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Abstract

The loss landscape of neural networks is a valuable perspective for studying the train-
ability, generalization, and robustness of networks, and hence its visualization has been
extensively studied. Essentially, visualization methods project the parameter space into
a low-dimensional subspace, resulting in a substantial loss of network parameter informa-
tion. The key is to identify the direction of loss reduction in the visualized loss landscape.
However, the existing methods generally focus on one simple point, make it challenging to
properly capture the main properties of the landscape. An obvious and important problem
is that regardless of whether the center point is the convergence or not, the current methods
may depict it a local optimal point in the visualization. To address this issue, we propose a
visualization method that relies on the whole training process not a single solution, better
reflecting the actual training loss.
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1. Introduction

The loss landscape of deep neural networks (DNNs), which captures the changes of the loss
function in the parameter space, can provide a better understanding of the learning and
generalization behaviors, and offer insights into the optimization process during training
as well as the factors that are related to the model generalization performance, such as
architecture and training configurations.

It is widely acknowledged that DNNs often contain a large number of parameters, which
leads to difficulties in visualizing the parameter space due to its high dimensionality. To
address this issue, early methods for visualizing the loss landscape in one dimension involve
selecting two points in the parameter space and calculating the changes in the loss function
along the line segment connecting these points. This visualization method is commonly used
to explain the training process of neural networks and has found numerous applications in
the fields of deep ensembles, and Bayesian networks (Sun et al., 2020; Fort et al., 2019;
Garipov et al., 2018). Later researchers suggested projecting the parameter space into a
lower dimension and visualizing the loss landscape in the low-dimensional space (Goodfellow
et al., 2014; Li et al., 2018c; Chatzimichailidis et al., 2019). A common approach is to select
network parameter values as the visualization center point. By calculating the corresponding
loss function values as the parameters change in the low-dimensional space near the center
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(a) Training loss on CIFAR-10 with ResNet20

(b) Epoch=20 (c) Epoch=50 (d) Epoch=100

Figure 1: Landscape visualization during the training process by FN method.
The experiment is conducted on CIFAR-10 with ResNet20. The trend of the
loss function during the training process with the number of training iterations
is shown in (a), while (b), (c), and (d) respectively shows the loss landscape near
the network parameter values of epoch 20, 50, and 100 using the FN method
for visualization. Notably, the loss landscapes always consider the current center
point to be a local minimum, regardless of which training stage is chosen for
network parameter values as the center point for visualization.

point, a surface map of the loss landscape in three-dimensional space can be visualized.
This approach provides a clear demonstration of how the loss function changes as the
network parameters vary. Moreover, by examining the local geometric features (sharpness
or flatness) of the landscape, we can analyze the optimization process of parameters. This
visualization method is commonly employed to examine the generalization and robustness of
networks, as well as the optimization process (Wu et al., 2020; Shafahi et al., 2019; Maddox
et al., 2019; Zhou et al., 2020).

However, this visualization method is also subject to the issue of being unable to identify
the direction of optimization. In Figure 1, we use “Filter Normalization” (FN) method (Li
et al., 2018c) to visualize the loss landscape of the network. We use the parameter values of
the network at different stages of training as the center point for visualization. The results
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consistently show a pattern of low values at the center and high values around it, without
indicating any direction of loss reduction.

During training process, it is easy to identify the direction of loss reduction in the early
stages (such as the direction of gradient descent). As the training progresses, the gradients
of the parameters decrease, which makes it difficult to identify an obvious direction for
reducing the loss. When using the FN method, the visualized loss landscape does not
reveal the expected direction of loss reduction.

The FN visualization method is limited by its inability to preserve sufficient information
when projecting the parameter space into a low-dimensional space, which makes it chal-
lenging to identify the direction of loss reduction in this space. Consequently, regardless of
the parameter point selected as the visualization center point, the current position is dis-
played as a local minimum. To preserve as much network parameter information as possible
during the projection process, a suitable visualization subspace can be selected by utilizing
the network training trajectory. Researchers have proved that the training trajectory of
neural networks encapsulates specific network parameter information that can be leveraged
to guide network training (Li et al., 2022b). During the training process, not all parameters
are optimized independently, leading to a training trajectory that manifests low-dimensional
characteristics rather than variation throughout the entire parameter space.

Based on this inspiration, we propose that visualizing the loss landscape of neural net-
works only requires attention on a low-dimensional space that contains the training trajec-
tory, rather than the entire parameter space. This low-dimensional space offers sufficient
information to reflect the changes in the neural network throughout the training process,
and its low dimensionality is suitable for visualization. Our visualization method can clearly
display the direction of loss reduction in the loss landscape during training. Moreover, our
method can visualize the training trajectory, which can assist researchers in further studying
the process of network training.

2. Related Works

2.1. Loss Landscape Visualization

Several studies have analyzed the neural network loss function’s changes along a parameter
space line segment, visualizing the loss landscape in a one-dimensional scenario.Goodfellow
et al. (2014) consider two points θ0 and θ1 in the parameter space, and points on the line
segment connecting them θ = (1 − α)θ0 + αθ1 for a range of α values. By calculating
the loss function, Loss (θ), at a series of points along this line segment, the change in loss
function can be visualized. This study reveals that various state-of-the-art neural networks
follow a straight path from initialization to solution, encountering no significant obstacles.
This method is widely used to study the sharpness and flatness of different minima (Keskar
et al., 2016; Dinh et al., 2017; Im et al., 2016; Smith and Topin, 2017) and to explain the
training process of neural networks (Sun et al., 2020; Fort et al., 2019; Garipov et al., 2018).
However, the visualization results are not sufficiently intuitive and only cover a limited range
of parameter space.

In addition to one-dimensional visualization methods, people have also proposed the
use of projection to visualize the surface map of the loss landscape Li et al. (2018c);
Chatzimichailidis et al. (2019). In a network with parameters θ, they generate random
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Gaussian direction vectors and normalize them. With two normalized directional vec-
tors {d1,d2}, loss landscape surf map can be plotted by calculating the loss value of
f(α, β) = Loss (θ∗ + αd1 + βd2), where θ∗ represents the center point of loss landscape.
This method can visually demonstrate changes in the loss function within the parameter
space and is frequently utilized to elucidate how network structure affects generalization,
robustness, and trainability (Foret et al., 2020; Shafahi et al., 2019; Maddox et al., 2019;
Zhou et al., 2020; Loshchilov and Hutter, 2017; Zhai et al., 2019). However, this visu-
alization method loses excessive network parameter information during projection, which
makes it impossible to find the loss reduction direction on the landscape and represents any
parameter values as a local optimal. In contrast, our method selects a suitable visualiza-
tion subspace according to the training trajectory, retains more network information in the
landscape, and reflects the network training process.

Besides visualizing the neural network landscape, researchers are also interested in vi-
sualizing the trajectory of network training. Multidimensional scaling (MDS) is used to
reduce the dimensionality of network parameter values updated in each training iteration,
(Poggio and Liao, 2017) can visualize the reduced training trajectory parameter values in
a two-dimensional plane. This method can clearly demonstrate the changes in the training
trajectory and is used to study the training process characteristics of different networks
(Sun, 2019; Nguyen and Hein, 2017; Poggio et al., 2017; Kriegeskorte and Golan, 2019;
Gotmare et al., 2018). However, the visualization results are insufficient in displaying the
training trajectory on the loss landscape.

2.2. Low-dimensional Training

Although the number of parameters in a neural network is large, their redundancy enables
low-dimensional subspace training, leading to remarkably effective results. Gur-Ari et al.
(2018) proposed the hypothesis that the landscape of DNNs’ objective functions may exist
within a lower-dimensional subspace. Numerous studies (Izmailov et al., 2018, 2020; Hu
et al., 2020; Dogra and Redman, 2020; Li et al., 2022b, 2018b; Ghorbani et al., 2019;
Athiwaratkun et al., 2018) have been conducted based on this hypothesis, with the goal
of investigating the optimal approach to training networks in a parameter space of lower
dimensionality, while simultaneously achieving high network performance.

Researchers randomly project the neural network parameters into a low-dimensional
space and trained the network therein (Li et al., 2018a). This method achieves 90% accuracy
of regular SGD training. Some subsequent improvement methods (Gressmann et al., 2020)
take into account the impact of network structure on dimensionality reduction and adjust
the method of random projection based on different segments of the network parameters.
In Li et al. (2022b), the authors reduce the dimensionality of the network parameters and
obtain a low-dimensional subspace. By training in this subspace, they achieve almost the
same accuracy as regular SGD training, while improving training efficiency and network
robustness. This technology can be applied to many fields, such as federated learning (Li
et al., 2023; Xie et al., 2022), image reconstruction (Barbano et al., 2023), and network
weight averaging (Li et al., 2022a).

We utilize the low-dimensional training characteristics of the network to visualize the
loss landscape. By projecting the network parameters into the subspace containing training
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trajectory, the visualization results preserve as much network parameter information as
possible.

3. Methods

Our approach utilizes the low-dimensional characteristics of the network trajectory to vi-
sualize the loss landscape. The low-dimensional space containing the training trajectories
can be obtained by recording the parameter values during network training and applying
PCA to extract principal components. Furthermore, the standardization process ensures
the consistency of the visualization subspace, maximizing the representation of network
parameter information within the visualized space.

3.1. Landscape Visualization

Consider a DNN f (x,w) with input x and parameters w ∈ Rn. To identify the subspace
of the visualized loss landscape, we first pretrain the network and denote the training
trajectory as {wi}i=0,1,...,t, where wi represents the model’s parameters at training step i,
and t is the total number of training iterations.

Without losing generality, we choose the training steps from m to m + n, denoted
as W = [wm,wm+1, . . . ,wm+n]. It is necessary to centralize these samples as Ŵ =
[wm − w̄,wm+1 − w̄, ...,wm+n − w̄], where w̄ = 1

n

∑m+n
i=m wi.

We need to find a d-dimensional subspace to cover Ŵ , which is denoted as a space
spanned by P = [e1, e2, . . . , ed], and this space can be determined by minimizing the sum
of distances from the column vectors of Ŵ to the subspace. By using the l2 norm, the
problem can be formulated as maximizing the variance of the projection of Ŵ , which is a
PCA problem:

max
P

tr
(
P⊤ŴŴ⊤P

)
, s.t. P⊤P = I. (1)

To create a surf plot of the loss landscape, it is only necessary to identify a two-
dimensional subspace that encompasses the training trajectory. So we extract the eigenvec-
tors corresponding to the two largest eigenvalues of Ŵ , which is denoted as P = [p1,p2].

As the eigenvectors are all unit vectors, normalization is necessary to match the model
parameters and ensure that the loss landscape is plotted within the correct range. Previous
research has utilized the “Filter Normalization” method for normalization. The FN method
normalizes each filter in pi separately, altering the subspace that initially contained the
training trajectory and leading to a higher information loss during projection. To preserve
the subspace’s integrity, we normalize pi as

di = ∥wcenter∥pi, (2)

here, wcenter ∈ Rn denotes the model parameter value at the center of the loss landscape.
di represents the normalized eigen vector, which is also the direction vector of loss landscape.
The loss landscape can be visualized by computing f(α, β) = Loss(wcenter + αd0 + βd1),
where α and β takes several values along the range of -1 to 1.
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3.2. Trajectory Visualization

In addition to visualizing the loss landscape of networks, our method can also be ap-
plied to visualize the training trajectory by projecting the network parameters into a low-
dimensional subspace. Given the projection matrix P = [p1,p2] and the training trajectory
W = {w1,w2, . . . ,wn}, the projected path trajectory in low-dimensional space can be
calculated as W̃ = P TW . Each element in W̃ indicates the corresponding coordinate of
the parameter values along the trajectory in the low-dimensional space. By using the low-
dimensional projection coordinates of the training trajectory and the corresponding loss at
each training step, we can create a line chart to visually represent the trajectory.

Since the projection from a high-dimensional space to a low-dimensional space is many-
to-one, it implies that multiple high-dimensional parameter points can project to the same
low-dimensional point. As a result, there exists a discrepancy between the loss value on
the training trajectory and corresponding coordinate on the loss landscape when visualizing
the trajectory on the loss landscape. This is due to the fact that, despite having the same
coordinates in the low-dimensional space, they correspond to distinct values in the high-
dimensional parameter space. We propose “Fitting Error” to measure the effectiveness of
the trajectory visualization result on the loss landscape.

Err =
1

n

n∑
i=1

[
ln

Loss(wi)

Loss(w̃i)

]2
w̃i = wcenter + αid0 + βid1

[αi, βi] = (wi −wcenter)
T P.

(3)

Here, Err denotes the “Fitting Error” of the trajectory andwi denotes the parameters of the
neural network at the i-th iteration. The coordinates of these values in the low-dimensional
space are represented by αi and βi. Additionally, w̃i corresponds to the parameter values at
the coordinates on the loss landscape. By calculating the difference of loss function when the
network parameters are wi and w̃i, we measure the fitting effect of the visualized trajectory
and the loss landscape. As the loss exhibits a large variation in magnitude when network
parameters changes in the parameter space, we take the logarithm of the loss. According to
2, we can simplify the computation of the corresponding coordinates on the loss landscape
as

w̃i = wcenter + ∥wcenter∥PP T (wi −wcenter) . (4)

4. Experiments

4.1. Experiments Setup

We experiment over two datasets, CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), and
apply basic data augmentations, such as random horizontal flip with a 0.5 probability and
random crop with a size of 32. Additionally, the input data for each channel are normalized
using their respective mean and standard deviation. The model structures we used include
ResNet20 (He et al., 2016), VGG11 (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy
et al., 2015), and other architectures. We train the DNNs using SGD optimizer (Ruder,
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2016), for which the learning rate is set as 0.1 and weight decay is set as 1e-4. We train the
DNNs for 100 epochs with batch size of 128.

4.2. Visualizing Loss Landscape

We employ both FN method and our method to visualize the loss landscape of the ResNet20
network. Figure 2 depicts the visualization results.

(a) FN method (b) Our method

Figure 2: Landscape visualization by FN method and our method. The experi-
ment is conducted on CIFAR-10 with ResNet20, and training initial point is the
visualization center point. (a) shows the loss landscape visualized using the FN
method, where the center point is considered as a local minimum point; (b) shows
the loss landscape visualized using our method, where directions of loss reduction
can be found near the center point.

In the visualization result using the FN method, all directions around the center point
of the landscape lead to an increase of loss, which means the current position is considered
as a local minimum. However, in training process, the direction of loss reduction is found
based on the gradient of network parameters, which is not reflected in the loss landscape.
By utilizing our method, the resulting visualization shows that the center point is not a
local optimal point, but rather there are directions of both loss increase and decrease in its
surroundings. This corresponds to the fact that during the training process, there are still
directions of loss reduction near the current position, such as the gradient descent direction.

Furthermore, we generate contour maps of the corresponding loss landscapes, which
is illustrated in Figure 3. The loss landscape visualized by FN method only displays a
local minimum at the center point, while the surrounding direction uniformly increases. In
contrast, the visualization result obtained using our method indicates a clear direction of
loss decrease. The center point is situated along the path of descent, but not at a local
minimum.

To validate the effectiveness of our visualization method across different models, we
train ResNet32, VGG13, and GoogLeNet networks on CIFAR-100 and visualize the loss
landscape using both FN method and our method. The visualization results are presented
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(a) FN method (b) Our method

Figure 3: Contour maps of landscape visualized by FN method and our method.
The experiment is conducted on CIFAR-10 with ResNet20, and training initial
point is the visualization center point. (a) shows the contour map of landscape
visualized by FN method. (b) shows the contour map of landscape visualized by
our method.

(a) FN, ResNet32 (b) FN, VGG13 (c) FN, GoogLeNet

(d) Ours, ResNet32 (e) Ours, VGG13 (f ) Ours, GoogLeNet

Figure 4: Landscape visualization by FN method and our method of different
networks. The experiment is conducted on CIFAR-100, and training initial
point is considered as center point. (a), (b), and (c) depict the visualization
results of the ResNet32, VGG13, and GoogLeNet networks using the FN method,
while (d), (e), and (f) illustrate the results of the corresponding networks when
visualized using our method.
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in Figure 4. The center point of the landscape was chosen as the training initialization point
in all above experiments. When using FN method, the center point in the loss landscape
of VGG11 and VGG13 networks is represented as a local minimum, while the center point
in the loss landscape of GoogLeNet is located near a local minimum, but there is no clear
direction of loss decrease around it. However, the visualization results obtained using our
method reveal clear directions of loss decrease near the center point. It clearly shows
that our method is capable of displaying the loss descent direction on the landscape when
visualizing networks with varying structures.

4.3. Visualizing Training Process

We conduct experiments on CIFAR-10 with ResNet20 network, and select parameter values
at different training steps as the center point to visualize the loss landscape around them.
Figure 5 presents the visualization results.

(a) Epoch=0 (b) Epoch=20

(c) Epoch=50 (d) Epoch=100

Figure 5: Landscape visualization by our method with different center points.
The experiment is conducted on CIFAR-100 with ResNet20. (a), (b), (c), and
(d) sequentially show the visualization results of loss landscape with network
parameters of epoch 0, 20, 50, and 100 in the training trajectory as the center
point. The center point are marked with red bubbles in the landscapes.

During the early stages of network training, the network loss function is large, and the
direction of loss decrease (e.g., gradient descent direction) can be easily determined. The



Ding Li Huang

corresponding loss landscape also reveals that the current center point is on the descent
trajectory, providing a clear direction for loss reduction. As training progresses, the network
parameters gradually approach the convergence point, leading to a gradual decrease in the
parameters’ gradients. The corresponding loss landscape exhibits a smoother terrain, with
less pronounced trends in the downward direction. As the network approaches convergence,
the network parameters approach local optimal, and it becomes difficult to find the direction
of loss reduction in the surrounding area. The corresponding loss landscape takes the center
point as the local minimum point.

In figure 6, experiments are conducted on CIFAR-100 with ResNet32 and VGG13 net-
works. We select the network parameters at epoch 0, 50, and 100 during the training
process as the center point and visualize loss landscapes around them using our method.
Regardless of the type of network used, the loss landscape can identify the direction of
loss reduction around center point in the early training stage and take the form of a local
minimum point near the center point when the training approaches convergence. It clearly
shows that at different stages of training, loss landscapes visualized using our method show
the corresponding direction of loss decrease, and our method performs well for models with
diverse structures.

(a) ResNet32, epoch=0 (b) ResNet32, epoch=50 (c) ResNet32, epoch=100

(d) VGG13, epoch=0 (e) VGG13, epoch=50 (f ) VGG13, epoch=100

Figure 6: Landscape visualization by our method with different networks and
center points. The experiment is conducted on CIFAR-100 with ResNet32
and VGG13 networks. (a), (b), and (c) illustrate the visualization results of
ResNet32 network with network parameters of epoch 0, 50, and 100 in the training
trajectory as the center point, respectively. (c), (d), and (e) show the visualization
results of VGG13 network under the same conditions. The center points are
marked with red bubbles in the landscapes.
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(a) ResNet20, epoch=0 (b) ResNet20, epoch=50 (c) ResNet20, epoch=100

(d) ResNet32, epoch=0 (e) ResNet32, epoch=50 (f ) ResNet32, epoch=100

Figure 7: Landscape visualization by our method with different models and cen-
ter points. The experiment is conducted on CIFAR-100 with ResNet20 and
ResNet32. (a), (b), and (c) illustrate the visualization results of ResNet20 with
network parameters of epoch 0, 50, and 100 in the training trajectory as the cen-
ter point, respectively. (c), (d), and (e) show the visualization results of ResNet32
network under the same conditions. The center point are marked with red bub-
bles and convergence point are marked with green bubbles in the landscape.

In order to validate the accuracy of the descent direction in visualization result, we
conduct experiments on CIFAR-100 with ResNet20 and ResNet32 networks, and project
the network’s converged parameter values into visualization subspace and indicate their
location on the loss landscape. Figure 7 depicts the projected results.

In the loss landscape centered at the epoch 0 network parameters, an apparent loss
descent direction can be observed near the center point, and the network convergence point
lies on this direction. For the loss landscape near epoch 50 network parameters, the center
point is closer to the convergence point, but the loss descent direction is not as evident. In
the loss landscape close to the network convergence point, the center point coincides with
the convergence point, and they are regarded as a local minimum on the loss landscape.
It clearly shows that by using our method, the loss descent direction on the loss landscape
indicates the direction towards the network’s converged parameter value.

4.4. Visualizing Trajectory

We visualize the training trajectory of ResNet20 network on CIFAR-10 using both FN
method and our method, and the result is shown in Figure 8. The FN method’s land-
scape produces a visualization result where the training trajectory is presented as a vertical
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(a) FN method (b) Our method

Figure 8: Trajectory visualization by FN method and our method. The experiment
is conducted on CIFAR-10 with ResNet20. (a) shows the visualization result of
the training trajectory using FN method. (b) shows the visualization result using
our method.

(a) ResNet20 (b) ResNet32

Figure 9: Trajectory visualization by our method of different networks. The ex-
periment is conducted on CIFAR-100 with ResNet20 and ResNet32 networks. (a)
shows the training trajectory of ResNet20 visualized using our method. (b) shows
the visualization result of ResNet32 using our method.

line since different trajectory parameters are projected into the same coordinate in low-
dimensional space. This presentation is unable to depict the changes in the loss function
and network parameters during the training process. Conversely, the visualized trajectory
using our method clearly displays the changes of network parameters during the train-
ing process. Moreover, the trajectory in the visualized low-dimensional subspace fits the
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Table 1: Fitting Error of ResNet20 and ResNet32 on CIFAR-10 and CIFAR-100

dataset cifar10 cifar100
model resnet20 resnet32 resnet20 resnet32
FN 77.42 424.54 4.51 38.51

Ours 35.88 41.80 0.82 4.72

loss landscape well. We also visualize the training trajectory of ResNet20 and ResNet32
networks on CIFAR-100 using our method. The results are shown in figure 9.

In Table 1, we conduct experiments on CIFAR-10 and CIFAR-100 with ResNet20 and
ResNet32 networks. The Fitting Error is calculated according to 3. When using our method
to visualize training trajectory, the Fitting Error is significantly lower than that of the
results obtained using the FN method, for different datasets and networks under the same
conditions. It clearly shows that our method is capable of effectively visualizing the training
trajectory of DNNs. The visualized trajectory provides a clear display of the changes in the
loss function and parameters during the network’s training process, and exhibits a better
fit with the loss landscape.

5. Conclusion

This paper presents a loss landscape visualization method based on low-dimensional char-
acteristics derived from the training trajectory. Compared to traditional methods, our
approach is capable of preserving more network parameter information during the visual-
ization process, displaying feasible loss descent directions on a visualized landscape, and
visualizing changes to the training trajectory in a low-dimensional space. Our goal is for
these visualization methods to assist researchers in explaining the network’s trainability,
robustness, and generalization.
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