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Abstract

Deep reinforcement learning (RL) has shown remarkable performance, but end-users do not
understand how the system solves tasks due to the black-box nature of neural networks.
Many methods from explainable machine learning have been adapted to RL. However,
they do not focus on the unique challenges of explaining actions’ short-term and long-term
consequences. This work introduces a new perspective to understanding RL policies by
clustering states into abstract states utilizing attention maps, giving a bird’s-eye view of the
policy’s behavior. We learn the attention maps iteratively together with the clustering of
states by masking the input features to estimate their importance. In contrast to previous
works that have uninterpretable abstract states and/or clustering objectives using state
values that are non-human intuitive, we only leverage attention maps in the clustering.
The policy only indirectly affects the clustering via attention maps. This allows us to
give global explanations from the view of feature attention, a quantity a human can relate
to given interpretable features. The experiments demonstrate that our method provides
faithful abstractions by capturing state semantics, policy behavior, and feature attention.
Furthermore, we show that our attention maps can mask state features without affecting
policy performance.

Keywords: Explainable Reinforcement Learning; Deep Learning; Interpretability

1. Introduction

Deep reinforcement learning (RL) have gained considerable popularity and shown high per-
formance in several tasks (Silver et al., 2017; Brown and Sandholm, 2017). However, the
black-box nature of neural networks has been criticized and makes it difficult for humans
to understand the underlying decision-making (Rudin et al., 2022). Consequently, deploy-
ing RL agents in the real world is challenging, especially in domains that require human
understanding and trust and where mistakes are costly.

In response to this problem, several explainable artificial intelligence methods tailored to
deep RL have been developed and are known as explainable reinforcement learning (XRL).
The most popular being saliency methods that explain the decision-making by highlighting
important features the agent pays attention to (Greydanus et al., 2018; Iyer et al., 2018; Mott
et al., 2019; Puri et al., 2020; Itaya et al., 2021; Shi et al., 2022). Despite their popularity,
these methods only locally explain a single decision. In classification tasks, this works since
the observations do not have sequential dependencies. However, in RL, actions have short-
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term and long-term consequences; thus, local explanations must be complemented with
global explanations. Even in a simple environment like Cart Pole, an episode can last 500
steps. Understanding which features an agent pays attention to requires first figuring out
interesting time steps to investigate.

This paper proposes a new post hoc global XRL method, attention-based state space
abstraction for policy summarization (ASAP). ASAP aims to complement the weakness
of the aforementioned local explanation methods. Our method focuses on answering the
question “how does the policy work?”, which helps to find states where it is interesting to
ask “why did the agent do action a in the state s?”. The method focuses on environments
where states are low-dimensional with interpretable features. ASAP summarizes stochastic
neural network policies with high-level attention maps by merging states into abstract states,
which we name hyperstates. To cluster states into hyperstates, we leverage only attention
maps obtained through learning by masking input features to estimate their importance.
These attention maps highlight task-relevant information and inform us about features
used in a hyperstate when making decisions, hence avoiding the difficulty of understanding
and subjective interpretation of what a hyperstate represents. Our experiments indicate
clustering on attention maps captures desirable grouping of states, such as states in a
hyperstate both being semantically similar and treated similarly by the policy.

Similar to our work, researchers have proposed state space abstractions methods (Zahavy
et al., 2016; Topin and Veloso, 2019; McCalmon et al., 2022; Bewley et al., 2022) to reduce
the state space for explaining policies. These methods explain via a Markov chain with
edges representing policy actions. Unlike ASAP, most of these methods do not explain the
hyperstates themselves. This makes it difficult for an explainee, the person consuming the
explanation, to understand what these hyperstates represent. Although McCalmon et al.
(2022) provide interpretability via natural language, their approach of defining natural
language predicates and binary classifiers to make interpretable hyperstates does not scale,
something we aim to solve with attention maps. Conceptually, ASAP differs from these
methods based on information used to merge states. While previous methods leverage state
description, action, and/or state value, we only use attention maps to cluster states. The
policy only indirectly affects the clustering via attention maps. As a result, we can explain
hyperstates and actions taken in hyperstates from the perspective of feature attention rather
than referring to 1) state values that we lack an intuitive understanding of or 2) actions
causing circular reasoning since actions themselves are used in the clustering.

Figure 1 shows an explanation produced by ASAP for a policy trained in the Mountain
Car environment. The main component is the attention maps, answering which features
the policy uses to make decisions in hyperstates. Additionally, there are two supporting
components. The first is representative states of each hyperstate with accompanying action
taken in the hyperstate. The second component is a Markov chain, showing how the policy
behaves in the hyperstate space. These two additions suggest our clustering objective
captures the generative process of the environment and the policy. Moreover, we show
in the experiments that with enough hyperstates, each hyperstate is often related to one
action. As a result, we can make statements like, “we observe that H0 are states where the
policy only cares about the velocity and not the position when accelerating left. And that
H4 are states similar to H0, but the velocity matters less when deciding to accelerate left”.
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Figure 1: An RL policy explanation produced by ASAP for the Mountain Car environment.
The primary component is the attention maps for hyperstates, explaining the im-
portance of features when the policy makes decisions. Additionally, there are two
supporting components. First, representative states with corresponding actions
of the learned hyperstates. Second, the policy graph, a Markov chain showing
how the policy traverses the hyperstate space where edges denote transitions.

The attention maps are computed relative to a baseline state that represents the “ab-
sence” of features. Our attention maps explain how the distribution over actions is affected
by each feature when it is “taken away”. In this example, we use the start state with fea-
tures position = −0.5 and velocity = 0 as our baseline state because that is when the car is
at the bottom of the valley without any speed. The motivation to use a baseline is related
to how humans attribute causes. Humans attribute a cause for an outcome by using the
absence of a cause as the reference point for determining its impact (Sundararajan et al.,
2017; Shrikumar et al., 2017).

In summary, our contributions are:

1. We propose a new method, ASAP, to provide a new perspective for understanding
RL policies by presenting the state space in terms of hyperstates with attention maps.
Our main contribution is the high-level attention maps that provide information about
features used in the decision-making and are the only information used to create the
hyperstates. The policy is leveraged to learn the attention maps but only indirectly
affects the clustering. Hence, providing interpretable hyperstates and avoiding clus-
tering on information an explainee cannot easily relate to.

2. We qualitatively and quantitatively evaluate ASAP. The experiments show that using
attention maps alone results in groups of states with desirable properties. States
with similar state semantics, policy behavior, and features with similar attention are
mapped to the same hyperstate, providing faithful abstractions. Moreover, we show
that policy performance is unaffected when attention maps mask states.
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2. Related Works

Recently, XRL has gained considerable popularity (Heuillet et al., 2021). Like explainability
in supervised learning, XRL methods can roughly be divided into inherent interpretability
and post hoc explainability. Inherently interpretable methods aim to create agents that are
interpretable out of the box. This is achieved by representing policies with function approx-
imators where a human can easily interpret the structure. On the one hand, interpretability
is intrinsic to the agent, thus fully interpretable. On the other hand, in many situations,
imposing limitations on the functional form is impossible. Post hoc methods do not impose
limitations on the agent but instead try to understand it as it is. The most popular are
saliency methods, which highlight important features. However, these methods only ex-
plain a single time step. This alone is insufficient in RL since sequential dependencies with
short-term and long-term consequences exist. More specific to RL, we have, for instance,
HIGHLIGHTS (Amir and Amir, 2018) that shows explainees “critical” states where taking
the wrong action has undesirable consequences on future outcomes. Other methods explain
policies by directly explaining the outcome (Juozapaitis et al., 2019; Yau et al., 2020).

Methods similar to ours try to make global explanations post hoc by creating an ab-
straction of the state space (Zahavy et al., 2016; Topin and Veloso, 2019; McCalmon et al.,
2022; Bewley et al., 2022; Luss et al., 2023). One problem with these approaches is un-
derstanding hyperstates they create. Zahavy et al. (2016) propose to apply t-distributed
stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008) on a DQN’s ac-
tivation and manually analyze the hyperstates. However, manually analyzing the structure
is time-consuming. Topin and Veloso (2019) introduce a method to create a policy graph
with actions, but their hyperstates lack semantics to help users understand what a hyper-
state represents. Further, their method requires binary features. To resolve this issue of
unintelligible hyperstates, McCalmon et al. (2022) propose to create descriptions in natural
language for each hyperstate. Their clustering uses the state, action, and state value. How-
ever, creating descriptions in natural languages requires human-created predicates, which
can be laborious and difficult in complex environments. Moreover, forming hyperstates in
this way makes it difficult to explain hyperstates with similar state descriptions but different
state values because an explainee has no intuitive understanding of state values.

To improve on the weaknesses of these approaches, we utilize attention maps to ground
hyperstates and make the hyperstates interpretable without requiring human intervention.
In contrast to other approaches, we only use attention to cluster states into a hyperstate,
which makes it possible to create statements without referring to quantities not easily
interpreted by humans, such as state values. Further, we show attention alone captures
desirable properties, such as state semantics and policy behavior, without including the
state description and action in the clustering process. Thus, we can explain actions in
hyperstates using feature attention without circular reasoning.

Working on state space abstraction, Bewley et al. (2022) propose a method to analyze
and compare several policies via multiple Markov chains, which differs from our goal of
understanding a single fully trained policy. Luss et al. (2023) present a new state space
abstraction method but focuses on a specific state and states within a fixed distance. Thus,
their method lies between global and local explanations, which differs from our aim for
global explanations.
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3. Background

In RL, the environment is modeled as a Markov decision process (MDP) defined as a tuple
⟨S,A, p, r, γ⟩ with the state space S, the action space A, the discount factor γ ∈ [0, 1],
the transition function, and the reward function. The transition function p(s′|s, a) is a
conditional probability distribution that takes a state-action pair s ∈ S, a ∈ A(s) and
outputs the probability of the next state s′ ∈ S. A(s) denotes the set of actions available in
the state s. The reward function r(s, a) outputs the reward for taking an action a ∈ A(s)
in the state s, and can optionally depend on the next state s′. In this work, we focus on
low-dimensional states with interpretable features. Further, all environments we experiment
with have continuous features.

Given the MDP, an agent seeks to learn a policy π to solve the task by maximizing
the discounted cumulative reward received by employing the policy in the environment.
The policy is a function that takes a state st and outputs either the corresponding action
to take or the distribution over actions in that state. The policy can be deterministic
or stochastic. In this work, we focus on differentiable stochastic policies. To learn the
policy, a value function is often learned. The value function can either be state-based or
state-action-based. The state-based value function is the expected discounted cumulative
reward, known as the return, received by following the policy π from a state s and is defined
by V t

π(s) = Eτ∼π[r(τ)|St = s], where τ = (st, at, st+1, at+1, . . . ) is a trajectory of state-action
pairs. Similarly, the state-action-based function is defined by Qt

π(s, a) = Eτ∼π[r(τ)|St =
s,At = a] as the return of taking the action a in the state s and follow the policy thereafter.

4. Learning hyperstates

The agent seeks to learn a high-performing policy π given an MDP. Our goal for this work
is to understand how this policy works post hoc, that is, comprehending its behavior after
training. We do this by clustering states into hyperstates. Contrary to previous methods,
we only use information about feature attention when determining how to cluster states.
The policy only indirectly affects the clustering via attention maps. Our method jointly
learns attention maps of states and clusters them using neural networks trained end-to-end.

Our setup consists of a network that predicts the probability of a state belonging to a
hyperstate. The hyperstate probability is used to determine attention maps. As a result,
we get an abstraction of the state space with hyperstates and attention maps grounding
them. First, we discuss properties desirable for a hyperstate in Section 4.1. Afterward,
Section 4.2 formulates the learning objective and describes the components of our method,
shown in Figure 2, in detail.

4.1. Hyperstate Properties

We wish to fulfill several properties when finding an abstraction of the state space. First, we
want states forming a hyperstate to be semantically similar. By being semantically similar,
it becomes easier and quicker to understand what a hyperstate represents. Second, since our
goal is to explain the policy, we must ensure that the policy perceives states in a hyperstate
similarly. In other words, given any two states s, s′ ∈ Hj , the policy should be such that
πθ(·|s) ≈ πθ(·|s′). Consequently, we can make explanations on how hyperstates are related
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Figure 2: A stochastic policy works by taking in a state si and outputting a distribution
over actions, shown at the bottom. Our method is trained by first computing
the distribution over actions with the masked observation ŝi, shown at the top.
The state si is used to compute 1) the clustering of the state via the function
fθ and 2) the masked state ŝ utilizing the baseline state sbaseline weighted by the
attention map gi. Afterward, we minimize the difference between the distribution
over actions conditioned on si and ŝi. Doing this allows us to create hyperstates
with faithful attention maps learned iteratively end-to-end.

to actions. Lastly, we want an unambiguous representation of hyperstates through attention
maps humans can understand. Hence, each state in a hyperstate should have approximately
the same attention map. Given the attention maps d, d′ for states s, s′ ∈ Hj , they should
be so that d ≈ d′. The experiments show that our approach captures these elements by
clustering only on attention maps and without using additional information.

4.2. Approach: How to Learn Hyperstates

Given a trained policy, we propose a new state clustering approach that merges states
with similar attention maps into a hyperstate. The method aims to estimate hyperstate
probability for states and uses it to create attention maps via mixtures of probabilities.
Specifically, we compute these two quantities in the following two steps:

1. First, given a state si ∈ Rm, we calculate ui = fθ(si), which corresponds to Clustering
in Figure 2. Each dimension of them dimensional state si is a feature. For example, in
the mountain car environment, the dimension of a state si is m = 2, and the features
are position and velocity, which are continuous values. ui ∈ [0, 1]k is a categorical
distribution denoting the probability for the state si belonging to hyperstates H =
{H0, . . . ,Hk}.

2. After obtaining the probability of the state si being a member of the hyperstates, ui
is inputted to a function hϕ to compute the attention map gi = hϕ(ui). gi ∈ [0, 1]m

is the attention map for the state si and corresponds to Creating Attention Map in
Figure 2. In addition to informing explainees about feature attention, we create a new
state ŝi by applying the attention map. ŝi represents si where features are masked
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according to how important they are. ŝi is used in the learning objective to ensure
faithful attention maps.

Thus, our goal is to iteratively learn the two parameterized functions fθ : Rm → [0, 1]k

and hϕ : [0, 1]k → [0, 1]m to obtain a state abstraction that fulfills the desired hyperstate
properties. To achieve that, we have three constraints in our learning objective. Firstly, we
want the clustering to be tight so that all states in a hyperstate have approximately the same
attention, which is fulfilled by the objective introduced in Section 4.2.2. Secondly, we want
gi to be sparse for obtaining simpler explanations, which we elaborate on in Section 4.2.3.
Finally, we need to maintain policy fidelity by making sure that π(·|si) ≈ π(·|ŝi) for all
si, ŝi, where ŝi is the masked state. We describe state masking in Section 4.2.4 and how to
maintain policy fidelity in Section 4.2.5.

4.2.1. Learning Objective

Consider the datasetD = {(si, π(·|si))}ni=i of state-action-distribution pairs that we generate
by running simulations with the policy π in the environment. Our goal is to minimize the
learning objective defined by

L =

n∑
i=1

||π(·|si)− π(·|ŝi)||22 + λ1DKL(pi∥ui) + λ2||gi||1. (1)

In this objective, we need to balance three things: 1) keep the same policy behavior while
states are masked by minimizing ∥|π(·|si) − π(·|ŝi)||22, discussed in Section 4.2.5, 2) form
tight clusters so that attention maps of all member states in a hyperstate are approximately
the same, which we get by minimizing DKL(pi∥ui), described in Section 4.2.2, 3) make
attention maps spare and therefore also explanations sparse by minimizing ||gi||1, elaborated
in Section 4.2.3. By iteratively minimizing this objective, we learn the function fθ to cluster
states into hyperstates and the function gϕ to produce attention maps.

4.2.2. Clustering

The clustering function fθ is represented by a feedforward neural network outputting a
categorical distribution. We aim to make each state have a high probability of belonging to
one of the hyperstates. In other words, we want ui to be close to the Dirac delta distribution.
In turn, outputting the same attention map for all states in a hyperstate. We iteratively
refine hyperstate purity by following Xie et al. (2016)’s approach. To do so, we minimize
the Kullback–Leibler divergence defined by

DKL(pi∥ui) =
∑
j

pij log
pij
uij

, where pij =
u2ij/hj∑
j′ u

2
ij′/hj′

and hj =
∑
i

uij . (2)

pij is interpreted as the probability of assigning a state si to a hyperstate Hj . This objec-
tive iteratively refines the hyperstates using a normalization term to avoid all states being
assigned to one large hyperstate.
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4.2.3. Creating attention map

To compute the attention maps, we take ui and feed it through a linear layer followed by
the sigmoid activation defined by gi = hϕ(ui) = σ(ϕwui + ϕb). These values are bounded
0–1, which provides an understanding of how much each feature in the m-dimensional state
contributes to the policy output relative to the baseline state. The baseline state represents
the “absence” of features and is discussed in the next subsection. We aim to obtain a sparse
gi to make it easier to understand which features contribute to the decision-making. To
do so, we minimize the L1 norm of the attention map ||gi||1. We use the L1 norm since it
performs regularization and feature selection.

4.2.4. State Masking

We mask the state si with the attention map gi to create the masked state ŝi. We do
this by first defining a baseline state sbaseline that represents “missingness” or “absence”
of features (Sturmfels et al., 2020). The goal of sbaseline is to represent a state where
the evidence used for prediction is removed and therefore referred to as missingness. As
previously mentioned, the motivation to use a baseline is connected to how humans attribute
causes. That is, using the absence of causes as the reference point, we reason about and
blame causes for the resulting outcome (Sundararajan et al., 2017; Shrikumar et al., 2017).

In computer vision, it is common to represent the baseline with the constant value 0.
However, using 0 is troublesome and can have unintended effects, especially when we have
symbolic state representations where 0 in some features is impossible. For instance, it is
impossible to observe 0 meter for the height of a person. Thus, setting a feature to 0 naively
can create unrealistic and out-of-distribution baseline states. We define the start state s0
as our baseline to combat this issue. In the start state, an agent often starts with nothing,
such as no speed and no acceleration. Although not always true, it represents an easily
defined valid state.

After defining a baseline representing missingness, we compute the masked state ŝi by

ŝi = gi ⊙ si + (1− gi)⊙ sbaseline

ŝi = sbaseline + (si − sbaseline)⊙ fθ(gϕ(si))
(3)

where ⊙ is the elementwise product. Equation (3) creates a new state ŝi where features
are masked and the amount of masking depends on how important they are. If the policy
acts the same in both states si and sbaseline then the values in gi will be 0 or close to 0,
thus ŝi ≈ sbaseline. This is seen in Figure 1 where attention on both features in H1 are 0.
Attention on the features are 0 because the distribution over actions for states in H1 and
the baseline state are approximately the same. This does not imply state semantics are
neglected, as we see in Section 5.3.

4.2.5. Matching distribution over actions

To obtain faithful attention maps, we make sure π(·|ŝi) ≈ π(·|si). This is achieved by mini-
mizing the mean squared error between the distribution over actions, defined by ||π(·|si)−
π(·|ŝi)||22. For this method, we require the policy to be differentiable and that we can com-
pute the distribution over actions. We do not update the policy and keep it fixed during
training.
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5. Experiments

The aim of the experiments is to show that our method satisfies desirable properties outlined
in Section 4.1 by only using attention maps to cluster states. In addition, the experiments
intend to demonstrate that our attention maps are faithful to the policy they explain.

First, we introduce our experimental setup in Section 5.1. Second, we qualitatively
investigate the insight provided by our method and whether it matches our intuition in Sec-
tion 5.2. Third, Section 5.3 introduces the use of t-SNE and silhouette score (Rousseeuw,
1987) to check how well our method merges semantically similar states and separates se-
mantically dissimilar states. Fourth, in Section 5.4, we test hyperstate fidelity by assigning
one action to each hyperstate and acting with the hyperstates instead of the policy in the
environment. Last, Section 5.5 looks into how masked states affect the policy’s performance.

5.1. Experimental Setup

Environments. We tested our methods in five different environments with various state
space complexity and different action spaces. Mountain Car v0, Cart Pole v1, Acrobot
v1, and Flappy Bird v0 (Kubovč́ık, 2023) have a discrete action space. While Swimmer
v4 (Todorov et al., 2012) has a continuous action space. Policies. We utilized the policies
implemented by CleanRL v1.0.0 (Huang et al., 2022) in PyTorch v1.13.1. We used the
Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017) to train policies for
all the experiments. The neural network architectures used are those prespecified by the
CleanRL implementation. The hyperparameters used to train the policies generally follow
those prespecified by CleanRL. We used the Adam optimizer (Kingma and Ba, 2015) to
optimize the parameters in this work. Clustering. We used K-means clustering throughout
the experiment to compare to our method. For Mountain Car and Cart Pole, we used 5
hyperstates, 10 hyperstates for Acrobot and Swimmer, and 11 hyperstates for Flappy Bird.
The number of hyperstates was chosen to satisfy the hyperstate properties in section 4.1
while at the same time keeping the number of hyperstates as low as possible. This required
multiple runs with manually inspecting the resulting hyperstate assignment and selecting
one by balancing these considerations.

5.2. Hyperstate Interpretation

This section illustrates how to leverage explanations and shows the value of providing
hyperstate-level attention maps. We investigate the Flappy Bird example shown in Fig-
ure 3, where the timing of actions plays a central role. There are two actions in this
environment: do nothing or flap. The symbolic feature version of this environment used in
the experiments consists of 12 features. The first three features 0–2 corresponds to the first
pipe’s horizontal position, the upper vertical position, and the lower vertical position. Fea-
tures 3–5 represent the second pipe and features 6–8 represent the third pipe, respectively.
The final three features are the agent’s vertical position, vertical velocity, and rotation.

As the agent usually does not flap, it is interesting to investigate when it does. From
Figure 3, we see the agent flaps in two of the hyperstates H5 and H6. Although not seen
in the figure, the agent sometimes flaps in H8 to keep it above ground before reaching the
first pipe. In H5, we see from the attention map that the agent decides to flap based on the
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Figure 3: An explanation produced by ASAP for the Flappy Bird environment. The ex-
planation is the hyperstate level attention maps with supporting elements. First,
representative states of the learned hyperstates where the red arrow length de-
notes vertical velocity. Second, the policy graph, a Markov chain showing how
the policy traverses the hyperstate space. Only edges where transitions have 2%
or larger probability are included for ease of visualization. The attention maps
show the attention on features when making decisions relative to the baseline
state. The start state, which is the baseline, closely resembles the representative
state of H8.

first pipe’s horizontal F0 and vertical positions F1 and F2, especially on the lower vertical
position F2. This makes sense since the first pipe decides whether the agent survives. The
agent also pays attention to the second pipe’s horizontal and lower vertical positions F3 and
F5 because it likely affects how much the agent should flap. Too much flapping might cause
the agent to crash into the upper second pipe. Interestingly, the agent uses its rotation F11

which is related to when it last flapped and is not concerned about its velocity F10. This
may be because the vertical velocity changes instantaneously when the agent flaps. In H6,
when the agent flaps to pass the second pipe from a lower position, surprisingly, it seems
like it uses the first pipe to determine its position relative to the second pipe. Similar to H5,
it cares about the vertical position of the pipe that comes after. The policy graph shows
that the agent stays longer in H6 than H5, which makes sense since it has to move from the
first piper with a lower vertical gap to the next pipe with a higher vertical gap.

Besides the flapping situations, we observe from the policy graph that the agents stay
longer in H8 than the rest of the hyperstates. This means it takes a while before the first
pipe appears after starting the game. In this hyperstate, the agent uses information about
its vertical position, vertical velocity, and rotation more than in other hyperstates. This
matches our intuition because the agent has no other information to act upon besides the
information about itself. When the pipes appear, the agent receives a lot of redundant
information and can use it to gauge its vertical position. Therefore, its vertical position
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no longer matters. The policy graph shows that the agent goes to H5 after H8 when it
encounters the first pipe. Afterward, depending on if the gap on the second pipe is higher
or lower, it can take two different paths: 1) H1 → H6 → H3 or 2) H4 → H7 → H9. Next,
when the first pipe disappears, the agent goes to H0 and restarts the cycle. Because the
environment is stochastic, there are many paths to take besides the one we outlined, as
reflected in the complexity of the policy graph.

5.3. State Semantic

One important property to have when making hyperstates is to group semantically similar
states. To test if ASAP can do that, we plot the state space of Swimmer and Flappy
Bird using t-SNE. t-SNE visualizes similarity and dissimilarity between points in a high-
dimensional space. If ASAP assigns states close in the t-SNE plot to the same hyperstates, it
suggests that ASAP retains state semantics when constructing hyperstates. In Figure 4(a),
we observe that our method groups states reasonably well semantically, especially since this
is not explicitly encouraged via the loss function. Also, the plots are created using default
hyperparameters; thus, they are not overfitted. For an environment with discrete action
space, we investigate the states space of Flappy Bird in Figure 4(b). We first see that H8 is
quite spread out, but from Figure 3, we know that those are states before passing the first
pipe after starting. The second thing is that H5 and H6 overlap with other hyperstates and
are too spread out. These two hyperstates are situations where the agent flaps. Thus, it
is hard to avoid the overlap while trying to capture how the agent behaves. Besides these
hyperstates with low tightness and low separations from other hyperstates, there is some
unwanted spread and overlap between H3 and H9. Nevertheless, we do not optimize for
this in the objective function while still being able to capture these patterns.

t-SNE provides a qualitative measure, thus allowing different interpretations. The sil-
houette score is often used as a metric to evaluate cluster consistency. We compute the
silhouette score using the state and Euclidean distance to test if state semantics are pre-
served. The silhouette score measures how similar a state is compared to other states in
its own hyperstate and to states in other hyperstates. The aim is to have hyperstates that
are tight and well separated from other hyperstates. We compare our method to hyper-
states created by clustering on various other information. This includes action, state value,
the activation of the policy’s penultimate layer, and explanations created by three feature
attribution methods implemented in Captum (Kokhlikyan et al., 2020): 1) deep learning
important features (DeepLIFT) (Shrikumar et al., 2017), 2) feature ablation, which perturbs
the input by replacing input features with baseline values, and 3) Shapley value sampling,
which is based on perturbation to compute Shapley values (Strumbelj and Kononenko,
2010). Besides directly clustering on the state to create hyperstates, our method performs
best or second best based on the silhouette score, as seen in Table 1. Although the silhou-
ette score has the disadvantage of preferring spherical clusters, it quantitatively indicates
that our approach does not neglect state semantics when creating hyperstates.

5.4. Hyperstate Fidelity

To give explanations such as, “if given the state s from the hyperstate Hi, then the policy
will execute the action a”, we need the policy to take the same action for all “critical”
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Figure 4: State spaces of the Swimmer and Flappy Bird environments produced using t-SNE
with Scikit-learn v1.2.2 and its default hyperparameters.

Environment

Info Mountain Car Cart Pole Acrobot Flappy Bird Swimmer

Action 0.030 −0.001 0.020 0.067 0.064
State Value 0.191 −0.023 −0.032 −0.092 −0.070
Activation 0.045 0.052 0.120 0.142 0.080
Feature Attribution −0.035 −0.055 −0.076 −0.048 0.072
Shapley Values −0.084 0.134 −0.143 −0.148 0.133
DeepLIFT −0.073 −0.086 −0.066 −0.093 −0.025
ASAP (Ours) 0.226 0.127 0.057 0.103 0.101

Table 1: Silhouette score of states clustered based on information extracted from the policy.

states in a hyperstate. Thus, to test the ability of our methods to create hyperstates that
group states with the same actions together, we test how well the hyperstates can be used
as a substitute for the policy they explain. For each hyperstate, we take all states from the
training set assigned to that hyperstate, average the action probability for those states, and
assign the action with the highest probability to the hyperstate. Afterward, we simulate
the environments and act with the hyperstates as a substitute for the policy.

Table 2 shows how dividing states into hyperstates based on various information ex-
tracted from the policy reflects the policy’s behavior. We see that our approach and the
activation of the policy’s penultimate layer capture the behavior best, besides including the
action itself in the clustering process. The only exception is in Swimmer where the feature
attribution methods also capture the policy’s behavior. In this environment, the policy has
two outputs, so we averaged the outputs rather than computing them with respect to the
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Environment

Method Mountain Car Cart Pole Acrobot Flappy Bird Swimmer

State −200.00 43.89 ± 8.14 −500.00 2.10 51.48 ± 20.69
State Value −200.00 9.26 ± 0.77 −500.00 2.10 13.91 ± 7.82
Activation −114.38 ± 1.35 201.47 ± 8.29 −88.58 ± 24.63 2.10 309.94 ± 7.90
Feature Ablation −200.00 19.48 ± 4.70 −247.19 ± 77.03 2.10 334.10 ± 7.44
Shapley Values −200.00 49.66 ± 26.03 −412.97 ± 100.66 2.10 309.65 ± 7.74
DeepLIFT −200.00 15.05 ± 4.93 −490.09 ± 28.23 2.10 39.69 ± 23.26
ASAP (Ours) −133.09 ± 33.71 500.00 −96.49 ± 34.03 457.71 ± 121.60 337.67 ± 3.33

Table 2: Policy Performance with deterministic action for each hyperstate. The sample
return mean and the standard deviation is computed over 100 episodes with a
different random seed for each episode.

Environment

Method Mountain Car Cart Pole Acrobot Flappy Bird Swimmer

No Masking −114.42 ± 19.17 500.00 −73.10 ± 11.31 479.83 ± 108.63 305.92 ± 7.31
Feature Ablation −113.48 ± 0.89 500.00 −75.36 ± 11.76 2.44 ± 2.38 176.75 ± 14.54
Shapley Values −119.64 ± 16.87 500.00 −79.58 ± 19.84 9.72 ± 1.54 88.66 ± 17.33
DeepLIFT −111.05 ± 4.37 500.00 −74.40 ± 17.88 13.17 ± 2.01 293.64 ± 5.93
ASAP (Ours) −113.06 ± 17.52 500.00 −72.34 ± 11.30 492.31 ± 74.78 305.57 ± 6.84

Table 3: Sample return mean and standard deviation over 100 episodes with input features
masked according to Equation (3). Each episode is initialized with a new seed.

action of interest, which might affect performance. Regarding Flappy Bird, the timing is
important, making replacing the policy with one action per hyperstate difficult.

5.5. Policy Performance With Masked Observations

To evaluate the faithfulness of our attention maps, we mask states using the attention maps
generated by our attention method and three feature attribution methods that utilize base-
lines: DeepLIFT, feature ablation, and Shapley value sampling. Explanations computed by
the other methods are with respect to the action with the highest probability. To mask the
input with the other feature attribution methods, we normalized their values to the range
0–1 and utilize Equation (3) to compute the masked state.

In Table 3, we see attention maps produced by ASAP mask states without affecting
policy performance. On the one hand, this is to be expected since ASAP optimizes this in the
loss function. On the other hand, ASAP restricts the attention maps to be approximately
the same for all states in a hyperstate, thus limiting the degree of freedom. Surprisingly,
the other methods not optimized for this task mask states without the policy losing too
much performance and even performing better in the Mountain Car environment. In the
Swimmer environment, the other feature attribution methods perform worse. The behavior
might be related to that we average outputs to compute feature attributions. As for the



Bekkemoen Langseth

Flappy Bird, they do not work because the timing of the action plays a central role, and a
small error on when to flap can end the episode prematurely.

6. Conclusion and Future Work

This paper introduced a new attention-based state abstraction method, ASAP. ASAP pro-
duces global explanations and works post hoc by end-to-end learning hyperstates and at-
tention maps describing them. The attention maps are the only information used in the
clustering objective, contrasting previous methods using state, action and/or state value.
The policy is only indirectly used in clustering via learned attention maps. Accordingly, this
enabled us to make statements about hyperstates and policy behavior in hyperstates using
attention maps, as we did not use the action in the clustering process. Also, we did not
refer to non-human intuitive quantities like the state value. We qualitatively and quantita-
tively showed that ASAP captures state semantic and policy behavior without leveraging
this information in the training objective. This resulted in hyperstates with semantically
similar states where the policy behaves alike. Further, we demonstrated that the attention
maps are faithful to the policy and can mask states without affecting policy performance.

For future work, we should 1) develop methods for determining the number of hyper-
states, which is a difficult problem. On the one hand, the more complex environments need
more hyperstates to capture the agent’s behavior. On the other hand, we need to consider
several aspects of the explainee’s needs. If the explainee wants hyperstates to represent a
single action each, how similar states in a hyperstate are, and feature attention similarity.
Also, we need to avoid overwhelming the explainee by having too many hyperstates, making
explanations less valuable. 2) Investigate how to create hyperstate descriptions suited for
non-experts. The current representation requires understanding the features, which may re-
quire domain knowledge and is unsuited for non-experts. 3) Conduct user studies of ASAP.
User studies provide new insights and are important to understanding the real-world use-
fulness of explanations. Nevertheless, there are some shortcomings. They are expensive to
perform, thus resulting in researchers using Amazon Mechanical Turk and university stu-
dents for evaluation, which are not necessarily the intended end-users for the explanations.
Moreover, user studies are often not comparable across papers, indicating the importance of
evaluations besides user studies. 4) Research how ASAP can be adapted to more complex
environments with high-dimensional states. One question is how to represent hyperstates
when the input is pixels and high-dimensional while still being human-understandable. An-
other is handling the number of hyperstates so that explanations are faithful and capture
agent behavior without overwhelming the explainee. This may require dividing the state
space into subspaces before applying ASAP.
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