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Abstract

In the task of Hierarchical Multi-label Text Classification (HTMC), there exist mul-
tiple multivariate relations between labels, particularly the semantic dependencies within
label branches of the hierarchy. However, existing methods struggle to fully exploit these
potential multivariate dependencies since they can only model binary relationships at best.
In this paper, we address this limitation by focusing on leveraging semantic dependencies
among labels within branches and propose a Hyper-Label-Graph Model (HLGM). Specifi-
cally, we first construct a label hypergraph based on the taxonomy hierarchy and utilize
a hypergraph attention mechanism to learn branch-level multivariate dependencies among
labels. Furthermore, the model employs a label-text fusion module to generate label-level
text representations, facilitating the comprehensive integration of semantic features be-
tween text and labels. Additionally, we introduce a hierarchical triplet loss to enhance
the ability to distinguish labels within the hyperedge structure. We validate the effective-
ness of the proposed model on three benchmark datasets, and the experimental results
demonstrate that HLGM outperforms competitive GNN-based baselines.

Keywords: Text Classification; Hierarchical Multi-label; Hypergraph Learning

1. Introduction

Hierarchical Multi-label Text Classification (HMTC) is a subtask of text classification where
labels are organized in a structured hierarchy according to the multivariate semantic rela-
tions within labels. As shown in Figure 1, three related news labels “sport”, “ball sport”
and “soccer” can be organized in a top-down branch, while multiple related labels can be
organized in a tree-like taxonomy hierarchy with several interleaved branches. Therefore,
how to adequately leverage these branch-level multivariate relations between labels to make
more accurate predictions becomes a key challenge.

To address this challenge, many researchers have introduced various strategies (Kowsari
et al., 2017; Mao et al., 2019), such as transfer learning (Banerjee et al., 2019; Linmei
et al., 2019), capsule networks (Aly et al., 2019) and recursive regularization (Gopal and
Yang, 2013). However, as the taxonomy hierarchy is exactly a tree-like structure, the
above methods fail to capture the spatial feature of it. Some subsequent studies proposed
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Figure 1: An example of taxonomy hierarchy with multiple spatial multivariate relations.

to formulate the hierarchy as a directed graph, and adopt variants of GNNs to leverage
global structural label information relations (Zhou et al., 2020; Chen et al., 2021; Deng
et al., 2021). For example, GCN and Tree-LSTM that integrate the label prior hierarchy
knowledge are utilized to learn label representations (Zhou et al., 2020). These graph-based
methods successfully achieve information propagation in a label-to-label way and process
the hierarchical label structure in a global view, which prove to be more robust than previous
top-down models.

However, in all of these methods, branch-level multivariate relations on taxonomy hier-
archy are failed to model. As in the example of “sport, ball sport and soccer”, we know the
label “soccer” has semantic dependency not only with its father label “ball sport”, but also
with its grandfather label “sport”. Unfortunately, original graph-based methods have trou-
ble modeling these relations well and may introduce noise when aggregating information
from longer-distance labels (Feng et al., 2019; Yi and Park, 2020). These methods disas-
semble branch-level multivariate relations into multiple binary relations and mainly exploit
the pairwise connections because of the lack of the connection between multi-hop-neighbor
labels on a branch.

In this paper, we focus on capturing the multivariate label relations on branches of
taxonomy hierarchy. Hypergraph is a type of graph structure where an edge can connect
more than two nodes. Compared with simple graph, hypergraph has significant advantage
on encoding non-pair-wise relations with its degree-free hyperedges (Bai et al., 2021), which
makes it suitable to be introduced in HTMC. As a result, we propose a novel Hyper-Label-
Graph Model (HLGM), where a label hypergraph has been constructed to model the label
relations in branch level and a hierarchical triplet loss has been applied to further enhance
label discriminative ability.

Specifically, we first construct a hypergraph by connecting each group of labels that are
on a top-down branch of taxonomy hierarchy together with hyperedges. Then, a Hyper-
graph Attention Network is employed to incorporate the attention mechanism into label
information propagation. Secondly, we design a label-text fusion layer to generate a set of
label-level text representations, which corresponds the most related local features of text for
different labels and can be directly fed into the classifier for prediction. Moreover, inspired
by triplet loss (Schroff et al., 2015), we propose a hierarchical triplet loss for label-level
text representations under the guidance of hyperedge structure. The hierarchical triplet
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loss aims to pull the label-level text representations for same labels closer and push those
with different labels away to varying degrees, therefore encouraging model to learn more
discriminative label features.

The contributions of this paper are as follows:

• We construct a label hypergraph to model the multivariate semantic dependencies
between hierarchical labels in branch level. As far as we know, this is the first work
to introduce hypergraph structure into the HTMC task.

• A hierarchical triplet loss is proposed to enhance the discriminability of label feature
based on hyperedges, thereby improving the model’s ability of classification.

• We propose a novel end-to-end Hyper-Label-Graph Model (HLGM) which fuses text
and label features with a label-text fusion layer. Extensive experiments show that
HLGM achieves better performance than the compared GNN-based methods on three
datasets.

2. Related Work

Existing methods for HMTC can be divided into local methods and global methods based
on their ways of leveraging the label hierarchy. Local methods transform the entire classi-
fication problem into multiple local sub-problems and propagate information from top to
down of label hierarchy (Koller and Sahami, 1997; Kowsari et al., 2017). Strategies such
as transfer learning have been introduced to model dependencies between parent and child
labels (Banerjee et al., 2019; Linmei et al., 2019). Global methods, however, coalesce the
hierarchical information from a global perspective. Researchers have tried to employ meth-
ods such as Hierarchical-SVM (Cai and Hofmann, 2004), recursive regularization (Gopal
and Yang, 2013), capsule networks (Aly et al., 2019), meta-learning (Wu et al., 2019) to
utilize structural information of top-down branches.

Recently, some studies demonstrate that employing a structure encoder such as GCN
and Tree-LSTM to encode the holistic label structure is an effective approach and achieves
better performance (Zhou et al., 2020; Lu et al., 2020). HiAGM (Zhou et al., 2020) utilizes
hierarchy-GCN and Tree-LSTM that integrate the label prior hierarchy knowledge to learn
label representations. Ye et al. (2021) further incorporates meta-data information. However,
in all of these GNN-based methods, multivariate semantic dependencies between all labels
on a branch of label hierarchy are ignored. Subsequently, HiMatch (Chen et al., 2021)
further exploits the correlation between labels on a branch. However, it focuses to capture
text-label matching relationships, which is not convincing enough because it is hard to define
the semantic similarity between text-level representation and each label in multi-label task.

3. Problem Definition

In practical text classification scenarios, labels are sometimes naturally hierarchical struc-
tured, i.e., labels can be organized at different levels of the hierarchy branch based on
semantic subordinate relationships. Hierarchical Multi-label Text Classification (HMTC)
aims to learn a mapping function F : x → y from an input document x to a label space y,
where y is a subset of hierarchical label set Y and the size of set Y is |L|.
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Figure 2: Illustration of HLGM Framework
.

4. Hyper-Label-Graph Model

In this paper, we propose a novel end-to-end Hyper-Label-Graph Model for HTMC. Next,
we will introduce our proposed framework in detail, and the overall architecture of the
model is shown in Figure 2.

4.1. Text Encoder

We adopt BERT (Devlin et al., 2018) and multiple CNN kernels as our text encoder to
capture text contextual information.

Given a document x, we first feed it into BERT as a form of token sequence x =
{[CLS], x1, x2, . . . , xk−2, [SEP ]}, where [CLS] is the classification token and [SEP ] is the
separator token which denotes the end of the sequence here:

H = ΦBERT(x) (1)

where ΦBERT(·) denotes the BERTmodel. The obtainedH = {h[CLS],h1, . . . ,hk−2,h[SEP ]} ∈
Rk×d contains hidden representations for each token and d is the hidden dimension. Next,
we utilize CNN kernels to generate n-gram features and feed the concatenation of these
features into a linear layer for feature fusion:

H̃ = Linear(Concat(ΦCNN(H))) (2)

where ΦCNN(·) denote a CNN layer with multiple CNN kernels. Finally, we add h[CLS]

to H̃ to achieve a “shortcut connection” and obtain the text representation S = {h̃1 +
h[CLS], h̃2 + h[CLS], . . . , h̃k + h[CLS]} ∈ Rk×d.

4.2. Label Encoder

Taxonomic hierarchy significantly describes the subordinate dependencies between labels
in a branch. Therefore, we convert the taxonomic hierarchy into a hypergraph, and adopt
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attention mechanism to aggregate label information to learn hierarchical-aware label repre-
sentations for better classification.

4.2.1. Hierarchical-Aware Label Hypergraph

Hypergraph is a type of graph where an edge can connect two or more nodes, and the edges
within are defined as hyperedges. With the advantage of hypergraph in modeling high-
order correlations among data, we introduce it to model the essential branch-level label
dependencies in taxonomy hierarchy. Specifically, we build hyperedges to connect labels
on top-down branches of taxonomy hierarchy. In this way, the connectivity of labels on
a branch is achieved and information transfer between labels comes more direct, therefore
model is able to learn label feature incorporating hierarchical label association.

Formally, we denote the label hypergraph as G = (V, E), consisting of a node set
V = {v1, v2, . . . , vn} and a hyperedge set E = {e1, e2, . . . , em}. The structure of the la-
bel hypergraph can be represented by an incidence matrix A ∈ {0, 1}n×m where each entry
Aij indicates whether the node vi is in the hyperedge ej (or whether the label vi is on the
branch ej). Since each node in the hypergraph correlates a label to be classified and each
hyperedge correlates a branch of hierarchy, we denote both a label and a node as v while
both a branch and a hyperedge as e:

Aij =

{
1, vi ∈ ej

0, vi /∈ ej
(3)

For instance, as shown in Figure 3(a), an example taxonomy hierarchy with five labels
and three branches is converted into a hierarchical-aware label hypergraph with the shown
incidence matrix.

4.2.2. Hypergraph Attention Network

With the constructed label hypergraph, we introduce a module named Hypergraph Atten-
tion Network (HGAT), which generalizes attention mechanism on branches to propagate
message between branch-related labels. The HGAT allows to learn label representations
considering the correlations among labels defined by different branches.

Specifically, we initialize the label features C0 ∈ R|L|×d with the average of BERT
token embedding of corresponding label text, d indicates the dimension of label embedding
and is equal to that of BERT output. Due to the specificity of the hypergraph structure,
instead of directly propagating information node by node, HGAT performs two aggregation
operations separately: first forms branches feature by gathering information from labels on
the branches, and then updates labels feature from related branches. Both in these two
operations, HGAT learns a dynamic transition matrix to better reveal the relationships
between labels and branches, as in Figure 3(b).

We stack L1 HGAT sub-layers to fully capture multi-hop high-order label relationships.
The output of (l− 1)th HGAT sub-layer is the input for the lth layer. We will introduce the
aggregation operations on the lth as an example to describe Hypergraph Attention Network
in detail as follows:

Label To Branch. Given a branch ei, we generate its representation fi on lth sub-
layer by aggregating information from labels on it. As each label has different correlation
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Figure 3: (a) An example of the construction of a label hypergraph with three hyperedges
and five nodes. (b) Illustration of the Hypergraph Attention Network.

with the branch, we pay varying attention on the information from labels while aggregating
them together and the importance of afferent information flow is calculated with attention
mechanism:

f l
i = σ(

∑
vj∈ei

αijW
l
1c

l−1
j ) (4)

αij =
exp(alWl

2c
l−1
j )∑

vk∈ei exp(a
lWl

2c
l−1
k )

(5)

where αij denotes the attention score of label vj for branch ei and σ is a nonlinear activation
function. Wl

1 and Wl
2 are both trainable weight matrices and al is a trainable weight vector

in lth layer. cl−1
j here refers to feature of label vj learned from previous layer.

Branch To Label. The procedure of propagating branches information to labels is
similar. Given a label vi and a branch set ξi = {ej |vi ∈ ej}, we apply attention mechanism
to highlight the informative hyperedges for label vi and update representation of it:

cli = σ(
∑
ej∈ξi

α̃ijW
l
3f

l
j) (6)

α̃ij =
exp(Wl

4f
l
jW

l
5c

l−1
i )∑

ek∈ξi exp(W
l
4f

l
kW

l
5c

l−1
i )

(7)

where Wl
3, W

l
4 and Wl

5 are trainable weight matrices, and α̃ij denotes the attention score
of branch ej for label vi.
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Finally, the outputs C = CL1 ∈ R|L|×d of Lth
1 HGAT sub-layer are the updated label

representations incorporating high-order multi-hop label relationships.

4.3. Label-Text Fusion Module

Next, to model the interaction between text semantic features and label semantic features,
we propose a label-text fusion module to generate label-level text representations.

As the Transformer Decoder which has built-in attention mechanism is exactly a com-
plete and robust module to capture local discriminative features, we follow the structure
to design our fusion module. Specifically, we stack L2 Transformer Decoder layer where
each Decoder is made up of two Multi-Head Attention layers (a self-attention layer and a
cross-attention layer) and a Feed-Forward network (FFN). The output of last layer is the
input for the next layer.

Since we do not perform auto-regressive generation, we do not use attention masks
for Multi-Head Attention. We feed label representations as query, key and value for self-
attention layer, while we treat label representations C ∈ R|L|×d as query and text token
representations S as key and value for cross-attention layer. The fusion procesure in lth

Decoder layer can be formulated by:

Ql = Decoder(Ql−1,S,S) (8)

where Q0 = C in the first layer. As a result, the model capture label-related information
from input text via attention mechanism layer by layer. Since the final outputs of label-text
fusion module can be regarded as sub components of text for corresponding labels, we name
these outputs as label-level text representations and denote them as Q = QL2 ∈ R|L|×d.

4.4. Hierarchical Triplet Loss

Triplet loss aims to pull samples with the same label as close as possible, and push samples
with different labels apart from each other. Inspired by this, we propose a hierarchical
triplet loss that regards label-level text representations as samples. Our principle idea is: As
each label-level representation can be regarded as one aspect of the corresponding text, the
representations of different texts but for same label should be similar, while representations
for different labels should be different.

Specifically, we create positive sample pairs with label-level representations of different
texts but for same label, while negative sample pair are those representations for different
labels in a minibatch: Given a batch of Nbatch texts with a label set Ybatch = {yij ∈ {0, 1}|i ∈
{1, . . . , Nbatch}, j ∈ {1, . . . , |L|}, we have label-level text representations Qbatch = {qij ∈
Rd|i ∈ {1, . . . , Nbatch}, j ∈ {1, . . . , |L|} from label-text fusion module. Firstly, we employ a
project network Proj(·) to map Qbatch into the embedding space where hierarchical triplet
loss is applied and get new representations:

Z = {zij = Proj(qij) ∈ Rd|qij ∈ Qbatch} (9)

Next, we define an activate embedding set A = {zij ∈ Z|yij = 1} that contains label-level
representations with active ground-truth labels. With above notations, for a given activate
embedding zij ∈ A, we can form a set of triplets Tij = {τkpqij = (zij , zkj , zpq)|zij , zkj , zpq ∈
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A, q ̸= j} that regards zij as anchor sample. Therefore, we can define the hierarchical
triplet loss Ltri(Tij) for zij as:

Ltri(Tij) =
∑

τkpqij ∈Tij

ltri(τ
kpq
ij ) (10)

ltri(τ
kpq
ij ) =

[
Dis(zij , zkj)−Dis(zij , zpq) + γkpqij

]
+

(11)

where [·] = max(0, ·) and distance Dis(·, ·) here is calculated using the cosine distance.
Specially, we consider the multivariate semantic dependencies between labels in branch
level when designing the loss. The margin γkpqij for triplet τkpqij is set according to the
dependencies between label vj and vq:

γkpqij =

 exp(
|lj−lq |
|D| )

|D| , vj ∈ ea, vq ∈ ea

1, vj ∈ ea, vq ∈ eb, a ̸= b

(12)

where lj and lq represent the hierarchical level number of vj and vq on the taxonomy
hierarchy, and |D| represents the depth of the hierarchy. Thus, for a minibatch in training
procedure, the hierarchical triplet loss is calculated as:

Ltri =
∑
zij∈A

Ltri(Tij) (13)

In this way, each activate embedding zij ∈ A is pulled closer to embeddings under label
vj of different texts, and is pushed away from embeddings under different labels in varying
degree. The proposed hierarchical triplet loss further enhance the consistency of label-level
representation with same labels, while increasing the dependency of that with relevant labels
and strengthening the distinctiveness of that with irrelevant labels.

4.5. Classification and Objective Function

We feed the label-related component of each input document learned by label-text fusion
module into a linear layer for classification, and the predicted probability of jth label for ith

document can be computed as:

ỹij = sigmoid(Wcij) (14)

where W is the trainable weights of the classification layer. We adopt multi-label cross-
entropy loss (BCE loss) as classification loss function and it can be formulated by:

Lcls = −
N∑
i=1

|L|∑
j=1

[(yij log(ỹij)) + (1− yij)log(1− ỹij)] (15)

where N is the number of training samples, yij ∈ {0, 1} is the ground truth for whether ith

document belongs to jth label.
Conbining classification loss Lcls and proposed hierarchical triplet loss Ltri, we have our

final loss function:
L = Lcls + βLtri (16)

where β is a trade-off hyperparameter controlling the hierarchical triplet loss weight.



Hyper-Label-Graph

Dataset |L| Depth Avg(|Li|) Train Val Test

RCV1-v2 103 4 3.42 20,833 2,316 781,265
BGC 146 4 3.01 58,715 14,785 18,394

NYTimes 166 8 7.6 23,345 5,834 7,292

Table 1: Dataset statistics. |L| is the size of label set. Depth is the maximum level of
hierarchy. Avg(|Li|) is average number of labels for per sample. Train/Test/Val
are sizes of train/validation/test set.

5. Experiment

5.1. Experiment Setup

Datasets and Evaluation Metrics. We evaluate the performance of our proposed model
on three hierarchical multi-label text classification datasets: RCV1-v2 (Lewis et al., 2004),
BlurbGenreCollection-EN (BGC) 1 (Aly et al., 2019) and NYTimes (Sandhaus, 2008). For
fair comparison, we apply the same data preprocessing procedure and dataset split for
RCV1-v2 and NYTimes as Zhou et al. (2020), and keep the original division ratio of BGC
dataset. The statistics of these datasets are illustrated in Table 1. Experimental results are
measured with two benchmark metrics Micro-F1 and Macro-F1 following previous work.

Implementation Details. We implement our proposed network with PyTorch. In text
encoder module, we adopt bert-base-uncased from Transformers (Wolf et al., 2020) as our
base architecture. We apply Adam (Kingma and Ba, 2014) with the initial learning rate of
1e−5 as our optimizer to minimize loss and the learning rate will gradually decrease during
the training procedure. The training batch size is set to 16. We set HGAT layer number
L1 to 2 for all datesets, and set transformer decoder layer number L2 to 1 for RCV1-v2 and
2 for NYTimes and BGC. The loss weight β is set to 0.1. Notebly, we divide our training
procedure into two phases based on the loss function model uses: pre-training phase and
fine-tuning phase. We train the model with only BCE loss in the pre-training phase, so that
in this phase label embeddings are learned freely. Then after embeddings are learned, we
start to fine-tune them with combination of BCE loss and hierarchical triplet loss, which
encourages model to learn more discriminative label features.

5.2. Baselines

We select four representative graph-based methods as our baselines: (1) HiAGM (Zhou
et al., 2020) adopts a bidirectional Tree-LSTM and a hierarchy-GCN as their graph en-
coder. (2) HiMatch (Chen et al., 2021) formulates the text-label semantics relationship as
a semantic matching problem and adopts GCN as graph encoder following HiAGM. (3)
HTCInfoMax (Deng et al., 2021) improves HiAGM by regularizing the label representation
with a prior distribution. (4) HGCLR (Wang et al., 2022) introduces contrastive learning
for the hierarchy-aware representation and uses Graphormer as label graph encoder.

1. BGC dataset is available at https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/

blurb-genre-collection.html.

https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
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Model
RCV1-v2 BGC NYTimes

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextRCNN(Zhou et al., 2020) 81.57 59.25 - - 70.83 56.18

HiAGM (Zhou et al., 2020) 83.96 63.35 75.42 56.82 74.97 60.83

HTCInfoMax (Deng et al., 2021) 83.51 62.71 76.12 58.56 72.22 60.05

HiMatch (Chen et al., 2021) 84.73 64.11 75.69 55.09 74.53 58.90

BERT (Our implement) 85.83 67.20 78.69 60.86 78.29 65.75

BERT+HiAGM (Our implement) 86.26 67.24 79.27 61.56 78.12 66.20

BERT+HTCInfoMax (Our implement) 85.99 67.65 78.91 61.25 78.32 66.06

BERT+HiMatch (Chen et al., 2021) 86.33 68.66 78.03 62.32 78.56 67.20

HGCLR(Wang et al., 2022) 86.49 68.31 79.13 61.03 78.86 67.96

HLGM(Ours) 86.93 69.41 80.19 63.05 78.88 66.77

Table 2: The performance of HLGM compared with baseline models.

5.3. Results and Analysis

In the comparison experiments, our baseline models can be divided into three categories:
models using TextRCNN as encoder, GNN-based models and Graph Transformer-based
models using BERT as encoder. Results of BERT, BERT + HiAGM and BERT + HTCIn-
foMax and results on BGC dataset of all baselines are implemented upon the released
projects2. As shown in Table 2, the performance of graph-based models are significantly
better than models without graph encoder (TextRCNN and BERT). Therefore, we mainly
focus on analyzing the results of comparative experiments between graph-based models and
HLGM.

Models based on TextRCNN include HiAGM, HTCInfoMax and HiMatch. Our model
achieves better performance than these models because we have the strong BERT model as
our text encoder and capture fuller semantic information. Our proposed label hypergraph
learning and hierarchical triplet loss further improve the ability of model to classify.

Compared with GNN-based models (BERT + HiAGM, BERT + HTCInfoMax and
BERT + HiMatch) with BERT encoder, our model performs the best on both RCV1-
v1 and BGC. Experimental results are a proof of HLGM’s superiority of modeling label
relations with hypergraph in branch level, and the effectiveness of hierarchical triplet loss
in enhancing the label features.

The HGCLR baseline uses the Graphormer model in encoding labels. Although the
Transformer-based graph network also models only label-level dependencies, our model
underperforms HGCLR on the NYTimes on Macro-F1 metric due to the strong power of
Transformer in HGCLR in feature learning. However, our model outperforms HGCLR on
both the NYTimes Micro-F1 metric and other datasets.

Thus, the above analysis shows that the proposed HLGM model generally outperforms
strong baseline models in terms of hierarchical multi-label classification ability.

2. Codes are available at HiAGM (https://github.com/Alibaba-NLP/HiAGM), HiMatch (https://github.
com/RuiBai1999/HiMatch), HTCInfoMax (https://github.com/RingBDStack/HTCInfoMax), HGCLR
(https://github.com/wzh9969/contrastive-htc)

https://github.com/Alibaba-NLP/HiAGM
https://github.com/RuiBai1999/HiMatch
https://github.com/RuiBai1999/HiMatch
https://github.com/RingBDStack/HTCInfoMax
https://github.com/wzh9969/contrastive-htc
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Ablation Model
RCV1-v2 BGC

Micro-F1 Macro-F1 Micro-F1 Macro-F1

-r.p. HGCN 86.52 68.85 80.17 62.54
-r.p. GAT 85.72 67.50 80.02 62.57
-r.p. GCN 85.92 68.24 79.95 62.19

-r.m. hierarchical triplet loss 86.51 68.91 79.87 62.50

HLGM 86.60 69.26 80.19 63.05

Table 3: Ablation studies for different parts in HLGM, where -r.m. refers to removing the
module and -r.p. refers to replacing.

Figure 4: Level-based Macro-F1 on RCV-v2 (left) and BGC (right).

5.4. Ablation Study

To investigate the contribution of each module in HLGM, we conduct a series of ablation
experiments in this section, and the results are reported in Table 3.

Firstly, we replace Hypergraph Attention Network (HGAT) with Hypergraph Convolu-
tion Network (HGCN) (r.p. HGCN), which is another hypergraph learning method aggre-
gating node information without attention mechanism. The result shows both Micro-F1 and
Macro-F1 will decrease when employing HGCN as graph encoder instead of HGAT, which
proves that introducing an attention learning module to learn a dynamic incidence matrix
helps better describe label relationships. Besides, we also remove the construction of label
hypergraph but adopt GCN and GAT directly on label tree to update label representations
(r.p. GCN and r.p. GAT). The results show both HGAT and HGCN outperforms GAT
and GCN, even if GAT also involves the attention mechanism, which further proves the
validity of hypergraph.

Apart from that, we remove the hierarchical triplet loss from HLGM and only adopt
BCE loss as the objective function for training (r.m. hierarchical triplet loss). The results
show that both two metrics decrease especially Macro-F1, which shows the effectiveness
of hierarchical triplet loss to improve the ability to distinguish labels. Notebly, our report
results are from average of the results of the two experiments.
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Figure 5: T-SNE visualization for label-level text representations training with only BCE
loss (left), and with the combination of BCE loss and hierarchical triplet loss
(right). Each dot represents one label-level text representations and different
colors correspond to different labels.

5.5. Hypergraph Effect

Table 2 has shown the superiority of our method compared with baseline models on overall
label set. In addition, performances on different hierarchical levels of label set are also of
analytical value. We compute the level-based Macro-F1 of our model, BERT + HiAGM
and BERT + HTCInfoMax and the results are shown in Figure 4. From the line charts we
can observe that our model achieves better performance on all levels, especially on deeper
levels.

In the taxonomy hierarchy, labels on deeper levels are appear less frequently and more
fine-grained, which results in the insufficient training and makes it more difficult to learn
their semantic features. Different from the compared models that apply GNNs as graph
encoder, our method propose to augment the connectivity of labels on a branch with hy-
peredges and utilize the essential branch-level label dependencies to use the knowledge of
upper-level labels in better learning representations of lower-level labels. In this way, the
superiority of hypergraph becomes more apparent as level gets deeper.

5.6. Hierarchical Triplet Loss Effect

The goal of our proposed hierarchical triplet loss is to push label-level representations for
same labels closer, and push representations for another labels away to different degrees
according to label semantic relationships. To demonstrate its effectiveness in a clearer
view, we use T-SNE to visualize the learned label-level text representations training with
and without hierarchical triplet loss on BGC dataset for comparison.
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Figure 6: Visualization of label-text attention weights. The attention weights of “Target
Label” are shaded in different colors. Note that darker color represents higher
weight score.

As shown in Figure 5, compared with adopting BCE loss only, the clusters of label-level
text representations that learned with hierarchical triplet loss have clearer boundaries, which
visually demonstrates the ability of hierarchical triplet loss to enhance the discriminativeness
of labels. As the distinction between labels becomes more apparent, the classifier is then
able to achieve better classification.

5.7. Visualization of Label-Text Fusion

To gain a clearer view of the effectiveness of the label-text fusion module in modeling text
and label semantic features, we present some concrete cases and visualize the attention
weights between texts and labels from BGC dataset.

As shown in Figure 6, in the first case, label “Business” have higher attention scores with
words like “formidable”, “innovation”, “achieve”, “return” and etc, which are correlated
with business. In the second case, label “Children’s Books” pays more attention to words like
“Dream”,“amazing”, “princess” and “Little” which are all common words in fairy tales. In
the third case, “Fiction Classics” is more related to “edition”,“masterpiece” and “literary”.

6. Conclusion

In this paper, we proposed a novel end-to-end Hyper-Label-Graph Model (HLGM). We
converted taxonomy hierarchy to a label hypergraph and learn the branch-level multivariate
dependencies of the hierarchy by hypergraph attention mechanism. Moreover, based on
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constructed hypergraph, we proposed a hierarchical triplet loss to encourage model to learn
more discriminative label features, thereby achieving better classification accuracy. Finally,
experiments show that our proposed model outperforms other compared methods on three
datasets, and the effectiveness of all components in our model are verified.
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