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Abstract

As a growing number of warehouse operators are moving from human-only to Collab-
orative human-robot Order Picking solutions, more efficient picker routing policies are
needed, since the complexity of coordinating multiple actors in the system increases sig-
nificantly. The objective of these policies is to match human pickers and robot carriers to
fulfill picking tasks, optimizing pick-rate and total tardiness of the orders. In this paper,
we propose to formulate the order picking routing problem as a more general combina-
torial optimization problem known as Two-sided Online Bipartite Matching. We present
an end-to-end Deep Reinforcement Learning approach to optimize a combination of pick-
rate and order tardiness, and to deal with the uncertainty of real-world warehouse en-
vironments. To extract and exploit spatial information from the environment, we de-
vise three different Graph Neural Network architectures and empirically evaluate them
on several scenarios of growing complexity in a simulation environment we developed.
We show that all proposed methods significantly outperform greedy and more sophisti-
cated heuristics, as well as non-GNN-based DRL approaches. Moreover, our methods
exhibit good transferability properties, even when scaling up test problem instances to
more than forty times the size of the ones the models were trained on. Code is available
at: https://github.com/ai-for-decision-making-tue/DRL-TOBM-CPR.

Keywords: Collaborative order picking; online combinatorial optimization; online bipar-
tite matching; deep reinforcement learning; graph neural networks.

1. Introduction

Order picking is a crucial component of warehouse operations and it is estimated to account
for up to 65% of total operating costs (Ho et al., 2008). Thanks to recent developments
of robotics and self-driving vehicles, more and more warehouse operators are shifting from
the traditional picker-to-part order picking system (OPS), where humans handle all of
the work, to a collaborative human-robot order picking system (CHR-OPS). In this new
system, humans work along a fleet of automated mobile robots (AMR), each of which is
assigned a set of items to be collected before returning to depot. The humans’ task is
then to pick items from shelves and place them on the robots, which handle transportation
across the warehouse. This collaboration potentially allows to considerably reduce the
inefficiency of traditional OPS due to the human pickers not having to walk long distances
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between pick locations and depot anymore. However, the possible performance increase
in CHR-OPS depends on several optimization problems, including order batching, batch
sequencing, and picker routing (Srinivas and Yu, 2022). While the first two have been
extensively investigated in the literature with both classical and learning-based methods
(Henn, 2015; Cals et al., 2021; Beeks et al., 2022), fewer studies focus exclusively on picker
routing. The objective of the picker routing problem is to decide which retrieving tasks
should be assigned to each human picker in order to optimize a certain metric, such as
total order tardiness. However, most of the existing approaches for CHR-OPS are not
specific for the picker routing problem, but try to address it together with the batching and
sequencing strategy. These approaches mostly adopt handcrafted heuristics (Azadeh et al.,
2020) or meta-heuristics (Srinivas and Yu, 2022) and assume the environment to be fully
deterministic, resulting in highly suboptimal decisions when applied in real warehouses.

To take into account the stochastic component of real-world scenarios, we propose to
frame the CHR-OPS picker routing problem (henceforth, we will refer to it as CPR, for
“Collaborative Picking Routing”) as an instance of Online Bipartite Matching (OBM), a
well-known problem in combinatorial optimization (CO) (Karp et al., 1990). In OBM,
a set of known entities need to be dynamically assigned to entities from a different set
(unknown a priori) which are disclosed sequentially, with the objective to maximize some
metric depending on the final set of assignments. In CPR, orders are associated with
AMRs beforehand, but due to the highly dynamic nature of warehouse environments it is
very difficult to predict exactly when they will be available for picking. Therefore, orders
can be modeled as incoming entities appearing randomly in the system. The task is then
to assign, or match, orders to human pickers. Morever, while the number of pickers is
usually fixed, their location is constantly changing as they move to retrieve items. In doing
this, they are also affected by the stochasticity of the whole environment, and can also be
considered as dynamically appearing in the system. Because of this, our scenario is more
similar to the two-sided online bipartite matching (TOBM) in spatial data (Li et al., 2020).

Several learning-based methods have been applied to the OBM problem. Alomrani et al.
(2023) address the one-sided OBM with deep reinforcement learning (DRL), showing good
optimality ratios on the test instances. However, their approach considers one of the two
sets of entities fixed and does not take into account the spatial component inherent in the
order-picking routing problem. In the study from Wang et al. (2019), the authors adopt an
approach combining DRL and traditional combinatorial optimization algorithms. Despite
being able to handle online nodes from both sets to be matched, this approach still does
not fully take spatial information into account.

To address these gaps, we develop and apply several end-to-end DRL approaches us-
ing three different graph neural network (GNN) architectures to extract information from
the spatial data to guide decisions. We show that all methods achieve significantly better
performances compared to greedy and more sophisticated heuristics in a simulated environ-
ment. Moreover, our methods show good transferability properties, even when scaling up
test problem instances to more than forty times the size of the training ones.

To the best of our knowledge, this is the first work to frame CPR as an instance of
TOBM, to deal with the high level of stochasticity characterizing warehouse environments.
We develop and apply a set of deep reinforcement learning approaches for CPR which
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are able to scale to large problem instances, significantly beating benchmark heuristics.
Moreover, it is also the first to work apply end-to-end DRL to TOBM.

2. Related work

Collaborative human-robot order picking The most common approach to CPR is the
use of heuristics or rule-based systems. For instance, Azadeh et al. (2020) study the impact
of different zoning strategies and propose a dynamic programming approach to dynamically
switch between these strategies depending on the state of the warehouse. Many existing
works on collaborative human-robot order picking focus on simultaneously optimizing all
the decisions involved in the process, including order batching, batch releasing, and routing
of pickers and robots. Srinivas and Yu (2022) develop a mixed integer linear programming
(MILP) model taking into account all the mentioned decisions, which can only be solved
exactly for very small problem instances. They then propose an approach combining two
metaheuristics (simulated annealing and adaptive neighborhood search) to deal with larger
instances. Given the complexity of the problem, other works try to isolate sub-problems
and tackle them individually: Löffler et al. (2022) study the case of a single picker assisted
by robots in a single-block warehouse and propose a dynamic programming approach to
solve it. Recently, Krnjaic et al. (2023) approached CPR using Hierarchical Multi-Agent
(deep) Reinforcement Learning (MARL). They treat both pickers and AMRs as individual
agents and learn shared policies to decide the next item to serve for both classes of agents,
outperforming simple heuristics like “Follow Me” and “Pick, Don’t Move”. All these works
have one major assumption in common, which we believe to be the strongest and most prob-
lematic: they consider the whole environment as deterministic, while real-world warehouses
are extremely dynamic and stochastic environments. To deal with this, we propose to tackle
the problem with a fully reactive approach guided by Deep Reinforcement Learning.

Deep learning for combinatorial optimization In the last years, interest has grown
among researchers for applying deep learning to combinatorial optimization problems (COP).
Since many problems can be represented as graphs, graph neural networks are among the
most promising architectures, as discussed by Cappart et al. (2022). Deep reinforcement
learning has also quickly emerged as a powerful framework for COP, due to its inherent
focus on optimization. GNNs and DRL can, therefore, be combined to achieve high quality
solutions in a range of COPs. Kool et al. (2019) apply them together with an attention
mechanism to solve routing problems, such as the Travelling Salesman Problem (TSP) and
the Vehicle Routing Problem (VRP), which are naturally represented as graphs in 2D space.

However, all these problems are offline, meaning that there is no uncertainty involved.
In fact, not many works have investigated the use of deep learning techniques for online
combinatorial optimization. Among these, many combined deep learning with traditional
optimization techniques: Zhao et al. (2022), for instance, achieved very high performances
on the online 3D bin packing problem combining DRL with GNNs and heuristics. Wang
et al. (2019) approaches the Two-sided Online Bipartite Matching problem using DRL to
learn how to batch decisions in order to improve the matchings generated by the offline
Hungarian optimization algorithm. Even fewer studies adopted an end-to-end learning
approach. Peer et al. (2018) used an end-to-end Deep Q-Network (DQN) to solve the
train shunting problem with stochastic arrivals and departures. Finally, Alomrani et al.
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(2023) developed a DRL framework for the one-sided Online Bipartite Matching problem.
They experiment with several neural network architectures, finding that working in a graph
environment lets models achieve better optimality gaps than the greedy heuristic.

Despite being very powerful, this last framework only deals with the one-sided version
of OBM, where the assumption of fixed entities is too strong to correctly model many real-
world scenarios. On the other hand, the approach of Wang et al. (2019) tackles the two-sided
problem, but does not work end-to-end, and is unable to exploit the information coming
from the spatial data available in many real-world applications such as order picking.

3. Problem setting

In this section, we first introduce the real-world CPR and discuss its similarities to the
online bipartite matching problem. Based on these similarities, we describe our environment
model. Finally, we provide the formulations of the Markov Decision Processes used for the
deep reinforcement learning tasks.

3.1. Collaborative picking as OBM

In the collaborative human-robot order picking routing problem, a set of pickers P work
in a warehouse, assisted by a set R of AMRs. In the existing approaches, each AMR
is assigned with a pre-generated pickrun, i.e. a sequence of locations to visit inside the
warehouse and orders that must be picked at those locations. Since the pickrun is known
in advance, the problem is usually treated as an instance of VRP. The objective of these
strategies is typically to minimize the cumulative distance walked by the pickers or to
minimize the cumulative tardiness of the picks, if orders have due dates. However, these
solutions usually assume a deterministic behavior of the system, while real-world warehouses
are very dynamic environments. For instance, AMRs could fail, pickers could take a break
or some other kind of delay might occur, blocking an entire aisle for several minutes. To
deal with this inherent stochasticity of the environment, we propose a framework where
decisions of which picker assign to which AMR are taken only when required, instead of
computed entirely beforehand.

One well-known setting that allows this is the Online Bipartite Matching (OBM) prob-
lem (Karp et al., 1990). Here we have two disjoint sets of entities U and V . U is fixed
and known a priori, while elements v ∈ V are disclosed sequentially together with potential
matches {(u, v) : u ∈ U} with elements of the other set. The task is to make instantaneous
and irrevocable decisions on which match to select upon arrival for the element v. A com-
mon constraint is that elements of U cannot be matched more than once, and often the
time horizon is fixed at T = |V |, so it is finite and known in advance. There are, however,
a few differences between this formulation and CPR: first, neither the set of pickers nor
that of AMRs are fixed. While the total number of elements in each set does not change,
their locations and availability constantly change, effectively making them appear as differ-
ent elements every time we look at the state of the system. Second, in the original OBM
framework it is possible to skip a match and the incoming element simply disappears. This
is not the case in CPR, as neither AMRs nor pickers will leave the system if they are not
matched in a certain decision. For these reason, the task is more similar to the Two-Sided
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Online Bipartite Matching Problem (TOBM) in spatial data introduced in Li et al. (2020),
where entities of both sets U and V dynamically appear in the system.

3.2. Dynamic collaborative order picking environment

Based on the formulation of the CPR as TOBM, we introduce an online decision making
environment settled in a grid-world, with grid points representing pick locations. Since the
real-world problem does not have a real-time decision constraint, we model time as discrete,
with each timestep potentially representing a real world time window of a few seconds.

Similar to the real-world CPR scenario, we have a set P of pickers moving in a square
grid of size n×n to pick orders. We will use the term “order” instead of “AMR”, because if
an AMR is waiting in a picking location, it means that an order is available for picking there.
Each order can be in three possible states: announced, ongoing, or tardy. The arrival of
every order is first announced ta timesteps before it is effectively available for picking. This
represents the fact that, in real-world CPR, AMRs usually follow pre-assigned pickruns, so
it is possible to know their future locations, but the exact time in which they will become
available is only known with little anticipation due to the environment stochasticity. After ta
timesteps, an order’s state switches to ongoing, and it is now pickable. From this moment,
orders start to incur a holding cost CH for each timestep in which they are not picked.
Finally, every order is also associated with a number to of timesteps within which it should
be picked after switching to ongoing, to represent the fact that orders have due dates. If
an order is not picked within this timeframe, its state switches to tardy, and the cost it
incurs per timestep increases to CT . The number of timesteps since an order became tardy
is tracked in tT . Once an order is picked, it disappears from the system and immediately
stops incurring any costs. At each timestep, up to a certain number No of new orders can be
announced on the grid with a probability Po. This probability is applied independently to
the appearance of each new order. The locations in which new orders can appear are sampled
randomly from a uniform distribution across all locations. In this way, we avoid modeling
the behavior of AMRs in details, while still capturing the uncertainty it would introduce in
the environment. If an order is set to appear in an occupied location, it is skipped, in line
with the fact that orders represent AMRs, and two AMRs can not share a physical location
in the warehouse. We therefore represent each order o as a tuple (lo, ao, so, toa, t

o
o, t

o
T ), where

lo is its location on the grid and ao is an integer value set to -1 if the order is unassigned,
and equal to the index of the picker assigned to it otherwise.

During a timestep, each picker p can move, following Manhattan geometry, from its
location lp to a neighboring location. Pickers have two possible states: idle and assigned.
Whenever a picker is idle, it1 requires a decision: it can either be assigned to an unassigned
order o or stay where it is. After being assigned to order o, the picker starts to move
towards location lo following the shortest path. Once order o is reached, if the order is in
state ongoing or tardy the picker immediately picks it and becomes idle again, otherwise (if
o is in state announced) the picker waits in the same location until the order switches to
ongoing before performing the pick and returning to idle. Note that a picker may sometimes
enter the location of an order, but can not pick that order unless instructed to. Each picker is

1. In real-world warehouses pickers are humans, but since here we consider simulation entities we will refer
to them with the pronoun “it”.
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represented as a tuple (lp, sp, dp), where lp is its location, sp its state and dp its destination,
i.e. the location of the order to pick. If the picker is idle, its destination is its current
location lp.

The uniformly distributed random arrival location of the orders mimics the difficulty of
predicting much in advance where picks will be available due to the uncertainty associated
with the behavior of the AMRs, while the announcement mechanism mimics that picks can
be predicted shortly before the AMR arrives. Moreover, having discrete timesteps could be
seen as applying a batching strategy to the decision times. This allows us to assess how
different architectures are able to exploit these batches to coordinate decisions.

3.3. MDP formulation

We now provide two slightly different formulations of the Markov Decision Process upon
which we build our different Deep Reinforcement Learning approaches. The only difference
among these formulations is how the actions are shaped.

State At each timestep t, the state st is the set of all the nodes in the grid-graph as
well as its distance matrix, and the list of nodes containing pickers and orders. In these
formulations we choose not to include a terminal state.

Action Since in each timestep it is possible that more than one picker is idle and, therefore,
requires a decision, such decisions will be taken sequentially to considerably reduce the
number of possible actions per step. However, since the order in which the decisions are
taken is very important, we propose two possible ways to deal with this problem.

• Destination only action: the order of the decisions is fixed. Once the picker is
selected, the action represents the node of the grid-graph containing either the order
assigned to the picker (i.e., its next destination) or the picker itself (skip assignment).
In this setting, the maximum number of possible actions only depends on the size of
the graph as it is equal to the number of nodes |N |.

• Picker and destination action: the picker who is going to act is part of the decision.
Here, the actions are tuples (picker, destination). Clearly, in this setting the maximum
number of actions at each timestep depends also on the number of pickers in the
system: |N ||P |.

Reward The reward function depends on the costs generated by non-picked ongoing and
tardy orders. This means that we have both shared and delayed rewards, as these costs
depend on the actions taken by multiple pickers and can only be seen some time after each
decision has been taken. First, the environment generates a cost at each timestep, equal to
ct = CH ·NO

t + CT ·NT
t , where NO

t , NT
t , CH and CT are, in order, the number of orders

in state ongoing and tardy at time t, holding and tardiness costs. To correctly assign the
right credit to each action, we keep track of these costs for each picker: the share of reward
generated by each picker applying action a at timestep ti and accomplishing the task at time

tf is: rp =
∑tf−1

t=ti ct/|P |. Here we are dividing the costs by |P |, since all pickers contribute
equally to the cumulative reward. Finally, we need to aggregate all the rewards generated
by different pickers in one single reward signal. The reward at time t will be the sum of the
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rewards generated by the pickers Pt ⊂ P finishing a task in that timestep: rt = −
∑

p∈Pt
rp.

Since the objective of DRL is to maximize a reward signal, we take the negative of the costs.

Objective In both formulations we want to minimize the cumulative costs received by
the pickers. The objective function is simply the maximization of the cumulative reward:
R =

∑
t rt. Combining the two signals for holding and tardiness costs we are trying to find

the trade-off between avoiding tardiness as much as possible and, at the same time, picking
all the orders as quickly as possible.

4. DRL methods

4.1. Input representation

Based on the two MDP formulations, we propose three different approaches based on differ-
ent neural network architectures. Our goal is to learn a centralized policy to match pickers
to orders dynamically at each timestep. All three architectures work with data represented
as a graph G(N,E), where N is the set of nodes and E the set of edges connecting nodes of
G. Since our environment is settled in a grid-world, we consider cells as nodes, and edges
are available between nodes only if the respective cells are adjacent in the grid. At every
timestep t, information about pickers and orders in current state is provided to the DRL
agent as features of the graph’s node, as can be seen in table 1.

This input representation is crucial for two reasons: first, considering pickers, orders and
their respective characteristics as node features allows to learn policies which are indepen-
dent from the number of such entities. This is because the information is treated per node
instead of globally, and it is possible to apply the same computation to any given number
of nodes. Second, representing information as a graph allows us to capture spatial patterns
and exploit them to take better decisions.

Feature type Description Variable type Architectures

Distance matrix containing the distances be-
tween each node of the grid-graph

Matrix (Int) EA, MH

Global features List of locations of the pickers as integers in range
[0, |N | − 1]

List(Int) EA

Node contains the controlled picker Bool NA
Number of (other) idle pickers in the node Int NA, EA, MH
Number of (other) assigned pickers in the node Int NA, EA, MH
If node contains the destination of an(other)
picker, distance between node and current loca-
tion of the approaching picker (0 otherwise)2

Int NA, EA, MH

Node features If node contains an order in state announced, ta Int NA, EA, MH
If node contains an order in state ongoing, to Int NA, EA, MH
If node contains an order in state tardy, tT Int NA, EA, MH
Distance between the node and the location of
the controlled picker

Int NA

Table 1: Input features of the different network architectures

2. Pickers waiting in the same location of an order are considered one step away.
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4.2. Sequential actions and masking

To deal with the issue of multiple decisions required at the same time, we propose to take
them sequentially, within the same timestep. This allows to internally modify the state
when an action is taken (without letting time advance nor any external event happen)
in order to increase the information available when taking the next decision in the same
timestep. In particular, this allows to mask orders that have already been assigned to other
pickers, so that they cannot be chosen as matching.

The action masking system is a crucial component of our framework, since it is used to
switch from the grid-world space to the bipartite matching setting. As we showed before,
using a graph it is possible to create architectures invariant to the number of pickers and
AMRs in the system. To do so, the output of the neural network must be proportional to
the number of nodes in the original graph, many of which are empty, contain other pickers
or contain orders already assigned to other pickers, and should not be part of the bipartite
graph since they would not be feasible matchings. Masking these nodes results in allowing
only actions that are available in the MDP formulations based on the TOBM problem.

4.3. Architectures

The first layers are the same (with differences in the input layer depending on the features)
for all the proposed architectures. Three layers of GNN are applied to aggregate information
and create embeddings for each node. Note that for this process we use the grid-graph
representing the state of the whole environment and not the bipartite graph for which we
want to find the best matching. These embeddings are then processed in different ways to
obtain different outputs, based on the type of action required by the underlying MDP. In
particular, the only actions available will be related to nodes containing unassigned orders
and the current location of the picker, equivalent to the ’skip assignment’ action. Clearly,
if the action selected for a picker is to remain in the same location it will remain idle,
triggering a new decision request in the next timestep.

Node Actions (NA) The first architecture is based on the destination only action MDP
formulation. Given that the picker for which the decision needs to be taken has already been
selected by the environment, the action represents the destination of the selected picker.
The node embeddings are then individually processed with an MLP, resulting in an output
of one single value per node, which, after the application of a softmax activation function,
represent the probability of choosing each node as the destination nd for the controlled
picker. Finally, to avoid choosing empty or non-allowed destinations, those are masked
before applying the softmax function.

In this setting the number of actions is equal to the number N of nodes in the graph.
However, while during the training phase it is important that the MLP is applied to all
node embeddings in order to correctly propagate the errors, at inference time it is possible
to apply the action mask before the application of the MLP, saving a considerable amount
of computation.

Edge Actions (EA) As mentioned in Subsection 3.3, the order in which multiple deci-
sions are taken in the same timestep is important. Hence, letting the environment choose it
may lead to highly suboptimal policies, with a low level of coordination between the pickers.
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To solve this issue we embed the choice of the acting picker in the decision and, therefore,
in the learning process. Instead of processing all node embeddings individually, we use the
locations of the pickers provided in the input to select the “origin” nodes.

We then take the cartesian product of this “origin” nodes and all the nodes in the graph
(the possible destinations), to which we concatenate the distance between them, obtained
through the distance matrix, to generate embeddings for all the edges connecting a picker
with a possible location (destination) in the grid. These edge embeddings are then processed
with MLP and softmax to obtain a probability distribution over the edges.

The number of actions in this setting is |P ||N |, which leads to a very fast growth of the
action space. Due to this, the application of the mask is even more important, as it allows
to discard actions on two dimensions: for instance, if a picker is not idle it should not be
selected, which leads to an effective masking of |N | possible actions at the same time.

Multi-headed Actions (MH) The previous architecture solves the issue of coordination
between pickers, but at a very high cost in terms of required computation, especially for large
problem instances. This problem is not new in combinatorial optimization. One possible
way to deal with it is to decouple the decision, tackling different subproblems sequentially
(Zhao et al., 2021), exactly as we are already doing for the main matching problem. This
means first deciding which picker should act, and then picking its destination. Since we
still have a graph input, instead of selecting a picker directly we select the node containing
it, then the simulation environment takes care of understanding which idle picker is in that
location. If multiple pickers are idle in the same selected location, then one of them will be
selected randomly, as there are no additional constraints to take into account. The actions
learned by the DRL agent now take the form (np, nd), where np ∈ N is the location of the
selected picker, and nd ∈ N its destination.

To do this, we first process the node embeddings with an MLP and softmax as in the NA
approach, except for the fact that instead of masking all nodes not containing orders we mask
those not containing pickers. We then take the value having the highest probability from
the output distribution and use it to index the distance matrix to obtain the distance of the
selected node (the one containing the acting picker) from all other nodes in the grid. Finally
we concatenate the node embeddings each node embedding with the corresponding distance
and process the result with an MLP and softmax to have the probability distribution over
possible destination nodes.

Since the output size of each head of the neural network is equal to the number of nodes
|N |, the total number of actions in this setting is only 2|N |. This approach should then be
able to considerably outperformNA, learning which picker should act first in each situation,
while scaling much better than EA, since its output grows linearly with the number of nodes
|N | and is unaffected by the number of pickers |P |.

4.4. Algorithms and hyperparameters

We trained our DRL agents using Proximal Policy Optimization (PPO) (Schulman et al.,
2017) a popular model-free RL baseline due to its effectiveness and sample efficiency. We
already described the architecture for the policy heads, the critic heads simply processes all
the node embeddings through an MLP with one hidden layer of size 64, and then applies a
global mean pooling to obtain one single value for the whole graph input.
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In our architectures we used multiple Graph Isomorphism Network (GIN) (Xu et al.,
2019) layers to create node embeddings. We chose GIN as it is at the same time very pow-

erful and quite simple. The message passing formula is x′
i = hΘ

(
(1 + ϵ) · xi +

∑
j∈N (i) xj

)
,

where hΘ represents a MLP of which we set the size to 64. The hyperparameters used to
train the final agents are the default ones from Tianshou’s PPO implementation3, including
a discount factor of 0.99. We apply a learning rate scheduler, with an exponential decay of
0.9 starting from a learning rate of 0.005 for the Adam optimizer.

5. Experiments

5.1. Experimental setup

We use the simulation environment described earlier to train our DRL agents. In particular,
since we are interested in assessing the transferability of the proposed methods, we train on
a single, small environment (Env 1) configuration and evaluate on 4 additional ones with
different characteristics (Env 2-5). The details of these environments are in table 2.

Despite having different sizes, Env 1, 2, 4, 5 and 6 share the same incoming order-to-
picker ratio and present similar picker-to-node and order-to-node ratios. Env 3, on the
other hand, has a much smaller order-to-picker ratio, which increases considerably the
level of coordination between pickers required from the controller agent to achieve good
performances.

Environment
name

Grid size |P| No Training Testing

Env 1 6 × 6 2 1 True True
Env 2 10 × 10 6 3 False True
Env 3 10 × 10 6 1 False True
Env 4 20 × 20 24 12 False True
Env 5 40 × 40 96 48 False True
Env 64 80 × 80 384 192 False True

Table 2: Environment configurations. P is the set of pickers and No the maximum number
of new orders announced per timestep.

Larger grid sizes have an impact on the expected rewards, as the pickers need more
timesteps to reach orders because of increased distances, which is reflected in additional
holding costs. Other parameters are kept the same across all configurations: (1) Holding
and tardiness costs CH and CT are set, respectively to 1 and 10. (2) Probability of new order
per timestep Po: 0.8. This probability influences every ‘new order’ event independently,
meaning that in an environment with 1 order per timestep, an average of 0.8 orders per
timestep will actually appear on the grid, while 2.4 orders will appear on average in an
environment with 3 maximum orders per timesteps. (3) New order location distribution:
uniform across grid locations. (4) Time windows range: [5, 10]. All newly generated ta

3. Default parameters of PPO policy in Tianshou.
4. Because of the very large size of the instances, only used for assessing inference time.

https://tianshou.readthedocs.io/en/v0.5.0/api/tianshou.policy.html#tianshou.policy.PPOPolicy
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and to (timesteps before orders’ states switch, respectively, from announced to ongoing and
from ongoing to tardy) are in this range. All instances are randomly initialized, except for
three fixed parameters: (1) All pickers are idle in the initial state; (2) A number of orders
between 0 and grid size - 1 is initialized in the environment; (3) Initial orders can be in
announced or ongoing state, but not tardy.

The dynamic CPR environment was implemented in Python 3.9 with PettingZoo (Terry
et al., 2021). The DRL methods were implemented using Pytorch and Pytorch Geometric
for the neural networks and Tianshou for PPO. Training and testing experiments were per-
formed on an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz and 16GB of RAM, without
the use of GPU. All policies were trained for 3 million timesteps and each training instance
required less than 4 hours.

5.2. Baselines

Since we work on an online problem, we cannot apply classical TSP or VRP based solutions
common in the order picking literature. At the same time, having shared and delayed
rewards makes approaches for different OBM (Alomrani et al., 2023; Wang et al., 2019)
also not suitable for our problem. Therefore, following the findings of Li et al. (2020),
according to whom greedy heuristics work better for TOBM problems in spatial data than
permutation search and online algorithms, we devised four heuristics, following the same
main algorithm, referred to as GD (Greedy Distance).
Given an idle picker p ∈ P :

1. All unassigned orders in state tardy or ongoing are sorted based on their distances
dist(lo, lp) from the controlled picker p.

(a) The closest order is chosen as the destination of picker p.

2. If there are no orders in state tardy or ongoing, unassigned announced orders are
sorted, again based on their distances from p.

(a) The closest order is chosen as destination for p.

3. Finally, if no announced are in the system, p stays in the same location.

As this procedure leads to a lack of coordination between the pickers, we extended 1a
and 2a so that the first order o in the sorted set is chosen as destination only if there are no
other idle pickers closer to it than p (dist(lo, lp) < dist(lo, lp

′
) ∀p′ ∈ P i \ p, where P i is the

set of idle pickers). We refer to this coordinated heuristic as CD (Coordinate Distance).
We improve further by changing the sorting criteria in points 1 and 2 from the distance

between order o and the controlled picker p to a more sophisticated cost-based metric,
which considers for each pair of orders (o, o′), the incurred cost if p picked o before o’ and
vice-versa, trying to foresee the change of the environment to a limited degree. Combining
this cost-based metric with the above two algorithms, we define two additional heuristics,
referred to as CC (Coordinated Cost-based) and GC (Greedy Cost-based) depending on
whether they adopt the coordinated strategy for points 1a and 2a or not.

Finally, to assess the importance of capturing spatial information in node embeddings
through GNNs, we apply the same structure run the three proposed methods with a simpler
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architecture, based on Inv-FF, as described in Alomrani et al. (2023), which do not involve
any GNN layer and simply process raw input features instead of node embeddings. We
refer to these architecture as NA-InvFF, EA-InvFF and MH-InvFF, in contrast with
NA-GNN, EA-GNN and MH-GNN representing our proposed approaches using GNNs.

We evaluate our methods directly on the average reward of a set number of episodes of
fixed length. In addition to pure performances, we also assess inference time required for
each decision of the different methods, to evaluate efficiency and scalability.

Figure 1: Performances of the various methods on the environment Env 1.

5.3. Results

First, we assess the performances of the different methods on Env 1 - the same used to train
the DRL agents. Figure 1 shows the distributions of cumulative costs over 100 episodes
of 100 timesteps each. We notice that all DRL approaches clearly outperform the heuris-
tics by a considerable margin. Among these, the methods using GNN architectures, in
orange, achieve the best results, with EA-GNN improving over 55% and almost 37% on,
respectively, the best performing heuristic and Inv-FF approach. This shows how exploit-
ing spatial information through graph neural networks can contribute to making better
informed decisions in a highly stochastic environment like the one at hand.

One of our goals is to train agents which can be used effectively on different environ-
ments, without any additional retraining effort. Figure 2 reports the performances of the
different methods on the remaining environments presented in table 2 (excluding Env 6).
It can be seen that, for Env 2, Env 4 and Env 5, the GNN-based approaches (in orange)
still significantly outperform the other methods. This shows that the use of GNNs really
allows to capture spatial patterns that the agent can exploit to act better in different en-
vironments, with the largest (Env 5) being more than forty times as large as the one used
for training (Env 1). For Env 2 and 4 EA-GNN still provides the best results, with a 10%
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improvement over MH-GNN. However, results are missing for Env 5 for both EA-GNN
and EA-InvFF, meaning that, despite the improved masking system, these method do not
scale efficiently and would probably not be suitable for real-world sized problem instances.
On Env 5, MH-GNN is therefore the best approach, achieving an improvement of 37%
and 75% on, respectively, NA-InvFF and CC.

(a) (b)

(c) (d)

Figure 2: Comparison of the performances of various methods on Env 2 (a), Env 3 (b), Env
4 (c), Env 5 (d). All DRL-based methods are trained on Env 1. In d, results are
missing for EA-InvFF and EA-GNN since neigher of the two methods managed
to finish the test runs within the maximum dedicated time of four hours.

An interesting point is raised by the performances on Env 3: since in this configuration
there are, on average, more idle pickers than pickable orders, coordination between pickers
becomes extremely important. Because of this, NA-GNN is not able to outperform the
heuristics that exploit picker coordination (CD andCC), while EA-GNN andMH-GNN,
which select the acting picker as part of the decision, achieve better results.

Finally, we are interested in estimating how our methods compare with the baselines and
with each other in terms of inference time. As already mentioned, in real-world CPR there
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Figure 3: Decision time required for each method. Since, especially for the heuristics in
small environment configurations, these times are close to zero, the logarithmic
scale allows to better evaluate the trends.

is no hard constraint on real-time decisions. However, understanding how the parameters
of the environment influence the time needed for computing actions is crucial to assess
which methods can actually be applied to problem instances larger than those considered
so far. To do so, we kept track of the time required to compute each decision during the
experiments discussed earlier, and in additional tests run with a limited number of episodes
on the even larger Env 6 as well.

Figure 3 shows the average inference time required by the different methods for each
decision across the environment configurations (leaving out Env 3, which presents a differ-
ent order-to-picker ratio). As the size of the problem instances increase, the time required
to compute actions also grows for every method. It appears clear, though, that this growth
follows very different trends. While the heuristics are much faster than DRL approaches on
small environment configurations, this gap constantly shrinks, until they are already slower
than NA-InvFF and MH-InvFF in the largest problem instances. The same would most
likely happen with NA-GNN and MH-GNN in even larger environment configurations.
Finally, the plot makes clear how, despite its excellent performance, the EA-GNN archi-
tecture is not scalable. Its action space corresponds to the size of the grid-graph multiplied
with the number of pickers in the system, as described in Subsection 4.3. Overall, MH-
GNN appears to be the best trade-off between performance and scalability, with its action
space being linear in the size of the graph, and independent of the number of pickers.

6. Conclusion

We propose to frame the Collaborative Human-Robot Order Picking problem as Two-sided
Online Bipartite Matching with spatial structure. This allows us to better deal with the
inherent stochasticity of warehouse environments compared to existing approaches, which
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plan long sequences of decisions in advance. We adopt DRL to solve the OBM problem,
and devise three different Graph Neural Network architectures to allow the DRL agent
to capture the relevant spatial information on which to base its decisions. We show that
our approaches achieve significantly better performances compared to heuristic strategies,
while also exhibiting good and efficient scalability to larger problem instances. Among
these, MH-GNN shows the best trade-off between performance and efficiency. Possible
future research directions include the extension of the proposed methods to even larger and
more realistic warehouse scenarios and the use of model-based DRL techniques to improve
decisions planning ahead, exploiting the knowledge about future pick locations.
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