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0.1. Map Images

(a) Tokyo (b) New York

Figure 1: Two examples of map images from OpenStreeMap (OSM) OpenStreetMap contributors
(2017).

As mentioned in the paper, we employ a map-based approach that converts GPS coordinates
into map images to leverage the rich spatial and contextual information provided by maps. An
example is provided in Figure 1. As can be observed, maps are rich sources of information. They
contain various elements such as shop names, road structures, landmarks, points of interest,
and other geographic features. This wealth of information allows us to capture a comprehensive
understanding of the environment and enables our model to leverage the spatial context and
relationships present in the maps.

0.2. Additional Results: Population Density Prediction

In the supplementary material, we also report results on another downstream task, population
density prediction. We randomly selected 50,000 GPS coordinates from the dataset, and extracted
the corresponding feature embeddings from their map images using the trained student network.
We then trained a classification model to predict the population density based on the feature
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Pretrain 1 epoch 25 epochs 50 epochs

Random Init 18.16/25.42 39.85/50.28 51.51/61.02
raw GPS 2.59/6.63 2.57/5.60 1.09/4.22

MoCo-V2 Chen et al. (2020) 34.15/50.13 48.42/61.21 54.11/67.43
DINO Caron et al. (2021) 37.83/54.28 52.67/66.40 66.24/78.32

MoCo-V2+Geo+TP Ayush et al. (2021) 49.30/66.31 61.29/76.79 71.76/85.34
Tile2Vec Jean et al. (2019) 38.49/54.25 55.09/67.20 62.22/73.71

GPS-SELM (geo) 56.12/71.47 64.23/80.11 72.34/85.17
GPS-SELM (geo+rec) 58.20/72.10 65.19/81.29 73.40/86.28

GPS-SELM (geo+rec+int) 54.98/70.23 63.41/80.09 72.95/86.21

Table 1: Top-1 accuracy/top-5 accuracy on the population density prediction. All results are
averaged over ten evaluation trials.

embeddings. The cluster that the model aims to correctly predict is one cluster among 30 pop-
ulation density clusters. Similarly to the lance price experiment, the map images used for the
population density task were not used for pretraining GPS-SELM. Table 1 presents the results
of our experiments, including top-1 and top-5 accuracy of each method. Our method achieved
the highest top-1 and top-5 accuracy, surpassing the previous baselines. These results highlight
the effectiveness of enhancing the DINO framework with geo-predictive tasks and a high-level
reconstruction task. Moreover, it is worth noting that GPS-SELM achieves a relatively good level
of accuracy in estimating population density even after just a single fine-tuning epoch.
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