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Abstract

Deep learning models have demonstrated remarkable capabilities in learning complex
patterns and concepts from training data. However, recent findings indicate that these
models tend to rely heavily on simple and easily discernible features present in the back-
ground of images, rather than the main concepts or objects they are intended to classify.
This phenomenon poses a challenge to image classifiers as the crucial elements of interest
in images may be overshadowed. In this paper, we propose a novel approach to address
this issue and improve the learning of main concepts by image classifiers. Our central idea
revolves around concurrently guiding the model’s attention toward the foreground during
the classification task. By emphasizing the foreground, which encapsulates the primary ob-
jects of interest, we aim to shift the focus of the model away from the dominant influence
of the background. To accomplish this, we introduce a mechanism that encourages the
model to allocate sufficient attention to the foreground. We investigate various strategies,
including modifying the loss function or incorporating additional architectural components,
to enable the classifier to effectively capture the primary concept within an image. Ad-
ditionally, we explore the impact of different foreground attention mechanisms on model
performance and provide insights into their effectiveness. Through extensive experimen-
tation on benchmark datasets, we demonstrate the efficacy of our proposed approach in
improving the classification accuracy of image classifiers. Our findings highlight the impor-
tance of foreground attention in enhancing model understanding and representation of the
main concepts within images. The results of this study contribute to advancing the field of
image classification and provide valuable insights for developing more robust and accurate
deep-learning models.

Keywords: Deep learning; image classification; foreground attention; concept learning;
model enhancement.

1. Introduction

Deep neural networks (DNNs) have gained widespread adoption in various computer vision
tasks due to their superior performance and remarkable capabilities in learning complex
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Figure 1: Our approach demonstrates enhanced robustness of the Grad-CAM explanation
and reduced attention to background regions, resulting in more accurate and
focused explanations.

patterns and concepts from training data. Nevertheless, recent studies have revealed that
DNNs generally learn the most uncomplicated features, like biases, and do not concentrate
well on the main key objects of input image Mehmanchi et al. (2023); Singh et al. (2020).
Additionally, most of the computer vision classification tasks experienced similar issues,
where the models were biased towards the non-central objects or the background of the
primary object in the input sample. Moayeri et al. (2022) has discovered that highly precise
models can be greatly affected by background noise, more so than foreground noise. This
indicates that in complex scenarios, deep learning models unexpectedly depend on non-
central objects or features in the background rather than accurately identifying the primary
key objects that were programmed to be classified. This poses a significant challenge to the
reliability of DNNs.

In general, the interpretability of DNNs has thus emerged as an important research area,
with the purpose of enhancing transparency and applicability of DNNs. This makes it pos-
sible to provide trustfully and helps identify any spurious correlations the network may have
inadvertently learned to use to make its decision Singh et al. (2020). The use of Explainable
Artificial Intelligence (XAI) approaches can be considered valuable for interpreting DNNs
and pointing out biases. It is unfortunate that methods like Grad-CAM Selvaraju et al.
(2017), have proven to be unreliable. For instance, when a cat image and its rotated version
are given to the classifier; it recognizes them as a cat, but their explainability results from
Grad-CAM differ. Pillai et al. (2022) raises this concern and proposes a training method
inspired by contrastive self-supervised learning to address this issue.

To address challenges and prevent bias toward the background in image classification,
We propose aligning the Grad-CAM interpretations mechanism with the main objects of
interest. Inspired by self-supervised learning, our method uses a novel loss function to align
the attention area of the model with the main object. This approach aims to enhance trust-
worthiness, reduce sensitivity to background noise, and improve the model’s interpretability
in complex computer vision tasks.
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We evaluated our proposed Region of Interest Activation (RIA) method to assess its
impact on classification accuracy and the sensitivity of the model to the foreground and
background attributes. Our method aims to guide the model in prioritizing the most dis-
criminative features of the input image, thereby enhancing accuracy and reliability in fine-
grained classification scenarios.

Figure 1 illustrates some examples which demonstrate that the RIA method significantly
improves the interpretation of the model in primary objects of corresponding input images,
as identified by an object detector. Furthermore, we observed that our method enhances
classification accuracy in fine-grained settings and when faced with foreground and back-
ground noise. The evaluation highlights the effectiveness of our RIA method in improving
the accuracy and reliability of deep learning models for image classification tasks. By di-
recting models to focus on relevant features and reducing sensitivity to irrelevant attributes,
our method has the potential to enhance performance across various applications reliant on
image classification.

Our main contributions are summarized as follows:

1. Our study highlights the significance of how models can be biased towards objects or
features in the background, which can impact the model’s explanations and lead to
inaccurate decisions.

2. We propose a novel approach that promotes the model’s focus on the primary object
of the image by utilizing the proximity between the model’s attention area and the
detected area of an object.

3. We have adapted the basic IoU loss to account for the anticipated inaccuracies in
estimating the area of an object by an object detector.

4. Our approach not only enhances the accuracy of the model but also significantly
improves its reliability and additionally would be more robust under the foreground
and background noises.

2. Related Works

2.1. Interpretability Methods

Interpretability methods for deep neural networks have been extensively studied in recent
years, driven by the widespread adoption of these models across various tasks. Ribeiro et al.
(2016) have highlighted that machine learning models often capture undesirable correlation
artifacts during training, which can be challenging to identify solely by relying on predic-
tion accuracy. In order to address this issue, several methods have been proposed to detect
salient regions in images. Zeiler and Fergus (2014) introduced an approach that leveraged
gradients of the class conditional output with respect to the input image. By identifying
spatial locations with large gradient magnitudes, a saliency map corresponding to the class
could be obtained. Building upon this work, Springenberg et al. (2014) and Sundararajan
et al. (2017) further enhanced the quality of saliency maps, resulting in sharper visualiza-
tions. Ross et al. (2017) showed that constraining the gradient explanations to be small
in irrelevant areas using an annotation mask improved the quality of these explanations,
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albeit with additional computational costs. Class Activation Mapping (CAM) was intro-
duced by Zhou et al. (2016) to produce a coarse localization heatmap by utilizing a global
average pooling (GAP) layer to calculate the gradients flowing into the final convolution
layer. Gradient-weighted Class Activation Mapping (Grad-CAM), proposed by Selvaraju
et al. (2017), extends the concept of CAM by utilizing gradients flowing into the final con-
volutional layer for a specific class. This approach generates a coarse localization map that
highlights the important regions in the image for predicting the corresponding class.

Our proposed method is also based on Grad-CAM heatmaps. However, we introduce a
novel approach by using Grad-CAM during the training process. This allows us to guide
the generation of heatmaps, resulting in improved explanations that align more accurately
with the known regions describing the desired features.

2.2. Explanation-guided learning

In recent studies, researchers have explored the integration of explanations during model
training to enhance predictive performance. Rieger et al. (2020) aims to align explana-
tions with human annotations based on domain knowledge. This strategy helps reduce the
model’s reliance on background pixels. However, obtaining ground truth explanations can
be labor-intensive Wang et al. (2020) or even unfeasible due to subjectivity in real-world
tasks Roscher et al. (2020). Pham et al. (2021) employed segmentation masks to direct at-
tention maps towards important regions of images for attribute prediction tasks. Selvaraju
et al. (2021) utilized saliency maps generated with DeepUSPS Nguyen et al. (2019) during
training to guide attention maps, aiming to enhance self-supervised representation learning.
Similarly, Pillai et al. (2022) focused on maintaining consistent explanations to facilitate
generic representation learning through the use of contrastive objectives. The goal of such
approaches is not only to improve performance but also to make sure that the model is
“right for the right reasons” Ross et al. (2017). For classifiers, this typically involves jointly
optimizing both classification performance and localization to object features.

In this work, we present a novel loss function that guides DNNs toward accurate object
localization and enhances their robustness by reducing reliance on spurious features and
background information.

3. Proposed Method

The main goal of our approach is to ensure fairness and reduce biases in image classification
while maintaining the consistent interpretability of the model. To achieve this, we propose
the Region of Interest Activation Loss (RIA), which encourages the model to classify images
accurately and focus on the main concept or object within the images. Our proposed method
consists of two key components: (1) Categorical Cross-Entropy Loss (LCE), and (2) RIA:
Region of Interest Activation Loss (RIA). These components work together to enhance
the network’s ability to attend to both foreground and background objects. To begin the
learning process, we start with the LCE loss function, which is a standard approach for
classification tasks. This loss function guides the network to minimize the discrepancy
between predicted and ground truth labels. However, to ensure that the model attends
to the foreground objects as well as the background, we introduce the RIA loss function.
This loss function leverages the concept of Grad-CAM (Gradient-weighted Class Activation
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Figure 2: The block diagram of our method. Our method consists of both cross-
entropy loss LCE and Region of Interest Activation loss LRIA which represents
a modified IoU loss. We load a batch of images and consider one to be the
query image. We feed the query image to the network and calculate LCE . We
calculate Grad-CAM for this image on the top predicted category and obtain a
bounding box from the Grad-CAM heatmap. We feed the query image to the
object detector network and get a predicted bounding box. We then compute the
loss between these two boxes LRIA and combine it with LCE loss.

Mapping) and aims to maximize the intersection over the union of the foreground object
and the Grad-CAM during training. By incorporating RIA, we encourage the network
to focus on relevant regions of interest and improve its ability to distinguish foreground
and background objects. To combine these losses effectively, we define a new objective
function and learning scenario. This combined objective function encompasses both the
LCE loss and the RIA loss, allowing the model to optimize for classification accuracy while
also attending to important regions in the input data. The learning scenario incorporates
these losses throughout the training process, enabling the model to learn the necessary
representations. It is worth mentioning that, we exploited an unsupervised and low-cost
object detector.

Figure 2 illustrates the block diagram of our method. This section provides a brief
overview of the Grad-CAM interpretation algorithm and the object detection algorithm.
We then delve into the details of the Region of Interest Activation Loss term.

3.1. Background on Grad-CAM

Grad-CAM uses the gradient information flowing into the last convolutional layer of the
CNN to assign importance values to each neuron for a particular decision of interest. Sel-
varaju et al. (2017) To apply Grad-CAM to an input image x and a deep neural network f ,



Ahmadi* Rajabi* Khalooei Sabokrou

we start by obtaining the output logits y for each category by feeding x to the model, where
yt corresponds to the output for category t, and feeding y through a SoftMax operator pro-
duces the probability distribution over categories. We then select last convolutional layer
of the network and compute the derivative of the predicted output with respect to each
channel of the convolutional layer, averaged over all spatial locations to get the importance
of each channel of the convolutional layer in making the current prediction:

αt
k =

1

Z

∑
i

∑
j

∂yt

∂Ak
ij

(1)

where Ak
ij is the activations of the convolutional layer at channel k and location (i, j), Z is

a normalizer, and αt
k is the importance weights of channel k. Then, we perform a weighted

combination of forward activation maps for each channel to get a 2D matrix over spatial
locations, and follow it by a ReLU to discard negative values.

gradcamt
ij = Relu(
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k
ij) (2)

Finally, we resize it using bilinear interpolation to the size of the input image to get the
interpretation heatmap.

3.2. Obtaining Bounding Box from heatmap

To obtain a bounding box (Bgc) from the heatmap generated by Grad-CAM (G), we apply
threshold segmentation (T ) on G as output of Grad-CAM to create Grad-CAM binary
mask (GBM), where regions of interest are identified based on intensity values above the
threshold.

GBM(x, y) =

{
1, if G(x, y) > T

0, otherwise
(3)

Then, we have employed connected component analysis to identify individual connected
regions within the binary mask. Each connected region corresponds to a potential object.
For each connected component, we calculate the bounding box by determining the minimum
and maximum coordinates in both the horizontal and vertical directions. These coordinates
specify the rectangular region that tightly encapsulates the object of interest. By following
these steps, we can effectively extract the bounding box associated with the highest score
in the heatmap. This bounding box allows us to precisely locate and highlight the region
in the input image that played a crucial role in the neural network’s classification decision.

3.3. Unsupervised Object Detector

To obtain the target bounding boxes, we use LOST (i.e., Localizing Objects with Self-
Supervised Transformers) Siméoni et al. (2021) which can unsupervisedly detect the objects.
The LOST method utilizes self-supervised learning techniques, specifically self-supervised
transformers, to train a model to discover and localize objects within an image. By localizing
objects in image collections without supervision, we can improve the model’s ability to
become object-agnostic.
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In the LOST approach, the image is divided into equal-sized patches and fed into a
transformer model. Instead of focusing on the CLS token (i.e., An additional, learned vector
called the class token), the key component of the last attention layer is used for computing
similarities between different patches. By doing so, we can localize a part of an object by
selecting the patch with the least number of similar patches, which is referred to as the
seed. The justification for this seed selection criterion is based on the empirical observation
that patches of foreground objects are less correlated than patches corresponding to the
background. Then the seed is expanded by adding other patches that are highly correlated
to it and are thus likely to be part of the same object, a process which is called seed
expansion. Finally, a binary object segmentation mask is constructed by computing the
similarities of each image patch to the selected seed patches. Then the bounding box of
an object is considered as the box that tightly encloses the largest connected component in
this mask that contains the initial seed.

3.4. RIA: Region of Interest Activation Loss

To enhance the model’s consistency and interpretability, we propose a modified Intersection
over Union (IoU) loss that bridges the gap between the object detector’s bounding box
predictions and the bounding boxes obtained from Grad-CAM.

Generally, the IoU-based loss can be defined as

IoULoss = 1− IoU +R(B,Bgt) (4)

where R(B, Bgt) is the penalty term for predicted box B and target box Bgt Zheng et al.
(2020).

IOU is a commonly used evaluation metric in computer vision and object detection
tasks. It is used to measure the similarity between two arbitrary shapes (boxes). Generally,
the IoU metric is defined as

IoU =
|B ∩Bgt|
|B ∪Bgt|

(5)

In our approach, we use the bounding box attained from Grad-CAM as the predicted
box(Bgc) and the bounding box generated by the object detector as the target box(Bod).
Our goal is to minimize the differences between the predicted and target boxes, making them
as similar as possible. However, the generated object detector boxes as the target boxes
may not be entirely accurate and flawless which is not desired. These bounding boxes may
be larger than necessary, covering not only the main object but also including some of the
background objects. Therefore, it is important to acknowledge that these bounding boxes
are not entirely error-free and may require further refinement. To address this issue, we are
considering a modification to the IoU term. Specifically, our IoU use only the box Bgc in
the denominator instead of the union of Bgc and Bod.

ˆIoU =
|Bod ∩Bgc|

|Bgc|
(6)

This term is designed to increase the size of the intersection area without increasing the
size of Bgc, thereby making the predicted bounding box equal to or smaller than the target
bounding box. Additionally, this term promotes the containment of Bgc within Bod. As a
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result, the numerator and denominator of ˆIoU are identical when the intersection between
the predicted(Bgc) and target bounding boxes(Bod) is equal to Bgc itself. We have found
that this modification adequately compensates for any inaccuracy of the object detector,
since the intersection area between the Bgc and Bod usually covers the main object. Our
model seeks to ensure that the intersection area captures the most significant part of the
main object, while excluding any irrelevant objects or background areas.

The size of the Grad-CAM box plays a crucial role in model performance. Large at-
tention regions may encompass unnecessary features, leading to inaccurate predictions. It
is important to encourage the model to focus on the most relevant regions by constraining
the size of Grad-CAM boxes. To address the issue of large attention regions and improve
model performance, we propose a penalty-based modification to the loss function. This
modification encourages the model to minimize the size of its attention region, resulting in
smaller Grad-CAM boxes that focus on the most discriminative features.

We introduce a diagonal distance penalty for the Grad-CAM box which refers to the
length of the diagonal line that spans across the box. It is calculated by measuring the
Euclidean distance between the opposite corners of the box. The diagonal distance provides
an estimate of the size and extent of the Grad-CAM box in terms of its spatial coverage.
By this penalty, our objective is to minimize the size of the predicted bounding boxes while
ensuring that they still cover the most significant part of the main object. By doing so,
we aim to mitigate the influence of irrelevant objects or background areas on the model’s
explainability and accuracy.

R(Bgc) = λ ∗ diagonal distance(Bgc) (7)

where λ is the regularization coefficient. With the modifications to the IoU loss and the
inclusion of the diagonal distance penalty term, we have now finalized our Interest Activation
loss (LRIA) as:

LRIA = 1− ˆIoU +R(Bgc) (8)

Our final loss is the combination of the standard cross-entropy loss (LCE) and our Region
of Interest Activation loss (LRIA). Hence we minimize the following loss function:

L = α ∗ LCE + β ∗ LRIA (9)

where α and β are hyper-parameters that control the trade-off between the two loss terms.

4. Experiment Results

In this section, we present the results of a series of experiments conducted using our proposed
method on variant models. The main objective of these experiments is to evaluate the
impact of our Region of Interest Activation (RIA) loss on the overall performance and
robustness of our models, particularly under the addition of background and foreground
noise. For each experiment, we conducted a comparative analysis between two models:
the baseline model, trained solely with the standard cross-entropy loss, and the consistent
model, trained with both the standard cross-entropy loss and the RIA loss. By comparing
the performance of these two models, as shown in Table 1 and 2, we can effectively assess
the effectiveness of our proposed method in improving classification accuracy and model
trustability.
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4.1. Dataset

We use RIVAL10 dataset Moayeri et al. (2022), whose samples include RIch Visual Attri-
butions with Localization. RIVAL10 consists of images from 20 categories of ImageNet-1k
Deng et al. (2009), with a total of 26k high resolution images organized into 10 classes,
matching those of CIFAR10.

4.2. Implementation Details

We use PyTorch Paszke et al. (2019) to train and evaluate our models for all experiments.
We use pretrained Resnet18 and Resnet50 models He et al. (2016) with the settings used in a
previous publication Moayeri et al. (2022). Additionally, we trained VGG16 Simonyan and
Zisserman (2014), Resnet18, and Resnet50 models from scratch. To train our models from
scratch on the RIVAL10 dataset, we use a two-step training procedure. Initially, we train
the models for 10 epochs without the RIA loss, allowing them to gain preliminary insights
into the images. Subsequently, we incorporate the RIA loss and continue training to further
refine the models using the guidance provided by the loss function. For training our models
from scratch on the RIVAL10 dataset, we use Adam optimizer with a learning rate of 0.001
for Resnets and SGD with a learning rate of 0.01 for VGG16. By hyperparameter tuning,
we set α = 1, β = 0.5, λ = 0.1, and T = 0.5 for all experiments using our method. Models
were trained on an Nvidia RTX 3090 GPU over 50 epochs.

Model Baseline Acc (%) Ours (RIA) Acc (%)

VGG16 86.6% 91.7%

ResNet50 88.46% 88.99%

ResNet18 88.51% 88.78%

Table 1: Classification Accuracy for models trained from scratch on RIVAL10 validation
set.

Model Baseline Acc (%) Ours (RIA) Acc (%)

ResNet50 88.46% 88.99%

ResNet18 98.8% 99%

Table 2: Classification Accuracy for pretrained models on RIVAL10 validation set.

4.3. Evaluating the Sensitivity to Background/Foreground

To assess the robustness of our method, we conducted a thorough analysis by adding Gaus-
sian noise to both the foreground and background regions separately. This allowed us to
evaluate how the corruption of each region affects the performance of our models. The eval-
uation of sensitivity to background and foreground in both pretrained models and models
trained from scratch, as shown in Figure 3 and 4, indicates that our method outperforms
the baseline approach in noisy conditions. The use of RIA loss enables us to mitigate bi-
ases towards the background and enhance foreground attention. Consequently, our models
exhibit a smaller decrease in classification accuracy compared to the baseline models.
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To quantify the sensitivity of a model to foregrounds relative to its sensitivity to back-
grounds, we introduce relative foreground sensitivity (RFS). Moayeri et al. (2022) Let afg
and abg denote accuracy under noise in the foreground and background, respectively. We
then define RFS as

RFS = abg − afg (10)

Figure 3: The chart on the left displays accuracy levels under foreground (left) and back-
ground (middle) noise at different levels. The models are categorized by their
architecture and training method for pretrained models, and each curve repre-
sents the average accuracy of all models in the group. On the right, the chart
shows the RFS by group.

Figure 4: The chart on the left displays accuracy levels under foreground (left) and back-
ground (middle) noise at different levels. The models are categorized by their
architecture and training for models trained from scratch, and each curve repre-
sents the average accuracy of all models in the group. On the right, the chart
shows the RFS by group.

4.4. Model Explanation

Our experiments, as shown in Figure 5, 6, 7, have shown that our proposed approach of
encouraging the model to focus on the primary object leads to a significant improvement
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Figure 5: Grad-CAM visualization results for images from RIVAL10 validation set using
VGG16 model trained from scratch

Figure 6: Grad-CAM visualization results for images from RIVAL10 validation set using
Resnet18

in the interpretability and clarity of the model’s decision-making process. By prioritizing
the primary object, the model can extract more relevant features and make informed deci-
sions, which is crucial in various computer vision applications. Moreover, our method has
demonstrated the ability to reduce bias towards subsidiary objects and concentrate on the
desired object even when it is not discernible enough for model. As a result, our approach
eliminates bias towards environmental factors, allowing the model to make accurate deci-
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Figure 7: Grad-CAM visualization results for images from RIVAL10 validation set using
Resnet50

sions regardless of the object’s location and the presence of other objects. For instance, the
model is no longer influenced by water when the object is in water, or by branches when
identifying birds, resulting in more robust and reliable explanations.

This improvement is significant as it enhances the reliability and robustness of the model,
making it more suitable for real-world scenarios where the reliability of the model is critical,
and a wrong decision can have severe consequences. Additionally, the model is trustworthy
and no longer affected by environmental factors, which ensures that it can make accurate
decisions regardless of the object’s location or the presence of other objects.

5. Conclusion

We propose Rigion of Interest Activation (RIA), a novel learning approach that improves the
interpretability of deep neural networks by encouraging the model to focus on the primary
object’s area as much as feasible. We emphasize the importance of evaluating the network
based on its quality of explanation, and not only classification accuracy. Our RIA method
significantly improves the explanation heatmaps while achieving comparable classification
accuracy on RIVAL10 dataset. Additionally, our method can enhance the robustness under
foreground and background noises while improving the explanation heatmaps and making
the model trustworthy. This demonstrates that our method acts as a regularizer that focuses
more attention on the discriminating aspects of the image.
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Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc,
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