
between shapes that are topologically non-equivalent.

Stability of GRIL. An important property of GRIL is its
stability property which makes it immune to small perturba-

4



GRIL: A 2-parameter Persistence Based Vectorization for Machine Learning

Figure 4: GRIL as a topological discriminator: each row
shows a point cloud, GRIL value heatmap for ranks k = 1
and k = 2 in homology of degree 1 denoted as λ1 and λ2
respectively; (row 1) first Betti number (β1) of a circle is
1 which is reflected in λ1 being non-zero; (row 2) β1 for
two circles is 2 which is reflected in both λ1 and λ2 being
non-zero; (row 3) β1 of a circle and disk together is 1 which
is reflected in λ1 being non-zero but λ2 being zero.

tions of the input bi-filtration while still retaining the ability
to characterize topologies. We will show GRIL is stable
with respect to input filtrations.

Proposition 3.4 (Stability). Given two filtration functions
f, f ′ : X → R2,∥∥∥λMf

− λM
f′
∥∥∥
∞
≤ ∥f − f ′∥∞

Proposition 3.5 (Lipschitz continuous). For a finite space
X with |X | = n and fixed k, ℓ,p, the function Λk,ℓ

p : R2n →
R given by Λk,ℓ

p (f) = λM
f

(k, ℓ,p) is Lipschitz continuous.

Proof. Given filtration functions f, f ′ and their correspond-
ing vector representations vf , vf ′ ∈ R2n, one can check that
∥f − f ′∥∞ ≤ 2∥vf − vf ′∥∞ ≤ 2∥vf − vf ′∥2. Combin-
ing this with Proposition 3.4, we get that Λk,ℓ

p is Lipschitz
continuous with respect to the underlying filtration func-
tions.

Corollary 3.6. Λk,ℓ
p is differentiable almost everywhere.

By Rademacher’s theorem (Evans & Gariepy, 2015), we
have Λk,ℓ

p , as a Lipschitz continuous function, being dif-
ferentiable almost everywhere. More discussions on the
stability and differentiability of GRIL are in Appendix B
and E.

4. Algorithm
We present our algorithm to compute GRIL in this section.

In practice, we choose center points p from some finite
subsetP ⊂ R2, e.g. a finite uniform grid in R2, and consider
k ≤ K, ℓ ≤ L for some fixed K,L ∈ N+. Then, GRIL
{λM (p, k, ℓ)} can be viewed as a vector of dimension |P|×
K × L.

The high-level idea of the algorithm is as follows: Given
a bi-filtration function f : X → R2, for each triple
(p, k, ℓ) ∈ P × K × L, we compute λM

f

(p, k, ℓ) =

supδ≥0{rk
Mf

( p
ℓ

δ
) ≥ k}. In essence, we need to com-

pute the maximum width over worms on which the gener-
alized rank is at least k. In order to find the value of this
width, we use binary search. We compute generalized rank
rkM

f
(
p

ℓ

δ

)
by applying the algorithm proposed in (Dey

et al., 2022), which uses zigzag persistence on a boundary
path. This zigzag persistence is computed efficiently by
a recent algorithm proposed in (Dey & Hou, 2022). We
denote the sub-routine to compute generalized rank over
a worm by COMPUTERANK in algorithm 1 mentioned be-
low. COMPUTERANK(f, I) takes as input a bi-filtration
function f and an interval I , and outputs generalized rank
over that interval. In order to use the algorithm proposed
in (Dey et al., 2022), the worms need to have their bound-
aries aligned with a grid structure defined on the range of
f . Thus, we normalize f to be in the range [0, 1] × [0, 1],
define a grid structure on [0, 1] × [0, 1] and discretize the
worms. Let GRID = {

(
m
M , n

M

)
| m,n ∈ {0, 1, . . . ,M}}

for some M ∈ Z+. We denote the grid resolution as
ρ ≜ 1/M . We take the set of center points P ⊆ GRID
as a uniform subgrid of GRID. We consider the discrete
worms for p ∈ P, δ = d · ρ, d ∈ Z≥0 as follows:

p̂
ℓ

δ
≜

⋃
q=p+(α,−α)
|α|≤(l−1)δ
q∈GRID

q
δ
. (2)

Essentially, a discrete ℓ-worm p̂
ℓ

δ
centered at p with width

δ is the union of 2ℓ − 1 squares with width δ centered
at p ± (cδ,−cδ) for c ∈ {0, 1, . . . , ℓ − 1} along with the
intermediate staircases between two consecutive squares
of step-size equal to grid resolution (ρ). Figure 5 (middle)
shows the discretization of a 2-worm. This construction is
sensitive to the grid resolution.

Now all such discrete worms p̂ are intervals whose bound-
aries are aligned with the GRID. We apply the procedure

COMPUTERANK(f, I) to compute rkM
f

(I) for I = p̂
ℓ

δ
.

Denote

λ̂M
f

(p, k, ℓ) = sup
δ≥0
{rkM

f

( p̂
ℓ

δ
) ≥ k}. (3)
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Remark 4.1. One can observe that

λM
f

(p, k, ℓ) ≤ λ̂M
f

(p, k, ℓ) ≤ λM
f

(p, k, ℓ) + ρ

Therefore, we compute λ̂ as an approximation of λ in prac-
tice.

The pseudo-code is given in Algorithm 1. The algorithm is
described in detail in Appendix D.

 

Figure 5: A 2-worm, discretized 2-worm and expanded
discretized 2-worm; ρ denotes grid resolution. The blue
dotted lines show the intermediate staircase with step-size
ρ. The red dotted lines form parts of the squares with size
d which are replaced by the blue dotted lines in the worm.
The last figure shows the expanded 2-worm with red and
blue dotted lines. The expanded 2-worm has width d + ρ
which is the one step expansion of the worm with width d.

Algorithm 1 COMPUTEGRIL

Input: f : Bi-filtration function, ℓ ≥ 0, k ≥ 1,p ∈ P ⊆
GRID, ρ: grid resolution
Output: λ̂(p, k, l): GRIL value at p for fixed k and ℓ
Initialize: dmin ← ρ, dmax ← 1, λ← 0
while dmin ≤ dmax do
d← (dmin + dmax)/2; I ← p̂

ℓ

d
.

r ← COMPUTERANK(f, I )
if r ≥ k then
λ← d; dmin ← d+ ρ

else
dmax ← d− ρ

end if
end while
return λ

Time complexity. Assuming a grid with t nodes and a
bi-filtration of a complex with n simplices on it, one can
observe that each probe in the binary search takes O(nω)
time where ω < 2.37286 is the matrix multiplication ex-
ponent (Alman & Williams, 2021). This is because each
probe generates a zigzag filtration of lengthO(n) withO(n)
simplices. Therefore, the binary search takes O(nω log t)
time giving a total time complexity of O(tnω log t)) that
accounts for O(t) worms.

Speeding up the implementation. In implementation,
we use some observations that help run COMPUTEGRIL
more efficiently in practice. When computing GRIL for
k = 1, 2, . . . , n, we use the monotone property described
in Remark 3.1 to reduce the scope of the binary search for
successive values of k. For example, the value of GRIL for
k is always greater than or equal to the value of GRIL for
k + 1. Thus, we can reduce the scope of the binary search
while computing for k + 1 by setting the maximum in the
binary search to be the value of GRIL at k. Further, we
store the values of rank for a given width d while computing
the value of GRIL for a k. This information can be reused
in later computations. For example, we store the values
of generalized ranks of worms for different values of d at
a center point p during the binary search for, say k = k0.
We use this information for successive binary searches for
all k > k0 and save on the zigzag persistence computation
for those values of d. While computing zigzag persistent,
along with the barcode for 0th homology group, the barcode
for 1st homology group is also computed. We store this
information and reuse it while computing GRIL values for
1st homology group. These observations reduce the total
number of zigzag persistence computations to a significant
extent resulting in reducing the total computational time.

5. Experiments
Our method GRIL exploits generalized rank invariant
whereas existing methods exploit rank invariant which is
equivalent to fibered barcode. Although both invariants are
known to be incomplete for multiparameter persistence as
any other discrete invariant, the generalized rank invariant
is more informative in theory. Our experiments support this
theoretical hypothesis in practice to some extent as we ob-
tain better accuracy for all cases in Table 1 and 13 out of 20
cases in Table 2 in comparison to existing methods applying
some form of fibered barcodes. We perform experiments on
synthetic datasets as well as graph benchmark datasets. On
these datasets, we define a bi-filtration and compute GRIL
values λ(p, k, ℓ) for ℓ = 2 and for each k ∈ {1, 2, . . . , 5}
where p is chosen over a uniform subgrid. Some datasets
require a finer resolution for capturing meaningful informa-
tion while for others, finer resolutions capture redundant
information and a coarser resolution performs better. There-
fore, we sample subgrids with different step-sizes from the
discretized grid described in section 4 and vary p over these
subgrids.We first describe an experiment on a synthetic data
set and follow it with experiments on benchmark graph data
sets.

5.1. Experiment with HourGlass dataset

We test our model on a synthetic dataset (HourGlass) that
entails a binary graph classification problem over a collec-
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Figure 6: (Left) An example of a graph consisting of two circulant subgraphs. The pair of indices on each node represents
the its order on the traversals T1 and T2 respectively. Both traversals start from the left node as the root node. (Right) Cross
edges placed across two subgraphs.

tion of attributed undirected graphs. Note that this synthetic
dataset is designed to show that some attributed graphs can
be easily classfied by 2-parameter persistence modules but
not so by 1-parameter persistence modules or commonly
used GNN models. Each graph G from either class is com-
posed with two circulant subgraphs G1, G2 connected by
some cross edges. The node attributes are order indices
generated by two different traversals T1, T2. The label of
classes corresponds to these two different traversals T1, T2.
Therefore, the classification task is that given an attributed
graph G, the model needs to predict which traversal is used
to generate G. See Figure 6 (left) as an example of two
attributed graphs with the same graph structure but with dif-
ferent node attributes generated by two different traversals.
More details can be found in Appendix C.1. We denote
HourGlass[a,b] as the dataset of graphs generated with node
size of each circulant subgraphs in range [a, b]. We gener-
ate three datasets with different sizes: HourGlass[10,20],
HourGlass[21,30], HourGlass[31,40]. Each dataset con-
tains roughly 400 graphs. We evenly split HourGlass[21,30]
into balanced training set and testing set on which we com-
pare GRIL with several commonly used GNN models from
the literature including: Graph Convolutional Networks
(GCN) (Kipf & Welling, 2017), Graph Isomorphism Net-
works (GIN) (Xu et al., 2019) and a 1-parameter persistent
homology vector representation called persistence image
(PersImg (Adams et al., 2017). All GNN models contain 3
aggregation layers. All models use 3-layer multilayer per-
ceptron (MLP) as classifiers. More details about model and
training settings can be found in Appendix C.1. We also
test these trained models on HourGlass[10,20] and Hour-
Glass[31,40] to check if they can generalize well on smaller
and larger graphs. The experimental results are shown in
Table 1. We can see that this dataset can be easily classified
by our model based on 2-parameter persistence modules
with good generalization performance but 1-parameter per-
sistence method like PersImg or some GNN models struggle
with this dataset.

5.2. Graph Experiments

We perform a series of experiments on graph classifica-
tion to test the proposed model. We use standard datasets

such as PROTEINS, DHFR, COX2, IMDB-BINARY and MU-
TAG (Morris et al., 2020). A quantitative summary of these
datasets is given in Appendix C.2.

5.2.1. CLASSIFYING GRIL REPRESENTATIONS DIRECTLY

We compare the performance of GRIL with other mod-
els such as multiparameter persistence landscapes (MP-
L) (Vipond, 2020), multiparameter persistence images (MP-
I) (Carrière & Blumberg, 2020), multiparameter persistence
kernel (MP-K) (Corbet et al., 2019).

In (Carrière & Blumberg, 2020), the authors use the heat
kernel signature (HKS) and Ricci curvature to form a bi-
filtration on the graph datasets. We also use the same bi-
filtration and report the result in Table 2. We use XGBoost
classifier (Chen & Guestrin, 2016) as done in (Carrière &
Blumberg, 2020) for a fair comparison. We also report the
results of GRIL with different classifiers in Table 9. The
reported accuracies are averaged over 5 train/test splits of
the datasets obtained with 5 stratified folds. The full details
of the experiments are given in Appendix C.2.

From Table 2, we can see that the performance of GRIL
on IMDB-BINARY is slightly lower than the other methods.
This is because the graphs in IMDB-BINARY do not contain
many cycles and hence, there is not enough information to
capture in H1 (See Appendix F for a visual interpretation).
However, when there is information available, GRIL cap-
tures it better than the existing methods as can be seen from
the accuracy values on other datasets.

5.2.2. AUGMENTING GNNS WITH GRIL FEATURES

Experimental Setup. In another set of experiments, we
augment standard GNNs with GRIL features and compare
the performance of the model with the existing ones. We
use 3 layers of message-passing with hidden dimensionality
of 64. The latent node representations are passed through
a pooling layer and a two layer MLP to obtain the final
classification. We use sum pooling to maintain uniformity
among experiments and we do not claim that this is the opti-
mal choice in any sense. For the GNN+GRIL architectures,
we concatenate H0 and H1 and pass it through a 1-layer

7
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Testing accuracy of models on HourGlass

Model GCN GIN PersImg GRIL

HourGlass[21,30] 87.25±4.0 84.00±4.4 74.00±7.4 100.0±0.0
HourGlass[10,20] 67.31±4.6 62.98±3.4 50.33±1.6 99.79±0.1
HourGlass[31,40] 87.75±2.2 79.10±6.2 86.95±5.0 100.0±0.0

Table 1: Table of testing results from different models. Last two rows show the testing results on HourGlass[10,20] and
HourGlass[31,40] of models trained on HourGlass[21,30]. For each dataset accuracies reported in red and blue denote the
best and second-best performance respectively.

Dataset MP-I MP-K MP-L P GRIL

PROTEINS 67.3 ± 3.5 67.5 ± 3.1 65.8 ± 3.3 65.4 ± 2.7 70.9 ± 3.1
DHFR 80.2 ± 2.3 81.7 ± 1.9 79.5 ± 2.3 70.9 ± 3.1 77.6 ± 2.5
COX2 77.9 ± 2.7 79.9 ± 1.8 79.0 ± 3.3 76.0 ± 4.1 79.8 ± 2.9

MUTAG 85.6 ± 7.3 86.2 ± 2.6 85.7 ± 2.5 79.2 ± 7.7 87.8 ± 4.2
IMDB-BINARY 71.1 ± 2.1 68.2 ± 1.2 71.2 ± 2.0 54.0 ± 1.9 65.2 ± 2.6

Table 2: Test accuracy of different models on graph datasets. The values of the MP-I, MP-K, MP-L and P columns are as
reported in (Carrière & Blumberg, 2020); P denotes 1-parameter persistence.

Model PROTEINS DHFR COX2 MUTAG IMDB-BINARY

GCN 71.15± 2.31 78.70± 2.35 78.80± 2.13 88.26± 3.70 73.1± 2.20
GCN + GRIL 74.21± 2.08 75.66± 3.08 80.30± 1.57 88.80± 3.60 72.6± 1.46

GAT 67.66± 3.92 77.78± 4.50 79.45± 3.68 86.69± 6.36 74.90± 2.98
GAT + GRIL 71.60± 3.92 79.64± 6.29 80.52± 3.30 84.03± 7.85 71.60± 3.04

GIN 69.09± 3.77 79.77± 6.72 78.80± 4.88 83.97± 6.04 73.7± 3.34
GIN + GRIL 71.87± 3.22 78.46± 5.80 79.22± 4.89 89.32± 4.81 74.2± 2.82

Table 3: Performance comparison of baseline GNNs and GRIL augmented GNNs on graph benchmark datasets.

Model IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-MULTI-5K

initial_node_features: deg(v) initial_node_features: uninformative

GIN 73.70± 3.34 49.60± 3.02 90.30± 1.30 53.77± 1.85
GIN + GRIL 74.20± 2.82 50.33± 2.58 87.35± 2.77 53.85± 2.60

Table 4: Performance comparison of baseline GNNs and GRIL augmented GNNs on social network datasets without node
attributes.

MLP. We concatenate the transformed GRIL values with the
graph-level representations obtained from the pooling layer
before passing through the final MLP classifier.
Training and evaluation. The models are trained for 100
epochs with ADAM as the optimizer. The initial learning
rate was set to be 10−2 halving every 20 epochs. No hy-
perparameter tuning and early stopping was done. Though
restrictive for practical scenarios, we follow earlier works
(see (Morris et al., 2019),(Zhang et al., 2018) for more de-
tails). We report cross-validation accuracy averaged over 10
folds of the model obtained in the final training epoch.

Results. We can see from Table 3 that GRIL captures topo-
logical information that the GNN architectures are unable

to capture and hence we see a clear increase in performance.
However this is not the case for social network datasets.
For the experiments reported in table 4 the node features
are set as uninformative following the settings of (Xu et al.,
2019). For the IMDB-*, REDDIT-MULTI-5K datasets, the
augmented GRIL features improve the baseline GIN accu-
racy. For the REDDIT-BINARY dataset, since the graphs
are highly sparse GRIL features computed with HKS-RC
bifiltration fails to capture important features and as a con-
sequence, the performance decreases.
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6. Conclusions
In this work, we propose GRIL, a 2-parameter persistence
vectorization based on generalized rank invariant that we
show is Lipschitz continuous and differentiable with respect
to the bi-filtration functions. Further, we present an algo-
rithm for computing GRIL which is a synergistic confluence
of the recent developments in computing generalized rank
invariant of a 2-parameter module and an efficient algo-
rithm for computing zigzag persistence. As a topological
feature extractor, GRIL performs better than Graph Convolu-
tional Networks (GCNs) and Graph Isomorphism Networks
(GINs) on our synthetic dataset. It also performs better than
the existing multiparameter persistence methods on some
graph benchmark datasets while achieves comparable per-
formance on others. Furthermore, our results indicate that
GRIL may aid GNNs achieving better accuracies for graph
classification. We believe that the additional topological
information that a 2-parameter persistence module encodes,
as compared to a 1-parameter persistence module, can be
leveraged to learn better representations. Further directions
of research include using GRIL with GNNs for filtration
learning to learn more powerful representations. We expect
that this work motivates further research in this direction
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A. Background and definitions
Here, we give the detailed definitions of all the concepts
explained in the paper. We begin by defining a simplicial
complex.

Definition A.1 (Simplicial Complex). An abstract simpli-
cial complex is a pair (V,Σ) where V is a finite set and Σ
is a collection of non-empty subsets of V such that if σ ∈ Σ
and if τ ⊆ σ then τ ∈ Σ. A topological space |(V,Σ)|
can be associated with the simplicial complex which can
be defined using a bijection t : V → {1, 2, . . . , |V |} as the
subspace of R|V | formed by the union

⋃
σ∈Σ

h(σ), where

h(σ) denotes the convex hull of the set {et(s)}s∈σ, where
ei denotes the standard basis vector in R|V |.

We shall now define a zigzag filtration and the zigzag per-
sistence module induced by it.

Definition A.2. A zigzag filtration is a sequence of sim-
plicial complexes where both insertions and deletions of
simplices are allowed, the possibility of which we indicate
with double arrows:

X0 ↔ X1 ↔ · · · ↔ Xn = X .

Applying homology functor on such a filtration we get
a zigzag persistence module that is a sequence of vector
spaces connected either by forward or backward linear
maps:

H∗(X0)↔ H∗(X1)↔ · · · ↔ H∗(Xn).

Now, we give the definition of 2-parameter filtration over
R2 and the 2-parameter persistence module induced by it.

Definition A.3 (2-parameter simplicial filtration over R2).
A 2-parameter simplicial filtration, also called bi-filtration,
over R2 is a collection of simplicial complexes {Xu}u∈R2

with inclusion maps Xu ↪−→ Xv for u ≤ v, that is, u1 ≤ u2
and v1 ≤ v2 where u = (u1, u2) and v = (v1, v2).

Definition A.4 (2-parameter Persistence Module). Given a
bi-filtration, {Xu}u∈R2 , by considering the homology of the
simplicial complexes in the bi-filtration over the finite field
Z2, we get a collection of vector spaces {Mu | u ∈ R2}
along with a collection of linear maps {Mu→v : Mu →
Mv | u ≤ v} . Each inclusion map in the bi-filtration
induces a linear map between the corresponding homology
vector spaces.

Having defined 2-parameter filtration and 2-parameter per-
sistence module, we now define the notion of an Interval
in R2. In the definition, we shall make use of the standard
partial order on R2, i.e., u ≤ v if u1 ≤ v1 and u2 ≤ v2 for
u = (u1, u2) and v = (v1, v2).

Definition A.5. An interval in R2 is a subset ∅ ≠ I ⊆ R2

that satisfies the following:

1. If u,v ∈ I and u ≤ w ≤ v, then w ∈ I;

2. If u,v ∈ I , then there exists a finite sequence (u =
u0,u1, , ...,um = v) ∈ I so that every consecutive
points ui,ui+1 are comparable in the partial order for
i ∈ {0, . . . ,m− 1}.

Let M be a 2-parameter persistence module over an interval
I ⊆ R2. Then M admits a limit lim

←−−
M = (L, (πu : L →

Mu)u∈I) and a colimit lim
−−→

M = (C, (iu : Mu →
C)u∈I) (Dey et al., 2022). Then, for every u ≤ v, we
have Mu→v ◦ πu = πv and iv ◦Mu→v = iu. This leads
to iu ◦ πu = iv ◦ πv which is a map from the limit L to the
colimit C.
Definition A.6. (Kim & Mémoli, 2021) The canonical limit-
to-colimit map for any such M is the map ψM : lim

←−−
M →

lim
−−→

M given by iv ◦πv for any v ∈ I . The generalized rank
of M is the rank of the map ψM (i.e. rkM = rank(ψM )).

B. Stability and Differentiability: Proofs
In this section, we provide the proof for stability and differ-
entiability of GRIL. We begin by introducing interleaving
distance (Chazal et al., 2009b; Lesnick, 2015) and erosion
distance (Patel, 2018; Kim & Mémoli, 2021) on the space
of persistence modules.
Definition B.1. Given two persistence modules M and N ,
a morphism f : M → N is a collection of linear maps
{fu : Mu → Nu}u∈R2 such that fu ◦Nu→v = Mu→v ◦
fv,∀u ≤ v.
Definition B.2. Given a persistence module M and ϵ ∈ R,
we define the shift module M←ϵ through M←ϵ

u = Mu+ϵ

and M←ϵ
u→v =Mu+ϵ→v+ϵ. Here u+ ϵ = (u1 + ϵ,u2 + ϵ).

Definition B.3. For a pair of persistence module M and
N and some ϵ ∈ R≥0, an ϵ-interleaving between M and
N is a pair of morphisms ϕ : M → N←ϵ and ψ : N →
M←ϵ such that ∀u ∈ R2,Mu→u+2ϵ = ψu+ϵ ◦ ϕu and
Nu→u+2ϵ = ϕu+ϵ ◦ ψu. If such interleaving exists, we say
M and N are ϵ-interleaved.
Definition B.4. For two persistence modules M and
N , we define the interleaving distance as dI(M,N) ≜
infϵ≥0{M and N are ϵ-interleaved}.
Definition B.5. For persistence module M,N with GRILs
λM , λN , define

dL(M,N) ≜ ||λM − λN ||∞.

Definition B.6. Given any interval I and ε ≥ 0, let I+ε be
the ε-extension of I defined as:

I+ε ≜
⋃
p∈I

p
ε

(4)
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where p
ε
≜ {q : ||p − q||∞ ≤ ε} is the ∞-norm ε-

neighbourhood of x.

Based on generalized rank invariants over all intervals in
R2, one can define erosion distance as follows:

Definition B.7. Let Int(R2) be the collection of all inter-
vals in R2. Let M and N be two persistence modules. The
erosion distance is defined as

dE(M,N) ≜ inf
ε≥0
{∀I ∈ Int(R2),

rkM (I) ≥ rkN (I+ε) and rkN (I) ≥ rkM (I+ε)}.

In order to better analyze the stability property of persis-
tence landscape, we define a distance in a similar flavour as
erosion distance for the underlying collection of all worms.

Definition B.8. ForW ≜
{

p
ℓ

δ
| δ > 0, l ∈ N+,p ∈ R2

}
,

define a distance dWE as follows:

dWE (M,N) ≜

inf
ε≥0
{∀ p

ℓ

δ
∈ W,[rkM

(
p

ℓ

δ

)
≥ rkN

(
p

ℓ

ε+δ

)
and

rkN
(
p

l

δ

)
≥ rkM

(
p

ℓ

ε+δ

)
]}.

Proposition B.9. dL = dWE ≤ dE .

Proof. dWE ≤ dE is obvious by definition.

To show dL ≤ dWE . Given two persistence modules M,N ,
assume dIE (M,N) = ϵ. For fixed p, k, ℓ, let λM (p, k, ℓ) =
δ1 and λN (p, k, ℓ) = δ2. Without loss of generality, assume
δ2 ≥ δ1. We want to show that δ2 − δ1 ≤ ϵ. By the
construction of dWE , we know that for any α > 0, k >

rkN ( p
ℓ

δ1+α
(x)) ≥ rkM ( p

ℓ

δ1+ϵ+α
(x)). One can get δ1 +

ϵ + α > δ2 =⇒ ϵ + α > δ2 − δ1. By taking α → 0, we
have δ2 − δ1 ≤ ϵ.

To show dWE ≤ dL. Let dL(M,N) = δ. For any I =

p
ℓ

ϵ
∈ I, we want to show that rkM ( p

ℓ

ϵ
) ≥ rkN ( p

ℓ

ϵ+δ
)

and rkN ( p
ℓ

ϵ
) ≥ rkM ( p

ℓ

ϵ+δ
). We prove the first inequal-

ity. The second one can be proved in a similar way. Let
k = rkN ( p

ℓ

ϵ+δ
), then λN (p, k, ℓ) ≥ ϵ+δ. By the assump-

tion dL(M,N) = δ, we know that λN (p, k, ℓ) ≥ ϵ, which
implies rkM ( p

ℓ

ϵ
) ≥ k = rkN ( p

ℓ

ϵ+δ
).

Proposition 3.3. GRIL is equivalent to the generalized rank
invariant on W . Here equivalence means bijective recon-
struction from each other.
Proof. Constructing GRIL from generalized rank invariant
onW is immediate from the definition of GRIL.

On the other direction, for any p, δ, ℓ, the generalized rank
rkMW( p

ℓ

δ
) can be reconstructed by GRIL as follows:

rkMW( p
ℓ

δ
) = argmax

k
{λ(p, k, ℓ) ≥ δ} (5)

It is not hard to check that, this construction, combined with
the construction of persistence landscape, gives a bijective
mapping between (generalized) rank invariants overW and
GRILs.

By the stability property of erosion distances, we can imme-
diately get the stability of GRIL as follows:
Proposition 3.4. For two filtration functions f, f ′ : X → R2,
||λMf − λMf′ ||∞ ≤ ||f − f ′||∞.
Proof. LetMf andMf ′ be the persistence modules derived
by f and f ′ respectively. Then, we have the following chain
of inequalities:

∥λM
f

− λM
f′

∥∞ =dL(M
f ,Mf ′)

≤dE(Mf ,Mf ′)

≤dI(Mf ,Mf ′)

≤∥f − f ′∥∞

where dI(M
f ,Mf ′) is the interleaving distance. The sec-

ond last inequality has been shown in (Kim & Mémoli,
2021).

Recall that when X is a finite space (e.g. finite simplicial
complex, point cloud) then, any f : X → R2 can be con-
sidered as an n × 2 matrix which can be linearized into a
vector in R2n. Let us denote that vector by vf .

C. Experimental Setup
C.1. Hourglass Dataset

The two traversals T1 and T2 are designed as follows: T1 tra-
verses G1, then followed by G2; T2 traverses upper halves
G⊤1 ⊆ G1 and G⊤2 ⊆ G2 sequentially first, then followed
by the other halves G⊥1 ⊆ G1 and G⊥2 ⊆ G2. For cross
edges, we randomly pick 2|V | pairs of nodes (with replace-
ment) in G⊤1 × G⊥2 on which we place cross edges. We
don’t place multiple edges on the same pair of nodes. In a
similar way we place cross edges on G⊥1 ×G⊤2 . Therefore,
G has roughly 6|V | cross edges between G1 and G2. The
(roughly) total number of edges: |E| ≈ 5|V |. For methods
based on persistence modules, we take two filtration func-
tions f1, f2 : V ∪ E → R on G as follows: let x(v) be the
node attribute on v given by the order index of the trace.
Then

• f1 is given by ∀v ∈ V, f1(v) = x(v) and ∀e =
(v, w) ∈ E, f1(e) = max(x(v), x(w)).
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• f2 is given by f2(v) = 0 and f2 = C(e) where C(e)
is a curvature value of e. Here we use a version of
discrete Ricci called Forman-Ricci curvature (Forman,
2003) computed by the code provided in (Ni et al.,
2019).

We compute for all points p in a uniform 4 × 4 grid the
GRIL values λ(p, k, ℓ) for generalized rank k = 1, 2, worm
size ℓ = 2, and homology of dimension 0 and 1. Therefore,
for each graph our Λk,ℓ

p generates a 64-dimensional vector
as representation. For the method based on 1-parameter
persistence modules with persistence image vectorization,
we compute 1-parameter persistence modules for homology
dimension 0, 1 on f1 and f2 independently. Each persistence
module will be vectorized on a 4× 4 grid. Therefore, it also
produces a 64-dimensional vector as representation.

C.2. Graph Experiments

We performed a series of experiments on graph classifi-
cation using GRIL. We used standard datasets with node
features such as PROTEINS, DHFR, COX2, MUTAG and
IMDB-BINARY (Morris et al., 2020). Description of the
graph classification tasks is given in Table 5.

Dataset Num Graphs Num Classes Avg. No. Nodes Avg. No. Edges

PROTEINS 1113 2 39.06 72.82
COX2 467 2 41.22 43.45
DHFR 756 2 42.43 44.54

MUTAG 188 2 17.93 19.79
IMDB-BINARY 1000 2 19.77 96.33

Table 5: Description of Graph Datasets

The Heat Kernel Signature-Ricci Curvature bi-filtration, as
done in (Carrière & Blumberg, 2020), values are normal-
ized so that they lie between 0 and 1. For the experiments
reported in Section 5, we fix the grid resolution ρ = 0.01.
Thus, the square [0, 1] × [0, 1] has 100 × 100 many grid
points. We sample a uniform subgrid of center points, p, out
of these grid points. We fix l = 2 for our experiments. We
compute λ(p, k, ℓ) where p varies over the sampled center
points and k varies from 1 to 5. Each such computation
is done for dimension 0 homology (H0) and dimension 1
homology (H1). We use XGBoost (Chen & Guestrin, 2016)
classifier for these experiments.

Ablation Studies. We have performed experiments with
different subgrid sizes and the results are reported in Table 6.
The reported accuracies are averaged over 5 train/test splits
of the datasets obtained with 5 stratified folds. We can see
from the table that for different datasets, different subgrid
sizes give the best results. This can be attributed to the fact
that for some datasets, topological information needs to be
captured at a finer level while for other datasets, capturing
such finer details can be redundant.

Grid Size 50× 50 25× 25 10× 10 5× 5

PROTEINS 70.8± 2.7 70.2± 1.8 69.8± 2.4 68.5± 2.6
DHFR 77.6± 2.5 77.2± 3.4 77.5± 3.5 77.5± 3.5
COX2 79.8± 3.0 78.9± 2.4 79.8± 2.9 78.9± 3.5

MUTAG 87.3± 3.8 87.8± 4.2 87.8± 4.5 86.8± 3.3
IMDB-BINARY 62.2± 4.3 65.2± 2.6 62.2± 2.3 63.5± 3.2

Table 6: Test accuracies of GRIL on subgrids of different
sizes.

We report the computation times of GRIL for these datasets
in Table 7. The values denote the total computation time
for all the center points on a 50× 50 subgrid for a 2-worm.
The computations were done on a Intel(R) Xeon(R) Gold
6248R CPU machine and the computation was carried out
on 32 cores.

Dataset Computation time

PROTEINS 6 hr 13 min 38 s
DHFR 4 hr 15 min 54 s
COX2 2 hr 44 min 23 s

MUTAG 0 hr 56 min 48 s
IMDB-BINARY 4 hr 03 min 35 s

Table 7: Computation times for GRIL for each dataset with
a 2-worm and 50× 50 subgrid.

In Table 8, we show the performance of GRIL with different
grid resolutions (ρ) and ℓ-worms. For these experiments, we
used a 50× 50 subgrid for the center points. The reported
accuracies are averaged over 5 train/test splits of the datasets
obtained with 5 stratified folds. We test it on MUTAG and
COX2 and we can see that for ρ = 0.01, we get the highest
accuracy of the model on both the datasets. We can see
from the table that there is an improvement in accuracy
from ℓ = 1 to ℓ = 2. However, there is no significant
improvement from ℓ = 2 to ℓ = 3.

In Table 9, we report the performance of GRIL on graph
benchmark datasets with different classifiers such as Support
Vector Machine (SVM) (Cortes & Vapnik, 1995; Chang &
Lin, 2011), Logistic Regression (LR) (Fan et al., 2008),
Multilayer Perceptron (3-MLP) implemented using scikit-
learn (Buitinck et al., 2013) library. The reported accuracies
are averaged over 5 train/test splits of the datasets obtained
with 5 stratified folds.

D. Algorithm
Here, we describe the algorithm in detail. In practice, we
are usually presented with a piecewise linear (PL) approxi-
mation f̂ of a R2-valued function f on a discretized domain
such as a finite simplicial complex. The PL-approximation
f̂ itself is R2-valued. Discretizing the parameter space R2
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Dataset ρ = 0.02 ρ = 0.01 ρ = 0.005 ℓ = 1 ℓ = 2 ℓ = 3

MUTAG 86.3 ± 4.2 87.8 ± 4.5 85.2 ± 3.9 85.7 ± 4.2 87.8 ± 4.5 87.8 ± 3.9
COX2 78.2 ± 1.7 79.8 ± 2.9 77.8 ± 1.4 79.3 ± 2.9 79.8 ± 2.9 78.9 ± 3.5

Table 8: Test accuracy for different grid resolutions and for ℓ-worms with different values of ℓ.

Dataset SVM LR XGBoost 3-MLP

PROTEINS 73.3± 1.5 72.7± 2.6 70.9± 3.1 71.3± 2.1
DHFR 61.7± 0.4 77.8± 1.9 77.6± 2.5 72.3± 4.3
COX2 77.2± 0.8 78.5± 2.5 79.8± 2.9 77.0± 1.2

MUTAG 80.0± 3.9 86.3± 3.8 87.8± 4.2 76.8± 9.1
IMDB-BINARY 65.1± 3.6 63.2± 2.1 65.2± 2.6 61.2± 6.6

Table 9: Test accuracies of GRIL using different classifiers.

by a grid, we consider a lower star bi-filtration of the sim-
plicial complex. Analogous to the 1-parameter case, a lower
star bi-filtration is obtained by assigning every simplex the
maximum of the values over all of its vertices in each of
the two co-ordinates. With appropriate scaling, these (finite)
values can be mapped to a subset of points in a uniform
finite grid over [0, 1] × [0, 1]. Observe that because of the
maximization of values over all vertices, we have the prop-
erty that two simplices σ ⊆ τ have values f̂(σ) ∈ R2 and
f̂(τ) ∈ R2 where f̂(σ) ≤ f̂(τ). A partial order of the sim-
plices according to these values provide a bi-filtration over
the grid [0, 1]× [0, 1].

Computing generalized ranks. We need to compute

the generalized rank rkM ( p̂
ℓ

d
) for every worm p̂

ℓ

d
to

decide whether to increase its width or not. We use a
result of (Dey et al., 2022) to compute rkM ( p̂

ℓ

d
). It says

that rkM ( p̂
ℓ

d
) can be computed by considering a zigzag

module and computing the number of full bars (bars that
begin at the start of the zigzag filtration and persist until
the end of the filtration) in its decomposition. This zigzag
module decomposition can be obtained by restricting

the bi-filtration on the boundary of rkM ( p̂
ℓ

d
) and using

any of the zigzag persistence algorithms on the resulting
zigzag filtration. We use the recently published efficient
algorithm and its associated software (Dey & Hou, 2022)
for computing zigzag persistence.

Computing the value of GRIL using binary search. For

a worm p̂
ℓ

d
and a given k ≥ 1, we apply binary search to

compute the value of GRIL. Let us denote the grid resolution
by ρ. We do the binary search for d in the range [dmin, dmax]
where dmin = ρ and dmax = 1. In each iteration, we

compute rkM ( p̂
ℓ

d
) for d = (dmin + dmax)/2 and check

if rkM ( p̂
ℓ

d
) ≥ k. We increase the width of the worm by

updating dmin to be d+ ρ if rkM ( p̂
ℓ

d
) ≥ k. Otherwise, we

decrease the width of the worm by updating dmax to be d−ρ.
The binary search stops and returns d when dmax < dmin.
This ensures that we have searched through all possible

values of d for which rkM ( p̂
ℓ

d
) ≥ k and returned the

maximum of these values.

d
p

1
3

6 7

8 9

10
11

4
5 p

2

Figure 7: (Left) The figure shows the 2-worm centered at
p with width d. (Right) The highlighted part denotes the
boundary cap of the worm. The arrows in the figure denote
the direction of arrows in the zigzag filtration.

Refer to Figure 7 for an illustration of the zigzag filtration
along the boundary cap of a 2-worm.

E. More Discussion on Differentiability
Recall that the function function Λk,ℓ

p : R2n → R is given
by Λk,ℓ

p (f) = λM
f

(k, ℓ,p). The differentiability of Λk,ℓ
p

in Corollary 3.6 refers to the existence of all directional
derivatives. But the existence of a steepest direction as the
"gradient" of Λk,ℓ

p might not be unique. Here we propose
an algorithm to efficiently compute one specific steepest
direction based on the following theorem.

Theorem E.1. Consider the space of all filtration func-
tions {f : X → R2} on a finite space X with |X | = n,
which is equivalent to R2n. For fixed k, ℓ,p, there ex-
ists a measure-zero subset Z ⊆ R2n such that for any
f ∈ R2n \ Z satisfying the following generic condition:
∀x ̸= y ∈ X , f(x)1 ̸= f(y)1, f(x)2 ̸= f(y)2, there exists
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an assignment s : X → {±1, 0,±ℓ}2 such that

∇sΛ
k,ℓ
p (f) ≜ lim

α→0

Λk,ℓ
p (f + αs)− Λk,ℓ

p (f)

α∥s∥∞
=max

g∈X
∇gΛ

k,ℓ
p (f).

Proof. By Corollary 3.6 we know there exists some
measure-zero setR ⊂ R2n such that Λk,ℓ

p is differentiable in
R̄ ≜ R2n \R. Let M =Mf be a 2-parameter persistence
module induced from some generic filtration function f ∈ R̄
and I = p

ℓ

d
be an ℓ-worm in R2 centered at some point p.

Let ∂(I) be the boundary of I excluding the right most ver-
tical edge and bottom most horizontal edge (See Figure 8 as
an illustration). It is shown in (Dey et al., 2022) that, over the
boundary ∂(I), a zigzag persistence module can be defined
by restricting M to ∂(I) (in practice it is enough to take a
zigzag path to approximate the smooth off-diagonal bound-
ary) on which the number of full bars is equal to rkM (I). Let
I ′ = p

ℓ

d′
be another ℓ-worm centered at p for some d′ ̸= d.

One can observe that, if the zigzag filtrations on ∂(I) and
∂(I ′) have the same order of insertion and deletion of sim-
plices , then the number of full bars on M |∂(I) and M |∂(I′)
are the same, which means rkM (I) = rkM (I ′). Now let
d = λM (k, ℓ,p), I = p

ℓ

d
, I− = p

ℓ

d−ε
, I+ = p

ℓ

d+ε
for

some small enough ε. Based on the definition of λM , we
know that rkM (I−) ≥ k and rkM (I+) < k, which means
that zigzag filtrations change on some simplices while mov-
ing from ∂(I−) to ∂(I+). Either the collection of simplices
changes or the order of simplices changes. The former case
corresponds to the simplices with x or y-coordinate aligned
with some vertical or horizontal edges on ∂(I). The latter
case corresponds to those pairs of simplices (σ, τ) such that
f(σ) ∨ f(τ) ≜ (max(f(σ)1, f(τ)1),max(f(σ)2, f(τ)2)
is on some off-diagonal edges on ∂(I). By the generic
condition of the filtration function f , we can locate those
simplices as the set S, which we call support simplices. The
assignment function s is defined on each σ ∈ S by assign-
ing s(σ) = ±1 or ±ℓ which is consistent with the moving
direction of the edge from ∂(I) to ∂(I+). We discuss the
assignment values case by case:

We can divide the boundary into four edges: bottom (off-
diagonal) edge eb, top (horizontal) edge et, left (vertical)
edge el, right (off-diagonal) edge er.

1. s(σ) = (0,+ℓ) if σ has y-coordinate the same as et,

2. s(σ) = (−ℓ, 0) if σ has x-coordinate the same as el,

3. s(σ) = (0,−1), s(τ) = (−1, 0) if f(σ) ∨ f(τ) is on
eb and f(σ)1 ≤ f(τ)1,

4. s(σ) = (0,+1), s(τ) = (+1, 0) if f(σ) ∨ f(τ) is on
er and f(σ)1 ≤ f(τ)1,

See Figure 8 as an illustration. We assume f satisfies the
condition that the supporting simplices in S either all belong
to cases 1 and 2 or all belong to cases 3 and 4, but not a
combination of them. It is not hard to see that the collection
of f for which this condition does not hold is a measure
zero set in R2n. Let us denote the collection of all such f ’s
by F . Then, Z = F ∪R is a measure zero set in R2n which
consists of f ’s which do not satisfy the condition and those
points where Λk,ℓ

p is not differentiable.

Now, check for such a generic f /∈ Z so that the di-
rectional derivative ∇sλ(f) is indeed a maximal direc-
tional derivative. For the cases 3 and 4, the stability prop-
erty in Proposition 3.4 implies that, for any α > 0 and
any direction vector g ∈ R2n with ∥g∥∞ = 1, we have
λ(f + αg) − λ(f) ≤ α. Also it is not hard to check
that λ(f + αs) − λ(f) = α for α > 0 small enough
since the zigzag persistence of Mf+αs|J with J = p

ℓ

d+α

has the same collection of simplices and orders as Mf |I
with I = p

ℓ

d
, which means they have the same rank.

Therefore, we have ∀∥g∥∞ = 1, λ(f + αg) − λ(f) ≤
λ(f + αs) − λ(f) =⇒ ∇gΛ(f) ≤ ∇sΛ(f). For the
case 1 (the case 2 is similar), the support simplex is on
edge et. Now for any direction vector g ∈ R2n and α > 0
small enough, let ∆d = Λ(f +αg)−Λ(f) and let ∆yet be
the difference between y-coordinates of et’s from p

ℓ

d
and

p
ℓ

d+∆d
. Note that ∆d

∆yet
= ℓ and |Λ(f+αg)−Λ(f)|

α∥g∥∞ ≤ ∆d
∆yet

since in order to change Λ(f) by ∆d one has to at least
move edge et by ∆yet , which correspondingly changes the
y-coordinate of s(σ) by ∆yet . From the above argument,
we can get the directional derivative ∇gΛ(f) is bounded
from above by the ratio ∆d

∆yet
= 1

ℓ = ∇sΛ(f). The case for
α < 0 is symmetric.

In summary, ∇sλ(f) indeed maximizes the directional
derivative for f .

The proof of Theorem E.1 also shows how to find the assign-
ment s with the corresponding set of supporting simplices.
This result enables us to update the filtration function of
the simplices according to some target function based on
Λk,ℓ
p . Here we introduce an experiment, as a proof of con-

cept, to show how one can use GRIL as a machine learning
model to enhance topological features. By giving a suit-
able target function, our model is trained to rearrange the
positions of input points to better represent circles. The
experiment results is shown in Figure 9. The input to Λk,ℓ

p

is points sampled non-uniformly from two circles. Recall
that GRIL is defined over a 2-parameter persistence module
induced by some filtration function f = (fx, fy). For ev-
ery vertex v, we assign fx(v) = 1− exp( 1

α

∑α
i=1 d(v, vi)),

where vi denotes i-th nearest neighbor of the vertex v and
d(v, vi) denotes the distance between v and vi. For our
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∂(I ′)

σ1

p

∂(I)

σ2

σ4

σ3

ℓ = 2

s(σ1) = (0, 2)

s(σ1) = (0, 2)

s(σ2) = (−2, 0)

eb

el

et

er

s(σ3) = (0,−1)

s(σ4) = (−1, 0)

Figure 8: Two examples of 2-worm I, I ′. Blue and red lines
are boundaries of I and I ′ respectively on which the zigzag
persistence modules are constructed for computing ranks.
σi, i = 1, 2, 3, 4 are four support simplices on ∂(I). s(σi)
is the assignment function values on σi.

experiments we fix α = 5. We set fy(v) = 0. We com-
pute ALPHACOMPLEX filtration (Edelsbrunner & Harer,
2010) of the points and for each edge e := (u, v) we assign
fx(e) = max(fx(u), fx(v)) and fy(e) = 1− exp(d(u, v)).
To obtain a valid bi-filtration function on the simplicial com-
plex we extend the bi-filtration function from 1-simplices
to 2-simplices, i.e. triangles. We pass f as an input to Λk,ℓ

p ,
coded with the framework PYTORCH (Paszke et al., 2019),
that computes persistence landscapes. Λk,ℓ

p uniformly sam-
ples n center points from the grid [0, 1]2. Since GRIL value
computation can be done independently for each k and a
center point, we take advantage of parallel computation and
implement the code in a parallel manner. In the forward pass
we get GRIL values λ(p, k, ℓ) for generalized rank k = 1, 2,
worm size ℓ = 2 and homology of dimension 1 while vary-
ing p over all the sampled center points. After we get the
GRIL values, we compute the assignment s according to
Theorem E.1. During the backward pass, we utilize this
assignment to compute the derivative of Λk,ℓ

p with respect
to the filtration function and consequently update it. We get
n values of λ(·, 1, 2) for n center points. We treat these n
values as a vector and denote is as λ1. Similarly, we use
λ2 to denote the vector formed by values λ(·, 2, 2). We
minimize the loss L = −(∥λ1∥22 + ∥λ2∥22). Figure 9 shows
the result after running Λk,ℓ

p for 200 epochs. The optimizer
we use to optimize the loss function is Adam (Kingma &
Ba, 2015) with a learning rate of 0.01.

F. Visualization of GRIL for graph datasets
The plot for first 5 GRIL values are shown in Figure 10.
The figure contains landscape values for 5 random graph
samples of each dataset. In Figure 11, we plot the first two
eigen vectors given by principal component analysis (PCA)
of the computed GRIL values for each dataset. Plots for H0

and H1 are shown separately.
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Figure 9: The figures show the rearrangement of points according to the loss function, which in our case is increasing
the norm of λ1 and λ2 vectors. We start with two circles containing some noisy points inside. We observe that the points
rearrange to form two circles because that increases the norm of λ1 and λ2 vectors.

Figure 10: GRIL of 5 random graph samples of each dataset.
GRIL values of H0 and H1 are shown separately column-
wise.

Figure 11: Plot of the first two eigen vectors given by PCA
on the entire dataset for H0 and H1 respectively.
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