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Abstract

We present a novel approach, Equilibrium Point Learning (EPL), for training the deep
equilibrium model (DEQ). In this method, the equilibrium point of the DEQ serves as the
learnable parameters. Notably, the DEQ parameters encapsulate the learning algorithm
itself and remain fixed. Consequently, by exploring the parameter space, we can discover
a more efficient learning algorithm without relying on conventional techniques such as
backpropagation or Q-learning. In this paper, we adopt an evolutionary approach inspired
by biological neurons to evolve the DEQ model parameters. Initially, we examine the physical
dynamics of neurons at the molecular level and translate them into a dynamical system
representation. Subsequently, we formulate a deep implicit layer that is mathematically
proven to possess an equilibrium point. The energy function of the implicit layer is
defined using a quadratic form augmented with entropy and momentum terms. Given the
resemblance between the dynamics of the deep implicit layer and the principles of physics
and chemistry, it can effectively capture the biomodel of systems biology and the neural
model of spiking neural networks (SNNs). This equivalence enables us to define the implicit
layer of the DEQ, allowing for seamless integration with existing artificial neural networks
(ANNs). Finally, we employ HyperNEAT to evolve the parameters of the dynamical system.
Through our experiments, we observe a consistent improvement in learning efficiency, with
each successive generation exhibiting a 0.2% increase in learning speed per generation.

Keywords: Deep equilibrium model, Learning Algorithm, Biomodel, HyperNEAT

1. Introduction

To describe biological neurons mathematically, there have been several academic attempts,
including spiking neural networks, computational biology, and systems biology Pfeiffer and
Pfeil (2018), Buesing et al. (2011), Bick et al. (2020). These endeavors aim to identify
the function and role of neuronal components, such as gene-protein-reaction (GPR) rules
Di Filippo et al. (2021). The ultimate goal of these efforts is to reach human intelligence and
artificial general intelligence (AGI). In the field of systems biology, biological systems are
mathematically analyzed and modeled as dynamical systems, often referred to as biomodels
Chelliah et al. (2013). These biomodels can be simulated over time using ordinary differential
equation (ODE) solvers, and well-crafted models exhibit similarities or comparable values
to experimental observations Hernjak et al. (2005). However, due to the complexity and
vastness of biological systems, many biological functions remain unexplained. In the context
of spiking neural networks (SNNs), the problem of nonlinear learning is addressed using a
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backpropagation learning method, although it has not yet been fully biologically identified
Tavanaei and Maida (2019).

From the perspective of artificial neural networks (ANNs), we hypothesized that biomodels
share similarities with DEQ models. Additionally, simulating a biomodel is akin to the
approach taken in neural ordinary differential equations (neural ODEs) Chen et al. (2018),
which involves computing through an ODE solver in the context of weight-tied feedforward
networks with infinitely many layers. However, learning in neurons through this method
occurs without the need for separate learning algorithms such as backpropagation or Q-
learning. In other words, the calculation of a deep implicit layer as an ODE solver constitutes
the entire learning process. This is a capability that has not yet been achieved in ANN
architectures. In this paper, we introduce a novel approach to learning the DEQ model,
which we refer to as Equilibrium Point Learning (EPL). In EPL, the parameters of the model
serve as the learning algorithms themselves, analogous to backpropagation in traditional
approaches. We draw parallels to the learning process in biological neurons, where the search
for optimal parameters can be seen as a favorable case. EPL encompasses elements of both
supervised and unsupervised learning, and it distinguishes between the time for behavior
determination and the time for feedback acceptance. This learning method aligns with the
principles outlined in studies on neural learning and decision-making Glimcher (2011). By
leveraging EPL, our objective is to explore the parameter space of the DEQ model and
identify the most effective learning algorithm.

Biological neurons have previously explored the parameter space using genetic algorithms,
aiming to identify dynamical systems that are conducive to achieving survival goals within
their physical environment. It is this sequence of evolutionary processes that serves as our
primary focus. In light of this, we introduce a dynamical system that can capture certain
aspects of neuronal behavior, such as the Hodgkin-Huxley (HH) model in spiking neural
networks (SNNs). Our approach centers around biological and chemical phenomena, seeking
to depict the physical system and energy dynamics from a molecular perspective within the
context of a dynamical system. By adopting this perspective, we can effectively represent
the neuron models found in systems biology. Additionally, we reinterpret the dynamical
system as a means of solving a convex optimization problem. Through this reinterpretation,
we devise a deep implicit layer that is mathematically proven to possess an equilibrium
point.

We further developed the deep implicit layer using a Neat algorithm, which is a type
of artificial neural network evolution method. Specifically, we employed the HyperNeat
algorithm, which is well-suited for dynamic systems that necessitate the creation of large-scale
networks and the repetition of network patterns.

2. Related Work

Deep Equilibrium model The DEQ model Bai et al. (2019) focuses on a weight-tied
deep implicit layer, which involves finding the equilibrium point through an infinite layer
via root finding. In contrast to conventional deep implicit layers, the DEQ model enables
analytical backpropagation through the equilibrium point using implicit differentiation. This
approach requires only a single layer of information, resulting in lower memory usage. In
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this paper, we adopt the same architecture as the DEQ model and compare our learning
methods with it.

Training of Spiking Neural Network The Spiking Neural Network (SNN) is a neural
network model that draws inspiration from the spiking behavior observed in biological
neurons during information processing. SNN encompasses various neuron models, including
the Hodgkin-Huxley (HH) model Cronin and Boutelle (1987), which closely resembles
computational biology by simulating sodium and potassium channels, and the Izhikevich
model Izhikevich (2003), which exhibits similar behavior with lower computational complexity.
In this paper, our focus lies in designing an implicit layer that can accommodate these
dynamical system models. SNN incorporates parallel and biologically plausible learning
rules such as Spike-Timing-Dependent Plasticity (STDP) and the Bienenstock-Cooper-
Munro (BCM) theory, along with extensive training methods like backpropagation. In a
previous study Huang and Huang (2016), researchers evolved the best-fit model constants
by controlling the neuron model constants. Neurons are known to learn through Hebbian
learning, an unsupervised learning paradigm exemplified by STDP Caporale and Dan
(2008). More recently, a method was proposed in Xiao et al. (2021) that applies implicit
differentiation of DEQ to backpropagation in the equilibrium state. This suggests a way to
incorporate DEQ’s implicit differentiation into the training process.

Training of Biological Neural Network In the study by Glimcher (2011), it is demon-
strated that nerves are activated by both an activation signal and a feedback signal mediated
by dopamine. As the learning progresses, the feedback signal gradually diminishes due to
the ability to predict the reward signal.

Taylor and Ivry (2014) present research on reinforcement learning algorithms in the
cerebellum. If there exists a dynamical system that is intricately represented by biomodels
such as purkinje cells, granule cells, and star cells in the cerebellum, this suggests that the
dynamical system may implicitly incorporate a Q-learning algorithm.

HyperNeat NEAT Stanley and Miikkulainen (2002) is a genetic algorithm that evolves
artificial neural networks (ANNs). It aims to strike a balance between fitness and diversity,
allowing for the evolution of species within the network. HyperNEAT (Stanley et al., 2009)
utilizes a method of network creation known as a Connection Pattern Producing Network
(CPPN), which is evolved by NEAT. HyperNEAT employs an indirect encoding approach
that leverages the geometric properties of the network. This enables the design of regular
patterns within the network structure.

3. Proposed EPL Method

In this section, we first provide an overview of the Equilibrium Point Learning (EPL)
approach and introduce its core concepts. We then provide a detailed explanation of the
EPL method in comparison with the learning methodology of DEQ. Additionally, we briefly
discuss the training of model parameters in EPL learning and explain how to align it with
the back-propagation algorithm, which is well known as a learning method in ANN. Next, we
introduce the properties of the implicit layer required in EPL learning. Finally, we introduce
how to design an implicit layer that convergence (a prerequisite for EPL learning) of the
model is mathematically proven. It can also accommodate the biomodel in system biology.
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3.1. Overview of the EPL Learning

Equilibrium Point Learning (EPL) works as
schematically shown in Fig. 1. The key is to ex-
pect all learning to take place while overwriting z
to z∗. In the context of traditional artificial neural
networks (ANN), The role of the learning parameter
shifts from θ to z, and the model’s output inherently
includes the parameter learning amount, with this
role attributed to the fixed parameter θ. Therefore,
exploring the parameter space of θ implies searching
for a more efficient learning algorithm.

Figure 1: Concept of EPL Learning

3.2. EPL Learning Process

Algorithm 1 Compare Learning Algorithm from DEQ

1: procedure Train DEQ fθ(z,x)
2: while epoch do
3: zpost ← x
4: while |zpost − zpre| > ε do
5: zpre ← zpost

6: zpost = fθ(z
pre,x)

7: end while
8: z∗ ← zpost

9: compute ℓ(z∗,y)
10: θ ← θ − α∇ℓ
11: end while
12: end procedure

13: procedure Train EPL fθ(x)
14: zpost ← θ[x0]
15: while |zpost − zpre| > ε do
16: zpre ← zpost

17: zpost = fθ(z
pre)

18: end while
19: z∗ ← zpost ▷ z∗

init

20: while epoch do
21: zpost ← z∗ + Iz · x
22: ŷ = emptylist
23: while |zpost − zpre| < ε do
24: ŷ.append(Oz · zpost)
25: zpre ← zpost

26: zpost = fθ(z
pre)

27: end while
28: z∗ ← zpost ▷ z∗

self−learn

29: ℓ← ℓ(Active(ŷ),y) ▷ ℓ(Oeep,y)
30: zpost ← z∗ + Fz · ℓ
31: while |zpost − zpre| > ε do
32: zpre ← zpost

33: zpost = fθ(z
pre)

34: end while
35: z∗ ← zpost ▷ z∗

supervised−learn

36: end while
37: end procedure
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In the learning process of the DEQ, equilibrium point z∗ ∈ Rt×1 is the output of input
value x ∈ Rt×1. Then, calculate the loss of z∗ and y ∈ Rt×1, and update the parameter of
the model that in the direction of the loss decrease. In comparison, EPL training presented
in this paper, at first, find the first equilibrium point z∗

init ∈ Rn×1 from the given initial value
x0 ∈ Rn×1 in model parameter, like Eq. (9). This becomes the first pre-learned parameter.
Next, using the input constant matrix Iz ∈ Rn×t, n > t, the vector z∗ + Iz · x is the next
input for the layer. This is a key difference between DEQ and EPL methods. When z
reaches the new equilibrium point z∗

self−learn, it is the self-learning process of the equilibrium

point. Until equilibrium point z∗
self−learn is reached, we collect Oz · zpost, that the inner

value of output constant matrix Oz ∈ Rr×n and z. Then, output becomes the value taken
by its activation function (like the average or the number of times the threshold has been
exceeded). We name the output for these inputs as Output of Exploration Equilibrium Point,
that is, Oeep. In addition, the function that represents the newly reached equilibrium point
is named Function of New Equilibrium Point, fnep (Eq. (1)).

∀z, z0 ← z, zi+1 = fθ(zi)

find ∗ ∈ N s.t |fθ(z∗)− z∗| ≤ ϵ,

Let Oeep(z) = Active((Oz · zi)[0:∗]), fnep(z) = z∗

(1)

These output values can be an action in the environment and obtain a corresponding fitness
score, or a feedback (loss) value ℓ = ℓ(Oeep,y) ∈ R1×1 can be obtained by calculating the
distance from the expected output value y. Then, use the feedback constant Fz ∈ Rn×1, so
that vector z∗ + Fz · ℓ, which is a linear combination of the equilibrium point z∗

self−learn

and the feedback, is the next input of the layer. z reaches another new equilibrium point
z∗
supervised−learn , which becomes the supervision-learning process of the equilibrium point.

One learning ends when a new equilibrium point is reached.

3.3. Find Back-Propagation Algorithm Parameter of EPL Learning

If EPL learning occurs (if the loss value is reduced), this means that Eq. (2). must be
satisfied.

ℓ(Oeep(z
∗
pre−train + Iz · x),y) > ℓ(Oeep(z

∗
post−train + Iz · x),y) (2)

If EPL learning expects to learn, such as back-propagation algorithm, in which all steps
of epoch flow exactly to a gradient that reduces loss, the conditions to be satisfied can be
written as Eq. (3).

−∆z∗ = z∗ − fnep(fnep(z
∗ + Iz · x) + Fz · ℓ) = α(

∂ℓ(Oeep(z
∗ + Iz · x),y)
∂z∗ )T (3)

This means that if the purpose of the model parameter is to find the back-propagation
algorithm, if Iz,Oz is small, it is to reduce the cosine-similarity like this Eq. (4).

Let A = −∆z∗ ≈ −∂fnep(z
∗ + z)

∂z
(Iz · x+ Fz · ℓ), B = (

∂ℓ(Oeep(z
∗ + Iz · x),y)
∂z∗ )T

L(θ, back − propagation− algorithm) =
A ·B
|A| |B|

(4)

In this paper, we explore θ spaces in which numerous training methods exist, including
back-propagation algorithm.
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3.4. Property of EPL Learning

EPL learning occurs by repeatedly passing through implicit layers infinitely. During this
process, if even a single value of the vector starts to diverge, it becomes impossible to
compute the output of the implicit layer. Therefore, the implicit layer requires a Non-
diverging property. In this paper, we can achieve this with the following strategy:

1. We divide the implicit layer into two stages: first passing through the local implicit
layer and then the external implicit layer.

2. For every input space, there exists a function that maps it to a single scalar energy.

3. The possible input space of the implicit layer cannot have infinite negative energy.

4. The output of the local implicit layer always has lower energy than the input.

5. At this time, the amount of reduction is proportional to the magnitude of the vector’s
components. In other words, if even one value is infinite, the amount of energy
reduction becomes infinite.

6. The external implicit layer always flows finite energy with an upper limit.

3.5. Design Implict Layer

We propose a dynamical system dz
dt = Fθ(z), z = (x,p), x ∈ Rn×1

>0 ,p ∈ Rn×1, compatible

with biomodel of system biology. This can be treated as implicit layer fθ follows: dz
dt =

Fθ(z) ⇔ zi+1 = zi+dt ·Fθ(z
i) = fθ(z

i) ⇒ z∗ = z∗+dt ·Fθ(z
∗) ⇔ Fθ(z

∗) = 0 We prove
mathematically convergence of the dynamical system. In addition, we propose a reduced
dynamical system that can significantly reduce the computation of the implicit layer.

3.5.1. Energy

The energy function of the dynamical system (DS) is defined based on the actual physical
quantity. Consider a node by grouping the same states (component, composition state,
momentum, direction of motion, position) of molecules. Each node in DS has a mass and
momentum, expressed as x and p . DS represents the sum of four energies: H(x,p) =
−Sentrophy + Henthalpy + Uelectric + Ekinetic. From a physical and chemical point of view,
physical energy in a system with a constant temperature can be expressed. The presented
form of the energy function Eq. (5). is consequently an extension of entropy and physical
quantity in quadratic function Nocedal and Wright (2006). Low et al. (1973) This allows us
to explain the laws and models of biology and chemistry. (xT : Transpose of vector, x ◦ y :
Hadamard product)

H(x,p) = xT ln(
x

x∗ ) +
1

2
xTV x+

1

2mT
(p ◦ p ◦ x) (5)

Entrophy & Enthalpy −Sentropy(x,p) +Henthalpy(x,p) = xT ln( x
x∗ ) = xT ln(x) + aTx

The probability that a single molecule exists in that state, by Arrhenius equation, is inversely
proportional to its energy state, the enthalpy x∗ ∝ e−Ex . In this paper, we replace the
energy constant with a ∈ Rn×1. The molecular chemical reaction network (CRN) can be
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described as a flow that reduces the defined Gibbs free energy H − S. However, when
electric Potential Energy and kinetic Energy (the energy of the other two energy terms U,
E) change, It means that the energy state of the molecule (∂H∂x ) changes, which also changes
the probability of a molecule’s presence. This explains the change in the activation rate
according to the voltage of the neuron’s voltage-gated sodium channels de Lera Ruiz and
Kraus (2015).

Electric Potential Energy Uelectric(x,p) = 1
4πϵ0

qTx
1
Rqx = 1

2x
TV x,V = diag(qc)2

2πϵ0R
∈

Rn×n Electrical potential energy is related to the movement that creates an electric
current. The movement of electrons perpendicular to the gradient of the energy function,
the movement of the hamiltonian flow, and the movement of the longitudinal velocity at
which electrons collide with protons as they move, are current and resistance Vilasi (2001).

Kinetic Energy Ekinetic(x,p) =
1

2mT (p ◦ p ◦ x) This is the momentum energy of the

molecules. m ∈ Rn×1
>0 corresponds to the mass of the molecule. Electrical potential energy

is converted to kinetic energy due to hamiltonian flow.

3.5.2. Flow

We define symbol M ∈ Rn×c
≥0 that is the elemental matrix of x, and M⊥ ∈ Rn×e that is

stoichiometric metrics. They are orthogonal (MTM⊥ = 0c×e) to each other. Using this, we
define a total of four types of flows.

Total Flow The total flow is as per the equation below (r(x) := relu(x)), This means
dynamical system.

dx
dt = M⊥

[
−k ◦ (e

∂H
∂x

r(M⊥) − e
∂H
∂x

r(−M⊥))T + v ◦ (∂H∂p M
⊥)T ◦ (eln(x)T |M⊥|)T

]
+ h ◦ x ◦ (e−

∂H
∂x − 1)T

(6)
dp
dt = −M⊥

[
v ◦ (∂H∂xM

⊥)T ◦ (eln(x)T |M⊥|)T
]
− c⊙ (∂H∂p )

T

The gradient (∂H∂x ∈ R1×n, ∂H∂p ∈ R1×n) at point (x,p) is calculated as Eq. (7).

∂H

∂x
= (ln(x) + 1)T + aT + xTV +

(p ◦ p
2m

)T ∂H

∂p
= (

p ◦ x
m

)T (7)

Chemical Flow dx
dt = −M⊥

[
−k ◦ (e

∂H
∂x

r(M⊥) − e
∂H
∂x

r(−M⊥))T
]
, k ∈ Re×1

≥0

This flow can explain chemical reaction and diffusio Hochberg and Ribó (2018).

Hamiltonian Flow
dx
dt = M⊥

[
v ◦ (∂H∂p M

⊥)T ◦ (eln(x)T |M⊥|)T
]
, dpdt = −M⊥

[
v ◦ (∂H∂xM

⊥)T ◦ (eln(x)T |M⊥|)T
]

v ∈ Re×1
>0 This flow can account for the current. With hamiltonian flow alone, it’s like a

current without resistance. This preserves the energy of the entire system. It’s a term that’s
never considered in the problem of finding the solution of the convex optimization flow, but
in real biology, this flow causes the flow of electrons. It’s important to play an algorithmic
role in going to an increasingly learned fixed point, not just looking for fixed points.
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Collision Flow dp
dt = −c⊙ (∂H∂p )

T , c ∈ Re×1
>0 It means that the momentum decreases due

to the collision of molecules. Unlike hamiltonian flow, these flows reduce the energy of the
system. In the actual physical phenomenon, just as heat energy is emitted from resistance,
it is transformed into the translational or rotational motion of molecules, the thermal energy.
But these temperatures quickly spread around. Therefore, it can reduce the amount of
computation by ignoring this term.

External Homeostasis Flow h ◦ (eln(x)−( ∂H
∂x

)T − x), h ∈ Rn×1
≥0 Living things need

endless sources of energy from the outside to match the homeostasis of ATP-ADP energy
sources. To accommodate this, we treat that x[i:n], part of x, is connected to the external
system. Their flow is expressed by the constant h. In other words, it satisfies h[0:i−1] = 0,
and h[i:n] indicates the speed of the external flow. Unlike the three flows above, only
substances that are not connected to the external system satisfy the law of conservation of
mass. d

dt(M
T
h x) = 0

3.5.3. Convex Optimization Problem

All defined flows can be explained by the direction of decreasing the proposed system’s
energy function H(x,p) by proving to Appendix A. Also, x has a convex domain that
satisfies both the law of conservation of mass : = d

dt(M
T
h x) = 0 and positive of mass. So,

their flow can be reinterpreted as the solving convex optimization problem Eq. (8).

min
x,p

H(x,p)

subject to x > 0, MT
h x = Ch

(8)

By solving the finite convex set, the energy satisfies the bounded condition. Through
energy reduction and bounded conditions, mathematically satisfied that it always converges
to the equilibrium point.

3.5.4. Reduced Dynamical System

We will solve the system defined above with ODE solver to find the equilibrium point.
However, the computational difficulty is high due to frequent log and exp functions. Therefore,
we present a reduced dynamical system (RDS), which is a scale-down model of the defined
dynamical system.

RDS := Fθ(x,p), θ = [x0,M ,M⊥,S,D,mc, qc,a,k,v, c,h] (9)

Give each node its genetic and spatial information. This will become a substrate in HyperNeat
as the system evolves in the future. Most log and exp calculations can be converted to
multiplication functions by grouping the spaces of nodes.

Gene of Entity For all xi ∈ X, the function fg : X 7→ G = {g1, g2, ..., gm} , gi ∈ Rg×1

maps to the genetic space G. For all gi, the function fc : G 7→ C = {c1, c2, ..., ck} , ci ∈ Rc×1

maps to the component space C. Each component has a mass and a charge, which is expressed
as mc ∈ Rc×1

≥0 and qc ∈ Rc×1. That is, the mass and charge of xi are fc(fg(xi))
T ·mc and

fc(fg(xi))
T ·qc. For any gene gi, gj , gk, Whether a chemical reaction gi+gj ⇒ gk is satisfied

can be determined as a reaction function fr, that fr(gi, gj) = gk and fc(gi)+fc(gj) = fc(gk)
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. In RDS, only two reactants (two may be the same) are allowed to create one product.
The Na+ channel of the HH model can operate as a function of the active element only
when three active factors are combined. Such a multi-molecular product and the like can be
expressed by the markov model chemical reaction network, such as Fink and Noble (2009).

Space of Entity Every xi ∈ X has their own space si, a function that maps it is defined
as follows: fs : X = {x1,x2, ...,xn} 7→ S = {s1, s2, ..., ss} . Let a space matrix S ∈ Rn×s

≥0

as follows: Sij :=

{
0 if fs(xi) ̸= sj

1 if fs(xi) = sj
. Let a distance matrix D ∈ Rs×s

≥0 , This is the

matrix that determines the distance between spaces. For computational gain, we make the
inverse of these distance matrix 1

D sparse matrix. In other words, it makes the distance
of the neighboring spaces infinite, leaving them out of the calculate electrical potential
energy. With the newly defined gen-space information, the electric potential matrix V can
be calculated as follows: q = diag((Mqc)

T )S, V = q( 1
D )qT

Reduce Flow and Calculate Depending on whether the space of the components is
the same or different, an allowable flow is determined. For two elements of the same space,
only the chemical flow of nodes capable of chemical reaction is acceptable In other spaces,
diffusion flow and hamiltonian flow of nodes with the same genetic information are possible.
Through these constraints, the calculation volume can be significantly reduced for three
reasons.
1. D becomes sparse matrix, so V also becomes sparse matrix.
2. In the chemical reaction, the flow in the same space occurs, so electric potential energy is

not changed. ∵ dUelectric
d(chemical react) ∝

dxT q
d(chemical react) ∝M⊥

chdiag((Mqc)
T )S ∝M⊥

chM = 0ch×s

3. Since the chemical flow has two reactants, one product, log and expterm can be replaced
by one multiplication. (ex) In the reaction of a+ b⇔ c, the existing one is eln(a)+ln(b)− eln(c)

If so, it can be calculated by replacing it with a ∗ b− c)

4. Experiment

(a) Using space and gene information to HyperNeat substrate (b) Example of DS

Figure 2: Generation Dynamical System by HyperNeat and Example
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When biological cells undergo expression, the configuration of the dynamical system is
influenced by the concentration of surrounding substances, and it exhibits symmetry within
the same cell type. To leverage this characteristic, we employ HyperNeat (Fig. 2(a)subfigure)
for evolving the dynamical system, which enables the design of regular patterns such as
symmetry, repetition, and variation. By selectively disabling specific components of the
CPPN input, we define the necessary functions.

Algorithm 2 Expression Algorithm

1: procedure Expression by CPPN(gi, si, gi, si)
2: gi exist ← tanh−1(CPPN(gi, 0, gi, 0))[0] > 0 ▷ Generation gene map
3: si exist ← tanh−1(CPPN(0, si, 0, si))[0] > 0 ▷ Generation Space map
4: node (gi, si) exist ← tanh−1(CPPN(gi, si, gi, si))[0] > 0 ▷ Generation node
5: reaction function fr ← abs(tanh−1(CPPN(gi, 0, gj , 0)[0])
6: node (gi, si) connected externel nodes ← tanh−1(CPPN(gi, si, gi, si))[1] > 0
7: space (si), (sj) is neighborhood ← tanh−1(CPPN(0, si, 0, sj))[1] > 0
8: charge of (ci) ← tanh−1(CPPN(ci, 0, 0, 0))[2]
9: mass of (ci) ← abs(tanh−1(CPPN(0, 0, ci, 0))[2])

10: k or non-exist(< 0) of chemical reaction edge← abs(tanh−1(CPPN(gi, si, gj , si))[2])
11: v or non-exist(< 0) of hamiltonian edge ← abs(tanh−1(CPPN(gi, si, 0, sj))[2])
12: k or non-exist(< 0) of diffusion edge ← abs(tanh−1(CPPN(0, si, gi, sj))[2])
13: end procedure

The dynamical system (DS) is shown in Fig. 2(b)subfigure. It consists of a blue square
region with nodes as circles. Input nodes are green, the output node is orange, and nodes
with chemical reactions are gray squares labeled with the reaction type. Connections exist
between nearby spaces. Diffusion flow uses solid lines and Hamiltonian flow uses dotted
lines, but the external flow isn’t visually shown; it’s stored as a model parameter.

5. Result

(a) Average(avg) and best result per generation (b) Reduced training time (%)

Figure 3: Training results for two environments
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We conducted experiments using the CartPole-v1 and FrozenLake-v0 environments from
OpenAI. A total of 100 populations were evolved over 50 generations, utilizing an RTX
2070 GPU. The entire process took approximately 87 hours. We evaluated the fitness of the
generated dynamical systems (DS) after 10 epochs of learning.

The results showed that the CartPole environment began to learn effectively around
generations 10-20, while FrozenLake showed significant progress around generations 30-40.
Furthermore, once the goal (including environment reward, learning speed, and memory
usage) was achieved, we observed an average reduction of 0.2 in learning time per generation.

(a) Dynamical system example in gen 1 (b) Dynamical system example in gen 10

Figure 4: Examples of Dynamical systems from the 1st and 10th generations

The initial generations 1-4 consisted of simple repetitive structures where input and
output nodes were not even connected (Fig. 4(a)subfigure). From generations 5-9, individuals
that exhibited a positive impact between their input and output nodes were favored for
survival. In generations 10-20, more diverse chemical reaction patterns emerged, and N:N
multiple connections were identified (Fig. 4(b)subfigure).

(a) Gen 1 (b) Gen 10 (c) Gen 50

Figure 5: Best Fitness Examples from the 1st, 10th, and 50th Generations
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Surprisingly, the output responses began to resemble the spiking neuron model (Fig.
5(b)subfigure). By generations 40-50, spaces started clustering, forming units resembling
neurons. Additionally, the output responses became more sensitive to the input, resembling
an adaptive leaky integrate-and-fire (LIF) model similar to that of spiking neural networks
(SNN) (see Fig. 5(c)subfigure for an example at generation 50).

6. Conclusion

We have examined the biological properties and learning mechanisms of neurons and
proposed a novel learning approach for artificial neural networks (ANNs). In this approach,
the parameters of the model inherently represent the essence of the learning algorithm
itself. Consequently, we conducted an evolutionary search for model parameters to discover
alternative training methods that do not rely on traditional algorithms like back-propagation.
Through this evolutionary process, we identified dynamical systems that are evolutionarily
selected, indicating the presence of learnable implicit layers. By improving the efficacy of the
evolutionary algorithm, we can accelerate the ODE solver’s ability to discover more effective
learning strategies. Ultimately, our aim is to uncover solutions to previously unsolvable
problems using conventional learning methods.
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Appendix A. Proof : Flow satisfies the condition

One of the core ideas is whether these flows satisfy the condition. First, the system flows in the
direction of decreasing energy Second, about conservation of Mass, where x moves in convex satisfying
MTx = C Finally, this flow is a proof of Positive Of Mass that x is not negative.

A.1. Chemical Flow

Flow
dx

dt
= −M⊥

[
kT ◦ (e ∂H

∂x r(M⊥) − e
∂H
∂x r(−M⊥))

]T
= −M⊥

[
kT ◦ (e ∂H

∂x M⊥
− 1) ◦ e ∂H

∂x r(−M⊥)
]T

Energy
dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂p

dp

dt

= −∂H

∂x
M⊥

[
kT ◦ ∂H

∂x
M⊥ ◦ (e

∂H
∂x M⊥ − 1
∂H
∂x M⊥

) ◦ e ∂H
∂x r(−M⊥)

]T

= −(∂H
∂x

M⊥)diag

[
k ◦ (e

∂H
∂x M⊥ − 1
∂H
∂x M⊥

)T ◦ (e ∂H
∂x r(−M⊥))T

]
(
∂H

∂x
M⊥)T < 0

Conservation
d

dt
(MTx) = MT dx

dt
= −MTM⊥

[
kT ◦ (e ∂H

∂x M⊥
− 1) ◦ (e ∂H

∂x r(−M⊥))
]T

= 0c×e

[
kT ◦ (e ∂H

∂x M⊥
− 1) ◦ (e ∂H

∂x r(−M⊥))
]T

= 0

Positive
dx

dt
= −M⊥

[
kT ◦ (e ∂H

∂x M⊥
− 1) ◦ e ∂H

∂x r(−M⊥)
]T

= M+(r(−M⊥)− r(M⊥))(e
∂H
∂x r(M⊥) − e

∂H
∂x r(−M⊥))T

≥ −M+r(M
⊥)

[
e(

∂H
∂x r(M⊥))T ◦ k

]
−M+r(−M⊥)

[
e(

∂H
∂x R(−M⊥))T ◦ k

]
− r(M⊥)

[
e(

∂H
∂x r(M⊥))T ◦ k

]
= −R(M⊥)

[
e((ln(x)

T+h(x,p))r(M⊥))T ◦ k
]

= −r(M⊥)diag(e(ln(x)
TR(M⊥))T )

[
e(h(x,p)R(M⊥))T ◦ k

]
[
−r(M⊥)diag(e(ln(x)

T r(M⊥))T )
]
i
= −r(M⊥)i

∏
x
r(M⊥)Ti
i

−
∑

r(M⊥)ij
∏

x
r(M⊥)ij
i =

∑{
0 ifr(M⊥)ij = 0

f(x, p) ◦ xR(M⊥)ij ifr(M⊥)ij ̸= 0

A.2. Hamiltonian Flow

Flow
dx

dt
= M⊥

[
vT ◦ (∂H

∂p
M⊥) ◦ (eln(x)

T |M⊥|)
]T

dp

dt
= M⊥

[
vT ◦ (∂H

∂x
M⊥) ◦ (eln(x)

T |M⊥|)
]T
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Energy

dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂p

dp

dt

=
∂H

∂x
M⊥

[
vT ◦ (∂H

∂p
M⊥) ◦ (eln(x)

T |M⊥|)
]T
− ∂H

∂p
M⊥

[
vT ◦ (∂H

∂p
M⊥) ◦ (eln(x)

T |M⊥|)
]T

= (
∂H

∂x
M⊥

[
(
∂H

∂p
M⊥)T

]
− ∂H

∂p
M⊥

[
(
∂H

∂p
M⊥)T

]
) ◦ v ◦ (eln(x)

T |M⊥|)T = 0

∵ let f =

[
∂H

∂x
M⊥

]
(
∂H

∂p
M⊥)T ∈ R1×1

f = fT = (
∂H

∂p
M⊥)

[
(
∂H

∂x
M⊥)T

]
=

[
∂H

∂p
M⊥

]
(
∂H

∂x
M⊥)T

Conservation
d

dt
(MTx) = MT dx

dt
= MTM⊥

[
(
∂H

∂p
M⊥)T ◦ v ◦ (eln(x)

T |M⊥|)T
]

= 0c×e

[
(
∂H

∂p
M⊥)T ◦ v ◦ (eln(x)

T |M⊥|)T
]
= 0

Positive
dx

dt
= M⊥

[
(
∂H

∂p
M⊥)T ◦ v ◦ (eln(x)

T |M⊥|)T
]

= M⊥(M⊥)T
[
1

m
◦ p ◦ v ◦ (eln(x)

T |M⊥|)T
]
◦ x

A.3. Collision Flow

Flow
dp

dt
= −c ◦ (∂H

∂p
)T

Energy
dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂p

dp

dt
= −∂H

∂p

[
(
∂H

∂p
)T ◦ c

]
= −

[
∂H

∂p
◦ ∂H
∂p

]
c < 0

A.4. External Homeostasis Flow

Flow
dx

dt
= h ◦ x ◦ (e− ∂H

∂x − 1)T

Energy
dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂p

dp

dt
=

∂H

∂x
[h ◦ x ◦ (e− ∂H

∂x − 1)T ]

= −(∂H
∂x

)diag[h ◦ x ◦ ( (−e
− ∂H

∂x + 1)
∂H
∂x

)T ](
∂H

∂x
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Positive
dx

dt
= h ◦ x ◦ (e− ∂H

∂x − 1)T = [h ◦ (e− ∂H
∂x − 1)T ] ◦ x
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Appendix B. Explanation of Bio Model

To represent the HH model with an implicit layer, the chemical reactions, diffusion, current, voltage-
gated channels, and membrane potential must each be explainable as flows in Eq. (6), This can be
explained by modeling the three spaces of neurons (Extracellar Space, Cell Membrane, Interacellar
Space). Fig. 6 shows one of the four channels (Voltage-gated Na+ channel, Voltage-gated K+ channel,
K+ Leak channel, and Na+/K+ pump) of the HH model to dynamic system. In this appendix, we
discuss how we transform the foundational Fick’s Law for diffusion and the Nernst equation, which
underlies the membrane potential, into our designed implicit layer, excluding the chemical reactions,
voltage-gated channels, and current described in the main paper.

Fick’s second Law Fick’s diffusion law = D∇2n(x) This can be described by the diffusion
flow of g1, an element of successive spaces s[0:n+1]. For each dt, each emits an amount proportional
to its mass to both sides of the space Their formula can be described as a quadratic differential
dxi

dt = α(xi−1 + xi+1 − 2xi). If n go to this limit, it can explain the Fick’s second law formula.

Nernst equation Nernst equation determining the membrane potential E = E0 +
RT
nF ln xin

xout
, It

can be derived from Nernst-Planck equation ∂c
∂t +∇ · J = 0 . At this point, the flow of molecules,

J , is −D + Dze
kBT cE Can be described as diffusion flow + hamiltonian flow of g1. The sum of the

diffusion and hamiltonian flows must be zero to meet each concentration equilibrium point.

Figure 6: Explanation Hodgkin Huxley model by dynamical system
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