
Proceedings of Machine Learning Research 222, 2023 ACML 2023

Enhancing Cross-Category Learning in Recommendation
Systems with Multi-Layer Embedding Training

Zihao Deng zihaodeng@utexas.edu
Benjamin Ghaemmaghami ben.ghaem@utexas.edu
The University of Texas at Austin

Ashish Kumar Singh ashish101@gmail.com
E2open

Benjamin Cho bjcho@utexas.edu

Leo Orshansky orshaleo@utexas.edu

Mattan Erez mattan.erez@utexas.edu

Michael Orshansky orshansky@utexas.edu

The University of Texas at Austin

Editors: Berrin Yanıkoğlu and Wray Buntine

Abstract

Modern DNN-based recommendation systems rely on training-derived embeddings of sparse
features. Input sparsity makes obtaining high-quality embeddings for rarely-occurring cate-
gories harder as their representations are updated infrequently. We demonstrate a training-
time technique to produce superior embeddings via effective cross-category learning and
theoretically explain its surprising effectiveness. The scheme, termed the multi-layer em-
beddings training (MLET), trains embeddings using factorization of the embedding layer,
with an inner dimension higher than the target embedding dimension. For inference effi-
ciency, MLET converts the trained two-layer embedding into a single-layer one thus keeping
inference-time model size unchanged.

Empirical superiority of MLET is puzzling as its search space is not larger than that
of the single-layer embedding. The strong dependence of MLET on the inner dimension
is even more surprising. We develop a theory that explains both of these behaviors by
showing that MLET creates an adaptive update mechanism modulated by the singular
vectors of embeddings. When tested on multiple state-of-the-art recommendation models
for click-through rate (CTR) prediction tasks, MLET consistently produces better models,
especially for rare items. At constant model quality, MLET allows embedding dimension,
and model size, reduction by up to 16x, and 5.8x on average, across the models.

Keywords: Embedding Training; Overparameterization Theory; Gradient Flow Analysis

1. Introduction

Recommendation models (RMs) underlie a large number of applications and improving
their performance is increasingly important. The click-through rate (CTR) prediction task
is a special case of general recommendation that seeks to predict the probability of a user
clicking on a specific category. User reactions to earlier-encountered instances are used
in training a CTR model and are described by multiple features that capture user infor-
mation (e.g., age and gender) and category information (e.g., movie title, cost) Ouyang

© 2023 Z. Deng, B. Ghaemmaghami, A.K. Singh, B. Cho, L. Orshansky, M. Erez & M. Orshansky.

Deng Ghaemmaghami Singh Cho Orshansky Erez Orshansky

et al. (2019). Features are either numerical or categorical variables. A fundamental aspect
of modern recommendation models is their reliance on embeddings which map categorical
variables into dense representations in an abstract real-valued space. State-of-the-art RMs
increasingly use deep neural networks. Most high-performing models use a combination
of multi-layer perceptrons (MLPs) to process dense features, linear layers to generate em-
beddings of categorical features, and either dot products or sub-networks that generate
higher-order interactions. The outputs of the interaction sub-networks and MLPs are used
as inputs into a linear (logistic) model to produce the CTR prediction. Broadly, the above
describes modern deep recommender systems, including: DLRM Naumov et al. (2019),
Wide and Deep (WDL) Cheng et al. (2016), Deep and Cross (DCN) Wang et al. (2017),
DeepFM Guo et al. (2017), Neural Factorization Machine (NFM) He and Chua (2017),
AutoInt Song et al. (2019), and xDeepFM Lian et al. (2018).

Inner Dimension

xEmbedding
Dimension

d x N k x N=

Number of Categories Inner Dimension k

Feature N
x=

Number of Categories N

Dot Product Interactions

Top MLP

Dense
Features

Bottom
MLP

Factorize for Training

Inner Dimension

xEmbedding
Dimension d x N d x k k x N=

Number of Categories
Inner Dimension k

Feature 1

xEmbedding
Dimension d

=

Number of Categories n

...

Collapse for Inference

Sparse Feature 1 Sparse Feature 2

Inference-Time Single-Layer Embedding Tables

Sparse Feature N

MLET Training-Time Embedding Tables
(for All Sparse Features)

(a)

4 8 16 32 64
Embedding Dimension (d)

0.449

0.450

0.451

0.452

0.453

0.454

0.455
Va

lid
at

ion
 Lo

gL
os

s
Single-layer Training
MLET k=32
MLET k=64

(b)

Figure 1: (a) MLET trains a two-layer model but collapses it to a single layer for inference.
(b) MLET results in superior performance compared to single-layer embedding
training. Importantly, improvement grows with MLET’s inner dimension 𝑘.

We propose and study an embarrassingly simple overparameterization technique for en-
hancing embeddings training by enabling effective cross-category learning, the MLET. Fig-
ure 1(a) illustrates the technique and the transformations involved. Let the full embedding
table be 𝑊 ∈ R𝑑×𝑛, where 𝑛 is the number of elements in the table and 𝑑 is the embedding
dimension. Each column of the table represents the embedding of a category. The conven-
tional way of training 𝑊 is to represent it by a single linear layer and train it jointly with
the rest of recommendation models. MLET uses a two-layer architecture that factorizes
the embedding table 𝑊 in terms of 𝑊1 and 𝑊2: 𝑊 = 𝑊1𝑊2 with 𝑊1 ∈ R𝑑×𝑘 ,𝑊2 ∈ R𝑘×𝑛. 𝑘

is a hyperparameter representing the inner dimension of embedding factorization. Vector
𝑞 ∈ Z𝑛 denotes a one-hot encoding of a query to 𝑛 categories. The embedding lookup is
represented by a matrix-vector product: 𝑟 = 𝑊1𝑊2𝑞. 𝑟 ∈ R𝑑 denotes the embedding of the
queried category. In MLET, 𝑊1 and 𝑊2 are only used during training: after training, only

MLET

their product 𝑊 = 𝑊1𝑊2 is retained. This reduces a two-layer embedding into a single-layer
one for inference.

The contributions of this paper are two-fold. First, we empirically show MLET’s effec-
tiveness in improving performance and reducing model size. Tested on seven state-of-the-art
recommendation models with two public CTR datasets, MLET allows a reduction of 16x
(5.8x less on average) in inference-time embedding parameters compared to single-layer em-
bedding training at constant performance. Figure 1(b) compares, using DLRM model on
the Criteo-Kaggle dataset Labs (2014), the quality-size trade-offs obtained by a conventional
single-layer embedding training and MLET, showing MLET’s sizeable benefits.

More importanlty, we present a theory to explain the puzzling effectiveness of MLET.
Because MLET does not increase the search space of the single-layer embedding, nor does
increasing the inner dimension enlarges the search space when the inner dimension is bigger
than the embedding dimension, two aspects of MLET seem surprising. The first is why
it is superior to single-layer embedding training. The second is why its quality continues
to improve with a larger inner dimension, which is already bigger than the embedding di-
mension. To answer the first question, we point out that in each iteration of conventional
single-layer embedding training, only the embeddings corresponding to the queried cate-
gories get updated. Due to sparsity of queiries, only a small fraction of embeddings are
updated. Importantly, the rarely-occurring categories are updated less frequently, com-
pared to the more frequent ones. In contrast, MLET leads to embeddings of all categories
being updated on each training iteration. Effectively, knowledge from the queried categories
is used to also update embeddings of non-queried categories. We call this behavior cross-
category learning. As we observe empirically, cross-category learning leads to much more
effective learning, especially, for rarely-occurring categories. To answer the second ques-
tion, we present a theory that identifies the source of cross-category learning as due to a
reweighting mechanism created by MLET. In every training iteration, the reweighting fac-
tor uses the singular values of MLET’s embedding layers to measure the agreement between
the update (that is equal to the update that would take place in the single-layer model)
and the already-learned embeddings. It then boosts/attenuates updates in directions that
agree/disagree with the learned embeddings. The number of non-zero reweighting factors
explains why MLET’s performance shows a clear dependence on its inner dimension.

2. Related Work

There are three relevant threads of related work: (1) experimental investigations of over-
parameterization techniques, (2) theoretical aspects of overparameterization, and (3) table-
compression and table-decomposition approaches.

Multiple authors conducted experimental work proposing overparameterization tech-
niques to enhance training performance. E.g., Yang and Zhang (2022); Guo et al. (2020)
show that overparameterization leads to enhancement of performance and generalization
in the context of CNNs. On the theory side, Arora et al. (2019) developed a theory of
overparameterization in deep linear neural networks, with the primary mechanism being
a tendency towards lower rank that improves generalization. However, the theory does
not appear to be helpful in understanding the behavior of embedding layers in the context
of complete RMs. The predicted tendency towards low rank is not observed empirically,

Deng Ghaemmaghami Singh Cho Orshansky Erez Orshansky

nor would it explain the observed faster training loss convergence. Moreover, these prior
theoretical frameworks Arora et al. (2018, 2019) do not explain why the superiority of over-
parameterization is related to the amount of overprameterization, which is experimentally
observed both by Yang and Zhang (2022); Guo et al. (2020) and by our MLET method.

The benefit of MLET is in producing embedding tables with superior performance for
fixed table size. An orthogonal set of approaches for achieving this goal includes compression
via post-training pruning and quantization Ling et al. (2016); Tissier et al. (2019); Sun et al.
(2016); training-aware pruning and quantization Alvarez and Salzmann (2017); Naumov
et al. (2018); and hashing tricks that share embeddings within or between tables Attenberg
et al. (2009); Shi et al. (2019). Techniques that utilize statistical knowledge of embedding
usage (access frequency) have also been developed to adapt the embedding dimension or
precision to usage, with more-compact representations of less-accessed embeddings Ginart
et al. (2019); Yang et al. (2020). In addition to being an orthogonal approach to those
above, MLET produces high-quality embeddings without assuming any prior knowledge
of access frequency and without reducing parameter precision. Instead, under the same
inference-time embedding size, it achieves better performance by promoting more frequent
and more informative updates of embeddings than those in single-layer training.

We also highlight MLET’s critical differences to some decomposition techniques. For
example, trained embedding tables can be compressed via a low-rank SVD approxima-
tion Bhavana et al. (2019) or using a tensor-train decomposition Khrulkov et al. (2019).
TT-Rec Yin et al. (2021) uses tensor-train decomposition to represent embeddings and is
similar to MLET in that multiple tensors instead of one are used in learning each embed-
ding table. However, TT-Rec and low-rank SVD are orthogonal to MLET, and completely
differ in their working mechanism from it. Both TT-Rec and low-rank SVD utilize under-
parameterization to maintain training performance. MLET, in contrast, employs overpa-
rameterization to improve training performance. With the empirical benefits demonstrated
by MLET, we believe many opportunities are now open for exploring the combinations of
MLET with the above techniques.

We conclude this survey by pointing out that no other work has shown how to enhance
cross-category training or theoretically analyzed its mechanism. Our research is pioneer-
ing in that it formally explores the advantages of overparameterization within the realm of
recommendation models. Our novel theoretical framework stems from a rigorous analysis
of gradient flow and its impact on the evolution of embeddings. Significantly, this newly
developed theory elucidates not only the empirical benefits associated with overparameteri-
zation but also expounds the correlation between the degree of overparameterization and the
consequent enhancement of training performance.

3. Breaking The Sparsity of Embedding Updates

3.1. Cross-Category Learning in MLET

Consider MLET’s embedding 𝑊 = 𝑊1𝑊2. The factorization explicitly formulates the em-
beddings as linear combinations of the embedding basis formed by the columns in 𝑊1. Let
the loss function be 𝐿 and loss gradient 𝐺 = 𝜕𝐿

𝜕𝑤
. Given a learning rate [, for training of the

MLET

single-layer model, embedding updates are

𝑊 = 𝑊 − [𝐺 (1)

𝐺 is sparse, with only one column being non-zero. To see this, let 𝑔 be the gradient of loss
w.r.t. 𝑟, i.e., 𝑔 = 𝜕𝐿/𝜕𝑟. Notice that 𝑞 is a one-hot encoded vector representing the queried
category, whose embedding is 𝑟 ∈ R𝑑. We use 𝐶 to denote the index of the queried category.
By chain rule, one can show that 𝐺 = 𝑔𝑞𝑇 . Therefore, only the 𝐶th column of G is non-zero
and is equal to 𝑔. With batch size 𝑏 > 1, the conclusion extends: no more than 𝑏 columns
are non-zero. Because 𝑏 << 𝑛 in embedding tables, G is still highly column-sparse.

In contrast, with the same learning rate, embedding updates of MLET are:

𝑊 = 𝑊 − [𝑊1𝑊
𝑇
1 𝐺 − [𝐺𝑊𝑇

2 𝑊2 (2)

The derivation is as follows. First, let 𝑊 (𝑡) be the embedding at 𝑡th iteration and 𝐺 be the
gradient of embedding: 𝐺 = 𝜕𝐿/𝜕𝑊 (𝑡). The equivalent single-layer embedding updates of
MLET are:

𝑊 (𝑡 + 1) = 𝑊1(𝑡 + 1)𝑊2(𝑡 + 1) =
(
𝑊1(𝑡) − [

𝜕𝐿

𝜕𝑊1(𝑡)

) (
𝑊2(𝑡) − [

𝜕𝐿

𝜕𝑊2(𝑡)

)
(3)

Applying similar analysis as the derivation of 𝐺, we have:

𝜕𝐿

𝜕𝑊1
= 𝑔𝑞𝑇𝑊𝑇

2 = 𝐺𝑊𝑇
2 ,

𝜕𝐿

𝜕𝑊2
= 𝑊𝑇

1 𝑔𝑞
𝑇 = 𝑊𝑇

1 𝐺 (4)

Bringing Eq.4 into Eq.3, replacing 𝑊1(𝑡)𝑊2(𝑡) with 𝑊 (𝑡), and ignoring the 𝑂 ([2) term
(following the convention of gradient flow analysis) lead to Eq.2.

Training Query

: Embedding Updates

Gradient Desent

Single-Layer
Embedding

Multi-Layer
Embedding

:

Updates exclusive to queried categories

Cross-category informative updates

Figure 2: MLET: cross-category informative updates. Knowledge of queried items is used
to update all embeddings.

Comparing Eq.1 and Eq.2, we observe that (Fig. 2) in each step of single-layer embedding
training, only one column of𝑊 is updated, however, the whole embedding table𝑊 is updated
in MLET, because right-multiplying 𝐺 by a dense matrix 𝑊𝑇

2 𝑊2 breaks its sparsity. The
dense updates mean that the information of queried categories in each training sample is also
used to update other non-queried categories. This property does not present in conventional
single-layer embedding training and we refer to it as cross-category informative updates.

Deng Ghaemmaghami Singh Cho Orshansky Erez Orshansky

3.2. Reweighting of Embedding Updates

Why does breaking the sparsity in this way help embedding training and what is the under-
lying working mechanism of MLET’s cross-category learning? We present a theory that
reformulates the embedding updates of two methods and pins down the difference to a term
that reweights different embedding directions.

We introduce the following notation: vec(𝑋) represents the vectorization of the matrix
X, formed by stacking the columns of X into a single column vector. ⊗ represents the
Kronecker product operator. The SVDs of 𝑊1 and 𝑊2 are denoted by 𝑊1 = 𝑈Σ1𝑋

𝑇 and
𝑊2 = 𝑌Σ2𝑉

𝑇 , and 𝑢𝑖 and 𝑣 𝑗 represent the 𝑖
th column of 𝑈 and 𝑗 th column of 𝑉 , respectively.

Note that 𝑖 ∈ {1, 2, ..𝑑} and 𝑗 ∈ {1, 2, ..𝑛}. We use 𝜎1(𝑖), 𝜎2(𝑗) to denote the 𝑖th singular
value in Σ1 and 𝑗 th singular value in Σ2. For 𝑖, 𝑗 > 𝑘, 𝜎1(𝑖), 𝜎2(𝑗) are zeros. We make the
following claims.

Claim 1.𝑆 = {𝑣 𝑗 ⊗ 𝑢𝑖 , 𝑖 ∈ {1, ..𝑑}, 𝑗 ∈ {1, ..𝑛}} is an orthornormal basis in R𝑛𝑑.
Claim 2. There exists a set of 𝑔𝑖 𝑗 with 𝑖 ∈ {1, ..𝑑} and 𝑗 ∈ {1, ..𝑛} such that

vec(𝐺) =
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗𝑣 𝑗 ⊗ 𝑢𝑖 (5)

To derive Claim 1, one can use (𝑣 𝑗 ⊗𝑢𝑖)𝑇 · (𝑣𝑞 ⊗𝑢𝑝) = (𝑣𝑇
𝑗
𝑣𝑞) ⊗ (𝑢𝑇

𝑖
𝑢𝑝) to prove that product

of any vector in 𝑆 to itself is 1 and product of any two different vectors in 𝑆 is 0. Claim
2 follows directly from Claim 1 and the fact that vec(𝐺) is in R𝑛𝑑. Based on the above
claims, we introduce our main theorem.
Theorem 1. (Main Theorem) The embedding updates of the conventional single-layer
training and those of MLET can be represented in basis 𝑆:

Conventional Update: 𝑊 − [𝐺 = 𝑊 − [
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗𝑢𝑖𝑣
𝑇
𝑗 (6)

MLET Update: 𝑊 − [(𝑊1𝑊
𝑇
1 𝐺 + 𝐺𝑊𝑇

2 𝑊2) = 𝑊 − [
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗 (𝜎1(𝑖)2 + 𝜎2(𝑗)2)𝑢𝑖𝑣𝑇𝑗 (7)

Proof. Eq.6 follows from claim 2. To derive Eq.7, recall that the SVDs of 𝑊1 and 𝑊2 are
𝑊1 = 𝑈Σ1𝑋

𝑇 and 𝑊2 = 𝑌Σ2𝑉
𝑇 . Let 𝐼𝑘 denote the identity matrix of shape 𝑘 × 𝑘.

vec(𝑊1𝑊
𝑇
1 𝐺 + 𝐺𝑊𝑇

2 𝑊2)
= vec(𝑈Σ1Σ

𝑇
1𝑈

𝑇𝐺𝐼𝑛) + vec(𝐼𝑑𝐺𝑉Σ𝑇
2 Σ2𝑉

𝑇)
(𝑎)
= (𝐼𝑛 ⊗ 𝑈Σ1Σ

𝑇
1𝑈

𝑇)vec(𝐺) + (𝑉Σ𝑇
2 Σ2𝑉

𝑇 ⊗ 𝐼𝑑)vec(𝐺)
(𝑏)
=

(
(𝑉𝐼𝑛𝑉𝑇 ⊗ 𝑈Σ1Σ

𝑇
1𝑈

𝑇) + (𝑉Σ𝑇
2 Σ2𝑉

𝑇 ⊗ 𝑈𝐼𝑑𝑈
𝑇)
)
vec(𝐺)

(𝑐)
=

(
(𝑉 ⊗ 𝑈) (𝐼𝑛 ⊗ Σ1Σ

𝑇
1) (𝑉𝑇 ⊗ 𝑈𝑇) + (𝑉 ⊗ 𝑈) (Σ𝑇

2 Σ2 ⊗ 𝐼𝑑) (𝑉𝑇 ⊗ 𝑈𝑇)
)
vec(𝐺)

(𝑑)
=

(
(𝑉 ⊗ 𝑈) (𝐼𝑛 ⊗ Σ1Σ

𝑇
1 + Σ𝑇

2 Σ2 ⊗ 𝐼𝑑) (𝑉 ⊗ 𝑈)𝑇
)
vec(𝐺)

=
∑︁
𝑖, 𝑗

(𝑣 𝑗 ⊗ 𝑢𝑖) (𝜎1(𝑖)2 + 𝜎2(𝑗)2) (𝑣 𝑗 ⊗ 𝑢𝑖)𝑇
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗 (𝑣 𝑗 ⊗ 𝑢𝑖)

(𝑒)
=
∑︁
𝑖, 𝑗

𝑔𝑖 𝑗 (𝜎1(𝑖)2 + 𝜎2(𝑗)2) (𝑣 𝑗 ⊗ 𝑢𝑖)

(8)

MLET

In Eq.8, (a) uses the property vec(𝐴𝐵𝐶) = (𝐶𝑇 ⊗𝐴)vec(𝐵). (b) follows from the fact that
𝑉 and 𝑈 are orthogonal matrices. (c) uses the property 𝐴𝐵𝐶⊗𝐷𝐸𝐹 = (𝐴⊗𝐷) (𝐵⊗𝐸) (𝐶⊗𝐹).
(d) uses the property (𝐴⊗𝐵)𝑇 = (𝐴𝑇 ⊗𝐵𝑇). (e) simplifies the equation by using the fact that
(𝑣 𝑗 ⊗ 𝑢𝑖)s are orthornormal. Notice that (𝑣 𝑗 ⊗ 𝑢𝑖) is the vectorization of (𝑢𝑖𝑣𝑇𝑗). Therefore,
when converted into matrix form, Eq.8 is equivalent to Eq.7. With that we conclude our
proof. □

Conventional Updates

Reweighting of
Single Layer Updates

MLET Updates

Figure 3: The reweighting mechanism of MLET: history-aware adjustments are based on
the importance of update directions to learned embeddings, which is indicated
by the singular values of MLET embeddings.

This theorem re-formulates the embedding updates as weighted sums of a set of base
matrices, formed by outer products of singular vectors of embeddings. It pins down the
source of cross-category information to a reweighting process guided by embeddings singular
values. The reweighting operates as follows (Fig. 3). In every training iteration, it
reweights the embedding updates in each update direction 𝑢𝑖𝑣

𝑇
𝑗
by a factor (𝜎1(𝑖)2+𝜎2(𝑗)2).

Generally, a large singular value implies that the associated singular vector captures a
significant amount of the structure or information within the data. In MLET’s reweighting
mechanism, 𝜎1(𝑖) and 𝜎2(𝑗) indicate the importance of their associated singular vectors, 𝑢𝑖
and 𝑣 𝑗 , to the learned embeddings𝑊1 and𝑊2. In this way, the reweighting factor boosts the
update in the direction which has proven to be important based on earlier training history.

Such reweighting creates a similar effect to that of momentum in gradient descent.
Momentum Sutskever et al. (2013); Ruder (2016) adds a fraction of history updates to new
updates. It has been shown to mitigate oscillations and overshooting in the optimization
process, and allow the algorithm to “roll” faster on shallow regions and navigate more
effectively through complex loss landscapes. Unlike momentum based methods, MLET
does not explicitly calculate the exponential moving average of the current and previous
gradients. Rather, it implicitly achieves a similar effect by using the information in the
learned embeddings (which is ignored by the standard momentum methods). It is evident
that the embeddings themselves are the best capture of the past gradient updates and the
long-term trend of the update directions. Reweighting reinforces the update along important
directions of embeddings by providing positive feedback.

Deng Ghaemmaghami Singh Cho Orshansky Erez Orshansky

3.3. Effect of Inner Dimension

The inner dimension 𝑘 is important. Empirically, MLET requires 𝑘 > 𝑑 to achieve superior
performance and higher 𝑘s consistently achieve higher performance. Since the inference-
time embedding table is of size 𝑛×𝑑, MLET with 𝑘 > 𝑑 introduces more parameters (𝑛𝑘+𝑘𝑑)
than needed (𝑛𝑑) and overparameterizes the model. Why does MLET require 𝑘 > 𝑑 to make
consistent improvement and why do the benefits of such overparameterization increase with
𝑘?

The number of informative reweighting factors help answer the above two questions. We
note that in single-layer training (Eq.6), the reweighting factor of all update directions 𝑢𝑖𝑣

𝑇
𝑗

can be treated as constant 1. One can show that the number of reweighting factors with a
non-zero 𝜎2 is 𝑘𝑑 for MLET with inner dimension 𝑘. 𝜎2(𝑗) measures the importance of 𝑣 𝑗

to the embedding table so it is informative in determining the confidence in taking update
𝑢𝑇
𝑖
𝑣 𝑗 , 𝑖 ∈ {1, 2, .., 𝑑}. Intuitively, if 𝜎2 = 0, the informativeness of reweighting is reduced.
For 𝑘 ≥ 𝑑, consider two MLET models with inner dimensions 𝑘big , 𝑘small (𝑘big > 𝑘small ≥

𝑑). The model with inner dimension 𝑘small has 𝑑 (𝑘big−𝑘small) fewer informative reweighting
factors because of 𝜎2 = 0. Being less informative in updates generally leads to worse training
performance of 𝑘𝑠𝑚𝑎𝑙𝑙.

For 𝑘 < 𝑑, not only the number of informative factors reduces with smaller 𝑘, the number
of inactive(zero) factors increases. In this case, there are (𝑛 + 𝑑 − 𝑘)𝑘 non-zero reweighting
factors in MLET. (To see this, consider that the number of factors with at least one of
𝜎1(𝑖) and 𝜎2(𝑗) being non-zero. For 𝑖 ∈ {1, .., 𝑘}, all 𝜎1(𝑖)s are non-zero, so their related
reweighting factors are non-zero and there are 𝑘 × 𝑛 such factors. For 𝑖 ∈ {𝑘 + 1, .., 𝑑}, all
𝜎1(𝑖)s are zero and reweighting factors are non-zero only when 𝑗 ∈ {1, .., 𝑘}. There are
(𝑑 − 𝑘)𝑘 such factors. Thus, there are 𝑘𝑛 + (𝑑 − 𝑘)𝑘 non-zero enhancement factors in total.)
However, the number of non-zero reweighting factors in the single-layer training is 𝑑𝑛.
Because 𝑑𝑛 − (𝑛 + 𝑑 − 𝑘)𝑘 = (𝑛 − 𝑘) (𝑑 − 𝑘) > 0, single-layer training has (𝑛 − 𝑘) (𝑑 − 𝑘) more
flexible update directions that cannot be taken by MLET (because MLET assigns zero
reweighting factors to them). For such MLET models, this lack of flexibility in training
updates worsens their performance.

Update Direction 𝑢1𝑣
𝑇
1 𝑢1𝑣

𝑇
2 𝑢1𝑣

𝑇
3 𝑢1𝑣

𝑇
4 𝑢1𝑣

𝑇
5 𝑢2𝑣

𝑇
1 𝑢2𝑣

𝑇
2 𝑢2𝑣

𝑇
3 𝑢2𝑣

𝑇
4 𝑢2𝑣

𝑇
5

Single-Layer 1 1 1 1 1 1 1 1 1 1
MLET (k=1) ✓ ✓ ✓ ✓ ✓ 0 0 0 0 0
MLET (k=2) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MLET (k=4) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Reweighting factors for embeddings with (𝑑 = 2, 𝑛 = 5). ✓: active factors infor-
mative of 𝑊1 (with non-zero 𝜎1). ✓: active factors informative of both 𝑊1 and
𝑊2 (with non-zero 𝜎1 and 𝜎2).

MLET

Table 2: Dataset composition.

Dataset Samples Dense Features Sparse Features

Criteo-Kaggle Labs (2014) 45,840,617 13 26
Avazu Kaggle (2014) 40,400,000 1 21

To illustrate the above points, Table 1 presents, for a toy case with small dimensions, the
reweighting factors for different training schemes. In 𝑘 < 𝑑, half of the MLET reweighting
factors are inactive/zero. A larger 𝑘 leads to more active and more informative factors.

4. Experiments

We evaluate the proposed MLET technique on seven state-of-the-art recommendation mod-
els on two public datasets for click-through rate tasks: Criteo-Kaggle Labs (2014) and Avazu
Kaggle (2014). Both datasets are composed of a mix of categorical and real-valued features
(Table 2). The Criteo-Kaggle dataset was split based on the time of data collection: the
first six days are used for training and the seventh day is split evenly into the test and
validation sets. The Avazu dataset was randomly split into training and test sets of 90%
and 10%, respectively. The models are implemented in PyTorch and trained on systems
with NVIDIA GPUs (CUDA acceleration enabled).

Seven state-of-the-art recommendation models are evaluated. DLRM is tested both on
Criteo-Kaggle and Avazu. Other models are tested exclusively on the Avazu dataset because
of its reduced runtime requirement relative to Criteo-Kaggle. We use publicly available
implementations of non-DLRM models from the open-source recommendation model library
DeepCTR-Torch Shen (2019). To decrease the impact of randomized initialization and run-
to-run variation due to non-deterministic GPU execution, the reported results are averaged
using at least three training runs. We report two quality metrics: area under the ROC
curve (AUC) and binary cross-entropy (LogLoss).

Initialization strategy used for embedding layers is of critical importance in training
RMs. In conventional RMs, the embedding table of each sparse feature is represented
by a single linear layer. We follow a conventional approach in initializing this layer that
uses Xavier initialization scheme Glorot and Bengio (2010). MLET adds another linear
factorization layer. We use a Gaussian distribution to initialize this second factorization
layer. To make MLET effective, initialization variance cannot be too small. As suggested
by Theorem 1, small initialization effectively leads to vanishing reweighting factors and
slows down embedding updates. This results in poor performance as shown in Figure 4.
Empirically, if variance is too high then the training suffers from convergence issue. In all
the following experiments, we set the initialization standard deviation to 0.25 for DLRM
and 0.5 for other models unless otherwise noted. Those values ensure the effectiveness of
MLET while preserving training-time convergence.

Following prior work Naumov et al. (2019), we train all models for a single epoch to
avoid over-fitting. Two optimizers are tested: SGD and Adagrad. DLRM and its MLET
variants are trained using SGD with a learning rate of 0.2. Other models are trained using
Adagrad with a learning rate of 0.02. The above learning rates achieve the optimal/near-

Deng Ghaemmaghami Singh Cho Orshansky Erez Orshansky

8 1 6 3 2

0 . 3 8 2

0 . 3 8 4

0 . 3 8 6

0 . 3 8 9

0 . 3 9 1

0 . 3 9 3

0 . 3 9 5

0 . 3 9 7

0 . 3 9 9

V
al

id
at

io
n

Lo
gL

os
s

E m b e d d i n g D i m e n s i o n (d)

 S t d e v = 0 . 0 0 3 7
 S t d e v = 0 . 0 0 8 3
 S t d e v = 0 . 0 5 6 0
 S t d e v = 0 . 0 9 5 0
 S t d e v = 0 . 2 5 0 0
 S t d e v = 0 . 4 8 0 4
 N o - F a c t o r i z a t i o n

Figure 4: Search of initialization variance (embedding factorization) for DLRM with MLET
𝑘 = 32. An appropriately large variance is critical to MLET’s effectiveness. Small
variance leads to vanishing reweighting factors hence undertrained performance.

optimal conventional single-layer embedding training results and the improvements that
are possible by changing them are negligible. In all experiments, 𝑑 stands for embedding
dimension. For DLRM, on both datasets we configure its top MLP to have two hidden
layers with 512 and 256 nodes. On the Avazu dataset, we set DLRM’s bottom MLP to
be 256 → 128 → 𝑑. On the Criteo-Kaggle dataset, we configure DLRM’s bottom MLP
to be 512 → 256 → 128 → 𝑑. Other models use the default model architectures and
hyperparameters from the DeepCTR library.

4.1. Learning Enhancement

The experiments demonstrate the effectiveness of MLET in producing superior models
compared to the baseline single-layer embedding training. Figures 5 and 6 summarize the
experiments with DLRM carried out on two datasets. Figure 7 presents the main results
for three other models: DCN, NFM, and AutoInt. Table 3 summarizes the results of MLET
on all the seven models we tested. The maximum memory reduction is calculated using all
the data points with different 𝑘, 𝑑 combinations we tested (similar to Figure 7).

As Figures 5 and 6 show, MLET consistently squeezes more performance out of fixed-size
embeddings of DLRM model. The benefits begin to be observed in MLET curves even for
𝑘 = 𝑑. Increasing 𝑘 for a given 𝑑 leads to a monotonic improvement in model accuracy. For
CTR systems, an improvement of 0.1% in AUC is considered substantial. The maximum
AUC benefit of MLET for Criteo-Kaggle is 0.27%, and the maximum benefit for Avazu is
1.24%. This improvement in model accuracy saturates as 𝑘 grows, e.g., on the Criteo-Kaggle
dataset the curves with 𝑘 = 64 and 𝑘 = 128 are very similar.

As can be seen in Figures 5 and 7, the general performance vs. vector dimension behavior
is similar across the different models evaluated. We note that not only is the overall behavior
similar, but also that MLET provides substantial benefits for most models with 4 − 16×

MLET

savings of embedding parameters while maintaining the same or better performance as
compared to the single-layer embedding training.

4 8 1 6 3 2 6 4 1 2 8
0 . 7 9 9

0 . 8 0 0

0 . 8 0 1

0 . 8 0 2

0 . 8 0 3

0 . 8 0 4

0 . 8 0 5

0 . 8 0 6

Va
lid

at
io

n
AU

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 1 2 8
 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 M L E T k = 8
 N o - F a c t o r i z a t i o n

(a)

4 8 1 6 3 2 6 4 1 2 8

0 . 4 4 9

0 . 4 5 0

0 . 4 5 1

0 . 4 5 2

0 . 4 5 3

0 . 4 5 4

0 . 4 5 5

Va
lid

at
io

n
Lo

gL
os

s

E m b e d d i n g D i m e n s i o n (d)

 N o - F a c t o r i z a t i o n
 M L E T k = 8
 M L E T k = 1 6
 M L E T k = 3 2
 M L E T k = 6 4
 M L E T k = 1 2 8

(b)

Figure 5: MLET with DLRM on the Criteo-Kaggle dataset.

4 8 1 6 3 2 6 4 1 2 8

0 . 7 6 1

0 . 7 6 3

0 . 7 6 6

0 . 7 6 8

0 . 7 7 0

0 . 7 7 3

0 . 7 7 5

0 . 7 7 8

0 . 7 8 0

Va
lid

at
io

n
A

U
C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 1 2 8
 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 N o - F a c t o r i z a t i o n

(a)

4 8 1 6 3 2 6 4 1 2 8

0 . 3 8 1

0 . 3 8 2

0 . 3 8 3

0 . 3 8 4

0 . 3 8 5

0 . 3 8 6

0 . 3 8 7

0 . 3 8 8

0 . 3 8 9

0 . 3 9 0

0 . 3 9 1

Va
lid

at
io

n
Lo

gL
os

s

E m b e d d i n g D i m e n s i o n (d)

 N o - F a c t o r i z a t i o n
 M L E T k = 1 6
 M L E T k = 3 2
 M L E T k = 6 4
 M L E T k = 1 2 8

(b)

Figure 6: MLET with DLRM on the Avazu dataset.

4 8 1 6 3 2

0 . 7 9 0

0 . 7 9 1

0 . 7 9 2

0 . 7 9 3

0 . 7 9 4

0 . 7 9 5

V
al

id
at

io
n

A
U

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 M L E T k = 8
 N o - F a c t o r i z a t i o n

(a) AutoInt

4 8 1 6 3 2

0 . 7 8 9

0 . 7 9 0

0 . 7 9 1

0 . 7 9 2

0 . 7 9 3

0 . 7 9 4

0 . 7 9 5

V
al

id
at

io
n

A
U

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 M L E T k = 8
 N o - F a c t o r i z a t i o n

(b) DCN

4 8 1 6 3 2

0 . 7 8 0
0 . 7 8 1
0 . 7 8 2
0 . 7 8 3
0 . 7 8 4
0 . 7 8 5
0 . 7 8 6
0 . 7 8 7
0 . 7 8 8
0 . 7 8 9
0 . 7 9 0
0 . 7 9 1
0 . 7 9 2
0 . 7 9 3

V
al

id
at

io
n

A
U

C

E m b e d d i n g D i m e n s i o n (d)

 M L E T k = 6 4
 M L E T k = 3 2
 M L E T k = 1 6
 M L E T k = 8
 N o - F a c t o r i z a t i o n

(c) NFM

Figure 7: MLET on several state-of-the-art RM models on the Avazu dataset.

Deng Ghaemmaghami Singh Cho Orshansky Erez Orshansky

Baseline AUC MLET AUC (𝑘, 𝑑) Maximum Memory Reduction
Model Dataset 𝑑 = 4 𝑑 = 16 64,4 64,16 (same or higher performance)

DLRM
Criteo 0.799 0.803 0.801 0.804 4x (𝑑 32 → 8 , 𝑘 ≥ 128)
Avazu 0.761 0.768 0.770 0.775 16x(𝑑 64 → 4 , 128 → 8 , 𝑘 ≥ 128)

WDL Avazu 0.789 0.790 0.792 0.793 4x (𝑑 16 → 4 , 𝑘 ≥ 64)
DeepFM Avazu 0.790 0.794 0.792 0.795 1x
xDeepFM Avazu 0.792 0.796 0.794 0.798 2x (𝑑 16 → 8 , 𝑘 ≥ 64)
DCN Avazu 0.789 0.791 0.792 0.794 8x (𝑑 32 → 8 , 16 → 4 , 𝑘 ≥ 64)
AutoInt Avazu 0.790 0.792 0.793 0.795 8x (𝑑 32 → 4 , 𝑘 ≥ 32)
NFM Avazu 0.781 0.789 0.787 0.792 4x (𝑑 16 → 4 , 𝑘 ≥ 64)

Table 3: Effectiveness of MLET.

4.2. Learning Quality for High- and Low-Frequency Embeddings

Since embedding updates of MLET are cross-category informative and are more frequent,
they should lead to better learning quality of embeddings, especially those of the least
frequently queried categories. To verify this intuition, we conduct experiments that compare
the performance of MLET and that of single-layer training on two test sets. Set (A) is
composed by 10% test samples with the most frequently queried categories. Set (B) is
composed by 10% test samples with the least frequently queried categories. To sort the
samples, we first calculate on the training set the frequencies of all categories in each sparse
feature. Then the frequency of each test sample is estimated by multiplying the frequencies
of all categories it queries. Experiments are done with three models (DCN, AutoInt, and
xDeepFM) on the Avazu dataset. We use the relative improvement in PR-AUC to evaluate
MLET’s enhancement in the learning quality of embeddings. Since 20% of A are clicked
while only 15% of B are clicked, we use PR-AUC instead of ROC-AUC because it is more
robust to imbalanced data and is more sensitive to the improvements for the positive class.
Czakon (2021).

As shown in Table 4, MLET generally improves embedding quality on both sets of
samples. Further, MLET consistently improves performance on the least frequent samples
(set B) and the improvements on them are larger than the improvements on the most
frequent samples (set A). This empirical observation aligns with our expectation from the
theory that MLET’s dense and cross-category informative updates are most beneficial to
the learning quality of the embeddings of rarely-occurring categories.

4.3. Combining MLET with Post Training Model Compression

We conduct experiments to test the comparison and composition of MLET with several
commonly used post-training model compression techniques.

Low Rank SVD Approximation As pointed out by Bhavana et al. (2019), the numerical
rank of embedding tables can be much smaller than their embedding dimension, and hence,
SVD factorization allows the original embedding table to be stored and recovered inexpen-
sively with the low-dimensional factor matrices. Table 5 shows a comparison of MLET and
a low-rank SVD approximation on three models at different embedding sizes. For MLET,
the embedding size is its embedding dimension. For an SVD-compressed model, it is the

MLET

number of reserved ranks in the low-rank approximation of its embedding tables, trained
by conventional single-layer training. For example, an SVD model with embedding size 16
means that the embedding tables are approximated by rank-16 approximations. We see
that MLET maintains its advantage over SVD at embedding sizes.

Model(d/k)
Set A Set B

(Most Frequent) (Least Frequent)

DLRM(16/64) +0.22% +1.08%
DCN(4/8) +0.04% +0.13%

DCN(16/64) +0.33% +0.45%
AutoInt(4/8) +0.05% +0.08%
AutoInt(16/64) +0.38% +0.48%
xDeepFM(4/8) -0.09% +0.19%

xDeepFM(16/64) +0.01% +0.24%

Table 4: Improvement of PR-AUC on test samples with the most/least frequently queried
items: low-frequency embeddings benefits more from MLET.

Model Configuration
Effective Embedding Size

4 8 16 32

DCN

SVD d=32 0.7783 0.7903 0.7914 -
MLET k=32 0.7922 0.7932 0.7939 -
SVD d=64 0.7659 0.7902 0.7923 0.7927
MLET k=64 0.7924 0.7939 0.7945 0.7946

AutoInt

SVD d=32 0.7812 0.7916 0.7929 -
MLET k=32 0.7920 0.7937 0.7938 -
SVD d=64 0.7761 0.7910 0.7927 0.7930
MLET k=64 0.7930 0.7942 0.7947 0.7948

xDeepFM

SVD d=32 0.7672 0.7818 0.7920 -
MLET k=32 0.7933 0.7955 0.7972 -
SVD d=64 0.7618 0.7783 0.7895 0.7962
MLET k=64 0.7935 0.7957 0.7978 -

Table 5: MLET vs. Low Rank SVD Approximation of embedding tables: with the same size
of embeddings (at both training and inference), MLET produces better models.

Quantization and Hashing We use quantization on the trained model Krishnamoorthi
(2018), quantizing the embedding tables to 8 bits. We leave the rest of the model in full
precision. A uniform symmetric quantizer is used, with its scaling factors determined via a
grid search that minimizes the L2 error between the FP32 embeddings and their quantized
values. The hashing trick, as described in Attenberg et al. (2009), reduces table width
by hashing the indices of categories into a smaller index space. We use the modulo hash
function to hash the two largest tables in the Avazu to half of their original sizes. These
two tables (device ip and device id) jointly account for 99.7% of all embeddings. We do not
hash other tables, as the resulting model size savings are negligible. Figure 8 presents the
results of experiments performed on the DCN model. MLET improves model quality with
all combinations of quantization and hashing.

Deng Ghaemmaghami Singh Cho Orshansky Erez Orshansky

1 2 4 8 16 32
Embedding Size

0.780

0.782

0.784

0.786

0.788

0.790

0.792

Va
lid

at
io

n
Lo

gL
os

s MLET
Single-Layer Training
MLET Quantized
Single-Layer Training Quantized
MLET Hashed
Single-Layer Training Hashed
MLET Hashed and Quantized
Single-Layer Training Hashed and Quantized

Figure 8: Composition of MLET with quantization and hashing.

5. Conclusion

We introduce a strikingly simple yet effective multi-layer embedding training (MLET) ar-
chitecture that trains embeddings via a sequence of linear layers to derive superior models.
We present a theory that explains the superior embedding learning via the dynamics of
embedding updates. We prototype MLET across seven state-of-the-art open-source recom-
mendation models and demon- strate that MLET alone is able to achieve the same or better
performance as compared to conventional single-layer training scheme while uses up to 16x
less (5.8x less on average) embedding parameters.

References

Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. In
Advances in Neural Information Processing Systems, pages 856–867, 2017.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks:
Implicit acceleration by overparameterization. ArXiv, abs/1802.06509, 2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep
matrix factorization. In NeurIPS, 2019.

Josh Attenberg, Kilian Weinberger, Anirban Dasgupta, Alex Smola, and Martin Zinkevich.
Collaborative email-spam filtering with the hashing trick. CEAS, 2009.

Prasad Bhavana, Vikas Kumar, and Vineet Padmanabhan. Block based singular value
decomposition approach to matrix factorization for recommender systems. arXiv preprint
arXiv:1907.07410, 2019.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi
Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria
Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning
for recommender systems. CoRR, abs/1606.07792, 2016. URL http://arxiv.org/abs/

1606.07792.

Jakub Czakon. F1 score vs roc auc vs accuracy vs pr auc: Which evaluation metric should
you choose? https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc, 2021.
[Online; Updated December 31st, 2021].

http://arxiv.org/abs/1606.07792
http://arxiv.org/abs/1606.07792
https://neptune.ai/blog/f1-score-accuracy-roc-auc-pr-auc

MLET

Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou. Mixed
dimension embeddings with application to memory-efficient recommendation systems,
2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, 2010.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A
factorization-machine based neural network for ctr prediction. In IJCAI, 2017.

Shuxuan Guo, Jose M Alvarez, and Mathieu Salzmann. Expandnets: Linear over-
parameterization to train compact convolutional networks. Advances in Neural Infor-
mation Processing Systems, 33:1298–1310, 2020.

Xiangnan He and Tat-Seng Chua. Neural factorization machines for sparse predictive
analytics. In Proceedings of the 40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR ’17, page 355–364, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450350228. doi:
10.1145/3077136.3080777. URL https://doi.org/10.1145/3077136.3080777.

Kaggle. Avazu click-through rate prediction, 2014. https://www.kaggle.com/c/

avazu-ctr-prediction.

Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, and Ivan Oseledets. Tensorized
embedding layers for efficient model compression. arXiv preprint arXiv:1901.10787, 2019.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient infer-
ence: A whitepaper. ArXiv, abs/1806.08342, 2018.

Criteo Labs. Kaggle display advertising challenge dataset, 2014. http://labs.criteo.

com/2014/02/kaggle-display-advertising-challenge-dataset/.

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong
Sun. xdeepfm: Combining explicit and implicit feature interactions for recommender
systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018.

Shaoshi Ling, Yangqiu Song, and Dan Roth. Word embeddings with limited memory. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 387–392, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-2063. URL https://www.aclweb.

org/anthology/P16-2063.

Maxim Naumov, Utku Diril, Jongsoo Park, Benjamin Ray, Jedrzej Jablonski, and Andrew
Tulloch. On periodic functions as regularizers for quantization of neural networks. arXiv
preprint arXiv:1811.09862, 2018.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan
Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G.

https://doi.org/10.1145/3077136.3080777
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
https://www.aclweb.org/anthology/P16-2063
https://www.aclweb.org/anthology/P16-2063

Deng Ghaemmaghami Singh Cho Orshansky Erez Orshansky

Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghu-
raman Krishnamoorthi, Ansha Yu, Volodymyr Y. Kondratenko, Stephanie Pereira, Xi-
anjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.
Deep learning recommendation model for personalization and recommendation systems.
ArXiv, abs/1906.00091, 2019.

Wentao Ouyang, Xiuwu Zhang, Shukui Ren, Linlin Li, Zhaojie Liu, and Y. Du. Click-
through rate prediction with the user memory network. ArXiv, abs/1907.04667, 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. ArXiv,
abs/1609.04747, 2016.

Weichen Shen. Deepctr-torch: Easy-to-use,modular and extendible package of deep-learning
based ctr models. https://github.com/shenweichen/DeepCTR-Torch, 2019.

Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang. Composi-
tional embeddings using complementary partitions for memory-efficient recommendation
systems. arXiv preprint arXiv:1909.02107, 2019.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian
Tang. Autoint: Automatic feature interaction learning via self-attentive neural networks.
In CIKM ’19, 2019.

Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng. Sparse word embeddings
using l1 regularized online learning. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, pages 2915–2921. AAAI Press, 2016.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance
of initialization and momentum in deep learning. In International Conference on Machine
Learning, 2013.

Julien Tissier, Christophe Gravier, and Amaury Habrard. Near-lossless binarization of
word embeddings. Proceedings of the AAAI Conference on Artificial Intelligence, 33:
7104–7111, Jul 2019. ISSN 2159-5399. doi: 10.1609/aaai.v33i01.33017104. URL http:

//dx.doi.org/10.1609/aaai.v33i01.33017104.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click
predictions. In ADKDD’17, 2017.

Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping Tak Peter Tang, and Andrew Tulloch.
Mixed-precision embedding using a cache, 2020.

Linzhuo Yang and Lan Zhang. Expansion-squeeze- block: Linear over-parameterization with
shortcut connections to train compact convolutional networks. 2022 8th International
Conference on Big Data Computing and Communications (BigCom), pages 19–28, 2022.

Chunxing Yin, Bilge Acun, Xing Liu, and Carole-JeanWu. Tt-rec: Tensor train compression
for deep learning recommendation models. ArXiv, abs/2101.11714, 2021.

https://github.com/shenweichen/DeepCTR-Torch
http://dx.doi.org/10.1609/aaai.v33i01.33017104
http://dx.doi.org/10.1609/aaai.v33i01.33017104

	Introduction
	Related Work
	blackBreaking The Sparsity of Embedding Updates
	blackCross-Category Learning in MLET
	blackReweighting of Embedding Updates
	blackEffect of Inner Dimension

	Experiments
	Learning Enhancement
	Learning Quality for High- and Low-Frequency Embeddings
	Combining MLET with Post Training Model Compression

	Conclusion

