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Abstract

Forecasting the crossing intention of pedestrians is an essential task for the safe driving of
Autonomous Vehicles (AVs) in the real world. Pedestrians’ behaviors are usually influenced
by their surroundings in traffic scenes. Recent works based on vision-based neural networks
extract key information from images to perform prediction. However, in the driving envi-
ronment, there exists much critical information, such as the social and scene interaction in
the driving area, the location and distance between the ego car and target pedestrian, and
the motion of all targets. How properly exploring and utilizing the above implicit inter-
actions will promote the development of Autonomous Vehicles. In this chapter, two novel
attributes, the pedestrian’s location on the road or sidewalk, and the relative distance from
the target pedestrian to the ego-car, which are derived from the semantic map and depth
map combined with bounding boxes, are introduced. A hybrid prediction network based
on multi-modal is proposed to capture the interactions between all the features and predict
pedestrian crossing intention. Evaluated by two public pedestrian crossing datasets, PIE
and JAAD, the proposed hybrid framework outperforms the state-of-the-art by about an
accuracy of 3%.
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1. Introduction

Pedestrians, as the main participants in traffic roads, easily violate rules and are unpre-
dictable due to the influence and restrictions of the surrounding environment Holländer
et al. (2021). Their ”stops” and ”goes” behaviors are usually safety-critical, especially
for road-crossing scenariosSun et al. (2021). Instead of human drivers, Autonomous Vehi-
cles(AVs) could quickly detect and locate pedestrians based on current autonomous systems.
Besides, they also could interpret and predict pedestrians’ intentions based on the prediction
module of Automated Driving Systems (ADS). Some works adopt individual features, such
as observed trajectories, motion states, and pose, to forecast future locationsKothari et al.
(2021a,b); Liu et al. (2021). These methods have high efficiency when pedestrians move
smoothly in regular motion. However, past behaviors and trajectories may not indicate
future movements in real traffic environments. Pedestrians may change their directions and
velocities suddenly in dynamic surroundings. They may be the front cars, another pedes-
trian on the left, traffic lights, a repaired road, or sudden heavy rain Kothari et al. (2021a);
Liu et al. (2021). Fig. 1 shows a sudden-change case due to the traffic rules and surround-
ings, the pedestrian does not follow her previous moving direction but changes to another
road. Such “incidents” happen regularly as pedestrians keep their eyes and ears open when
they are prepared to cross. So, predicting pedestrian crossing intention rather than certain
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attributes is a multi-modal problem. Recently, many public data sets related to pedestrians
of automotive driving Rasouli et al. (2017c,a, 2019); Sun et al. (2020); Zhang et al. (2020)
are created and released. These datasets provide rich spatial and behavioral annotations
for road users, interaction simulation, and information from multi-sensors. A benchmark
PCPA Kotseruba et al. (2021) for pedestrian crossing intention prediction, achieves out-
standing accuracy on two public data sets: JAAD Rasouli et al. (2017c,a)and PIE Rasouli
et al. (2019), based on multi-model framework incorporated visual features presented as
local context and non-visual features including bounding boxes, poses, and ego-car speed.
Each feature will be encoded individually. This method employs the multi-modal network
to fuse multiple encoded features for final prediction results. However, such a fusion net-
work will bear a heavy computing load when the two features are similar or correlated. To
reduce potential redundancy and introduce the interaction between the target pedestrian
and the scene, OSU Yang et al. (2022) proposes a spatial-temporal context feature with
an attention mechanism based on PCPA. However, the implicit interactionsRasouli et al.
(2021a) between labeled features, and other potential features such as distance and location,
which will influence the intention, lack consideration in the above methods. Recently, Ham
et al. (2022) provided novel fusion strategies by exploring global and local interactions in
scenarios. In this paper, we study the problem of intention prediction from the ego-centric
view of a moving vehicle by introducing two novel features: distance between the target
pedestrian and ego-car, location of the target pedestrian (at road or sidewalk) accompany
with present the existing features. Besides, novel fusion strategies are proposed to fully
consider correlation or interaction between features. Based on the above analysis, the main
contributions of this work are summarized as follows:

• We present a novel hybrid fusion method that utilizes interactions between features
based on stacked GRU Rasouli et al. (2020) to predict pedestrian crossing intention.

• Two additional dynamic attributes, relative distances and location in the scene are
introduced and evaluated by detected bounding boxes, monocular depth estimation
map, and semantic segmentation map. These two additional attributes remove re-
dundant interaction between pedestrians and other road users.

• We evaluate the performance of the proposed method using public datasets, and
show that our method achieves stable and better performance over state-of-the-art
algorithms.

2. Related Work

The problem of pedestrian intention forecasting from image sequences has attracted signif-
icant interest recently. As a sub-problem of action prediction, pedestrian crossing intention
also raises huge interest in developing Autonomous Vehicles. The aim is to predict whether
the target pedestrian crosses the road or not in the field of view of AVs in several future
seconds.

There are two main approaches related to pedestrian crossing prediction. Traditional
trajectory-based crossing intention prediction methods and hybrid feature fusion are ex-
tracted from input data. Based on Mordan et al. (2021), pedestrians have recognized
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Figure 1: Pedestrian dynamic: change of moving direction; Interaction between pedestrian
and other road users; Pedestrian on road or sidewalk?

32 related attributes in traffic scenarios. For the task of crossing intention prediction, re-
searchers usually utilize different features and prediction networks to improve final accuracy.
In an early study, JAAD Rasouli et al. (2017b) is created and labeled bounding boxes for
all pedestrians, behavior, gender, and age, and contextual tags(weather, time, and street
structure). Novel variations of previous individual modal-based methods are proposed to
process the datasets. Piccoli et al. (2020) takes the observed motion from bounding boxes
as input to a spatiotemporal Densenet to classify the future motion. Besides, pose fea-
tures usually indicate the direction of future motion, they are extracted from OpenPose
Cao et al. (2017a) and adopted in Fang and López (2019) to estimate the future pose
of pedestrians. The distance and angle among the joint points are calculated to predict
whether pedestrians cross. Recently, feature fusion methods have been explored for this
problem. In Kotseruba et al. (2021); Yang et al. (2022); Osman et al. (2022), multiple fea-
tures, including visual features extracted by CNN and non-visual features (i.e., ego-vehicle
speed, pedestrians’ pose, and detected bounding box), are fed into gated recurrent units
(GRUs) and along with Fully Connected layer for final prediction. Ham et al. (2023) fuses
eight input modalities with a systematic combination mechanism to fully explore the global
and local features. Similarly, Ham et al. (2022) proposes a novel multi-stream network for
pedestrian crossing intention prediction based on 5 inputs. High descriptive features and
effective fusion will be critical in intention prediction. Besides the common framework of
visual and non-visual modules, transformer-based methods have been widely introduced as
the solution for prediction due to the outstanding performance of the transformer Lorenzo
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et al. (2021b,a) with non-visual sequential features. Usually, in the driving environment,
interactions among road agents have a significant impact on forecasting future behavior.
It may exist between ego-vehicles and other road agentsBhattacharyya et al. (2021b) and
scenes. So interaction modeling is widely equipped in trajectory prediction and intention
estimationBhattacharyya et al. (2021a); Ettinger et al.. Interactions hidden in the traffic
scene will vary with time. Semantic segmentation maps Yang et al. (2022) are commonly
adopted to model such interactions. Some works introduce graph-based networks to ex-
plore the surrounding interactions of target pedestrians Cadena et al. (2022); Rasouli et al.
(2021b); Song et al. (2022). However, there usually exist some redundant interactions in a
real traffic case. For example, the interaction between a pedestrian and another pedestrian
standing at a different crossroad is very limited, even though they are in the same cam-
era view and segmentation from the semantic map. Besides, interactions also exist among
features. Taking two features, the location pedestrian being standing and pose direction,
for example, it may be probably crossing the road when a pedestrian standing at the road,
and his/her head posed towards the road simultaneously. Combining these two features
together would generate higher accurate crossing intention compared to individuals. In this
paper, we consider such interactions into account for a robust fusion strategy.

3. Methods

3.1. Formulation

Generally, there are two possible results, crossing and not crossing, in the scenarios of
prediction crossing, and it can be solved by classification techniques based on a sequence
of observed video frames from a camera mounted in front of the moving ego vehicle. The
features adopted in this paper are as follows: (1) Context features surrounding pedestrian
i:

Cli =
{
ct−m
li , ct−m+1

li , . . . , ctli
}

(1)

(2) The context features from semantic segmentation mask in frame-level:

Cg =
{
ct−m
g , ct−m+1

g , . . . , ctg
}

(2)

(3) Ego car’ real speed:
Sobs =

{
st−m, st−m+1 . . . , st

}
(3)

(4) The location and velocity of target pedestrian i calculated by coordinates of detected
2D bounding box (from top-left to bottom-right) and position changes from the previous
frame t− 1 to frame t :

Bobs =
{
bt−m
i , bt−m+1

i , . . . , bti
}

(4)

(5) Distance between ego car and pedestrian i, calculated by 2D bounding box and monoc-
ular depth estimation:

Dobs =
{
dt−m
i , dt−m+1

i , . . . , dti
}

(5)

(6) Location in the scene, position attribute of target pedestrian i where li indicate whether
the pedestrian is on the road or on the sidewalk:

Lobs =
{
lt−m
i , lt−m+1

i , . . . , lti
}

(6)
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(7) Pose key points of pedestrian i:

Pobs =
{
pt−m
i , pt−m+1

i , . . . , pti
}

(7)

To comply with references, we set observation length m = 16, 30 frames per second, the
same as the benchmark in Kotseruba et al. (2021).

3.2. Architecture

The proposed multi-modal method shown in Fig. 2, illustrates the overall architecture. In
Visual modality, local and global context from semantic image sequences are adopted as
input of the prediction network. 2D convolution is adopted to extract features and then
connected to the GRU module for temporal information extraction. In dynamic modality,
relative distance and location attributes are introduced, along with the bounding box, pose
key points, and real speed of the ego-car. All these dynamic features will be encoded
by Interaction Encoding module. Two sequential encoding mechanisms are introduced to
explore the feature interactions. Meanwhile, the estimated speed of pedestrians and the real
speed of an ego-car in Dynamic Encoding will also be considered. An attention mechanism
is adopted to learn the weights of multi-modalities. The details will be discussed in the
following subsections.

3.3. Visual Modality

The objects in the view of cameras will affect the decision of target pedestrians. Take the
below scenarios as an example, to determine pedestrian will cross or not: (1) The pedestrian
is standing at a crossroad, and traffic lights turn to green. At the same time, a vehicle slow-
moving along the sidewalk blocks the pedestrian. (2) pedestrian is standing in the middle of
the road, other conditions are same as (1). The results may be different due to the location of
the target pedestrian. Depending on the actual circumstances, all the possible surroundings
will affect the pedestrian feature behaviors. In this work, we model these surroundings and
interactions by the local context around the pedestrian and global context in the camera’s
view. Local context is denoted as ctli, cropped from the original frame with a size of 1.5 times
bounding box, and records the changes around pedestrians. The global context, acquired
from semantic segmentation maps, is denoted as Cg, and represents pixel-level semantic
masks, localizing different road users in the image. From this context, all available space
in the camera’s view can be easily recognized, and the internal interactions can be easily
modeled. A DeepLabV3 semantic segmentation model Chen et al. (2017), which is trained
on Cityscapes DatasetCordts et al. (2016), will be used to acquire the segmentation masks
to select critical objects (e.g. pedestrians, vehicles, sidewalks, street, and road).

A pre-trained VGG19 Simonyan and Zisserman (2014), is adopted to extract features.
Images are resized and represented by a 4D array, denoted as [observed frames, rows, cols,
channels]. The size of the extracted feature will change from ([512,14,14]) to tensor([16,512])
through the max-pooling layer to the average pooling layer (14x14). A stacked gated recur-
rent unit (GRU) is adopted for temporal correlation. The interactive information between
the local scene and semantic maps is gradually incorporated. In the proposed architecture,
GRUs (256 hidden units) are used to generate a tensor size ([16,256]).
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Figure 2: The proposed prediction framework. The input of the model includes: (1) fea-
tures from visual modality: context features surrounding pedestrian Cli, semantic
segmentation maps Cg; (2) features from dynamic modality: relative distance be-
tween target pedestrian Dobs, location of pedestrian in scene Lobs, pedestrian
observed motion in bounding box Bobs, pose key points Pobs, and real speed of
ego-car Sobs are encoded in Interaction Encoding module. The extracted visual
and dynamic features will be fed to stacked GRUs. An attention mechanism is
adopted to learn the weights of multi-modalities. The final prediction will be
output by FC layers.

3.4. Dynamic Modality

In crossing scenarios, the pedestrian’s motion, location, and distance from the ego-car,
as well as the real speed of the ego-car, are the important factors in the estimation of
pedestrian crossing behaviors. Generally, pedestrians will remain static when the vehicle
moves too fast or too close to the pedestrian. Besides, a pedestrian moving on the road will
have a large probability of crossing compared to standing on the sidewalk. Considering the
importance of the dynamics features, apart from the existing features, two kinds of novel
features have been introduced in this paper: (1) the relative distance from pedestrian to
ego-car, (2) scene location indicating the pedestrian’s position on the road or sidewalk at
the crossing point. Besides, an additional estimated speed of pedestrians is also introduced.
The detailed descriptions are as follows:
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3.4.1. Pedestrian’s Motion and Location in 2-D

Pedestrian location is denoted as Bi =
{
bt−m
i , bt−m+1

i , . . . , bti
}
. Due to the absence of 3D

data, the coordinates ( top-left,bottom-right) of 2D bounding boxes are adopted to estimate
the velocity of pedestrians. To formulate the location and velocity, the center points of the
detected bounding box, along with the width and height, are calculated and denoted as Pt

= (xt,yt,wt, ht). The Vt represents the position changes from t− 1 in ∆t:

Vt =
Pt − Pt−1

∆t
= (∆xt,∆yt,∆wt,∆ht) (8)

The novel vectors Bt = (Pt, Vt) of pedestrians consist of position and speed vectors,
while t is time steps.

3.4.2. Pedestrian’s Relative Distance

Two public datasets, JAAD and PIE, are collected by the wide-angle RGB camera. They
don’t have real-world coordinates from Lidar or GPS, so there is no distance information
in datasets. So, deploying the distance from actual obstacles to the vehicle becomes a chal-
lenging problem. Even though real distance can’t be acquired, a relative distance could be
evaluated to simulate the spatial position relation and scope to a certain extent. Usually,
the pixel coordinates of the bounding boxes can somehow depict the distance. The monoc-
ular depth estimation approach estimates the distance from each pixel of the obstacle to
the camera. This work introduces relative distances derived by bounding boxes and depth
maps as novel attributes.

Fig. 3 shows the process of simulating distance. dti denotes the relative distance at time
t. bti[k], where k from 0 to 3, denotes top-left to bottom-left coordinates separately in the
bounding box.

dti =

bti[3]∑
i=bti[0]

bti[3]∑
j=bti[0]

I(i, j) (9)

where, I(i, j) depicts the pixel value of monocular depth image.

Figure 3: Illustration of the process of relative distance framework

The depth images generated from Godard et al. (2019), combined with the bounding
box, will derive the relative distance of pedestrians, this could be achieved by calculating
the mean pixel value of the cropped area by bounding box.
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3.4.3. Pedestrian’s Location

Scene location, indicating the pedestrian is standing on the road or sidewalk at a crossing
point, will reflect the crossing intention. In this work, we introduce this attribute in the
group of dynamic features. Generally, pedestrians on the road will have a higher proba-
bility of crossing than standing sidewalks. We simplify the semantic map generated from
Chen et al. (2017) into interesting categories, “sidewalk”, and “road/street”. Fig. 4 shows
the process of scene location attribute, denoted Li =

{
lt−m
i , lt−m+1

i , . . . , lti
}

as ”road” or
”sidewalk”, same as in Yang et al. (2022).

Figure 4: The architecture of scene location attribute segmentation in the input module.
All the semantic segmentation is generated by Chen et al. (2017).

3.4.4. Real speed of Ego-car

Real speed of ego-car st is defined by the ground truth of PIE, while only timestamped
behavior labels in JAAD dataset. To process easily, the descriptions provided in JAAD
dataset are adopted as the represented speed: “4” vs accelerating, ”3” vs decelerating, ”2”
vs moving fast, ”1” vs moving slow, and ”0” vs stopped.

3.4.5. Pose key points

Similar to Yang et al. (2022), the Pose key points are obtained by applying a pose estimation
model on the local context Cli. JAAD dataset does not provide ground truth of pose key
points, a pre-trained OpenPose model Cao et al. (2017b) is adopted to extract pose key
points Pi =

{
pt−m
i , pt−m+1

i , . . . , pti
}
, where p is a 36D vector of 2D coordinates that contain

18 pose joints, i.e.,

pt−m
i =

{
xt−m
i1 , yt−m

i1 , xt−m
i2 , yt−m

i2 , . . . , xt−m
i18 , yt−m

i1

}
(10)

3.4.6. Interaction Encoding

In this paper, two types of interaction encoding are introduced. First is sequential encod-
ing, and second is group encoding. Similar to Kotseruba et al. (2021); Yang et al. (2022),
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dynamics features will be fed to the neural network sequentially in Fig. 5. However, the
interactions between features are not well described. A second group encoding is introduced
to explore the specific interactions between features in Fig. 6. Based on the understanding
of crossing, the speed of the ego-car with the speed of pedestrians, and the distance be-
tween pedestrian and ego-car cooperate for the final decision simultaneously. The standing
location and pose information will indicate motion states to a certain extent.

Figure 5: Sequential Interaction Encoding for dynamics features

Figure 6: Group Interaction Encoding for dynamics features

3.4.7. Attention module

The attention mechanism learns to put weights on multiple features among feature repre-
sentations. Only the last frame will be focused. The weight α is as follows:

α =
exp

(
score

(
ht, h̄s

))∑
s′ exp

(
score

(
ht, h̄s′

))
, where ht and h̄s represent the last hidden state and each in observed period t. The
score

(
ht, h̄s

)
= h⊤t Wah̄s . Wa denotes weight matrix. ct =

∑
i αih̄s denotes sum of all

attention weighted hidden states. A simple concatenation layer is adopted to produce tensor
size [16,256]. The final output is denoted as:

Yattention = tanh (Wc [ct;ht]) (11)

4. Experiment

The proposed framework is evaluated on JAAD Rasouli et al. (2017c,a)and PIE Rasouli
et al. (2019) datasets. Totally 346 clips for crossing the road in JAAD. Two subsets:
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Table 1: Performance of our method with state-of-the-arts on JAAD and PIE datasets
Models PIE JAADbeh JAADall

ACC AUC F1 ACC AUC F1 ACC AUC F1

PCPAKotseruba et al. (2021) 0.86 0.86 0.77 0.58 0.50 0.71 0.85 0.86 0.68
OSUYang et al. (2022) 0.82 0.78 0.68 0.62 0.54 0.74 0.83 0.82 0.63

SF-GRURasouli et al. (2020) 0.87 0.85 0.78 0.53 0.53 0.59 0.84 0.84 0.65
MCIPHam et al. (2022) 0.89 0.87 0.81 64 0.55 0.78 0.88 0.84 0.66

Hybrid-Seq(ours) 0.90 0.87 0.81 0.65 0.56 0.79 0.88 0.82 0.68
Hybrid-Group(ours) 0.91 0.89 0.81 0.67 0.61 0.79 0.90 0.84 0.69

JAADbeh (JAAD behavioral) and JAADall (JAAD all). All pedestrians in JAADall and
pedestrians with behaviors are annotated in JAADbeh. All pedestrians in the view are
annotated in PIE. Camera internal parameter matrices provided in the dataset correct the
image distortion before feeding into the semantic and depth representations. The same
configuration as in Kotseruba et al. (2021) is adopted to create a fair benchmark. The
overlap of data sampling is set to 0.8, the scale of the context surrounding pedestrians is
set to 1.5, the L2 regularization dropout to 0.001, and the dropout is set to 0.5. JAAD is
trained for 80 epochs, PIE is trained for 60 epochs set lr as 5x10−6. Adam optimizer and
binary cross-entropy loss are adopted.

4.1. Comparison with State-of-the-art

The comparison with the state-of-the-art on PIE dataset and two JAAD sub-datasets is
listed in Table 1. Four benchmarks are adopted in this work to evaluate the proposed
framework. C3D is adopted in PCPAKotseruba et al. (2021) to extract spatial-temporal
relationships. OSUYang et al. (2022) and SF-GRURasouli et al. (2020) explore different
fusion between multiple features. MCIPHam et al. (2022) introduces a segmentation map
into non-visual and visual modules to predict crossing intention. Besides, the global and
local context information, our methods introduce distance and location as the additional
inputs compared to benchmarks. From the results, our hybrid, with sequential and group
interactions method achieves the highest accuracy of 90%. The above results show that the
distance and location in the scene can provide additional information that could remove
redundant correlations between real scenes and pedestrians. Besides, the fusion strategy
between dynamic features will slightly impact the performance of our two results on two
datasets. The results also reveal dynamic features will interact with each other and group
features sequentially may lose some interaction.

4.1.1. Ablation Study

We conduct the ablation study to evaluate the individual features and impact on final
prediction results by excluding one feature sequentially. As Table 2 shows, context Cli

surrounding pedestrian and global semantic context Cg along with pedestrian’s observed
motion B, pedestrian’s pose P , real speed of ego-car S, relative distance D, and location
L, comprise the baseline for fusion of dynamic features. From the results, the features with
great impact are the speed of the ego-car, whose accuracy decreased by about 6%, followed
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Table 2: Ablation study with individual features
B P S D L Cli Cg ACC↑ AUC↑ F1↑
✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.91 0.89 0.81
x ✓ ✓ ✓ ✓ ✓ ✓ 0.89 0.88 0.79
✓ x ✓ ✓ ✓ ✓ ✓ 0.88 0.85 0.73
✓ ✓ x ✓ ✓ ✓ ✓ 0.85 0.83 0.71
✓ ✓ ✓ x ✓ ✓ ✓ 0.89 0.88 0.80
✓ ✓ ✓ ✓ x ✓ ✓ 0.89 0.88 0.79
✓ ✓ ✓ ✓ ✓ x ✓ 0.90 0.86 0.76
✓ ✓ ✓ ✓ ✓ ✓ x 0.89 0.89 0.79
✓ ✓ ✓ x x ✓ ✓ 0.88 0.86 0.78
✓ ✓ ✓ x ✓ ✓ ✓ 0.89 0.89 0.78
✓ ✓ ✓ ✓ x ✓ ✓ 0.88 0.87 0.78

Table 3: Ablation study with different fusion sequences of dynamic information on PIE and
JAAD

Models PIE JAADbeh JAADall

ACC AUC F1 ACC AUC F1 ACC AUC F1

S+ B+ P 0.88 0.86 0.78 0.61 0.53 0.72 0.82 0.74 0.58
S+ B + P + D 0.89 0.88 0.78 0.64 0.56 0.74 0.86 0.81 0.63
S+ B + P + L 0.88 0.87 0.76 0.62 0.53 0.73 0.83 0.73 0.57

S+ B + D + L + P 0.91 0.88 0.81 0.65 0.56 0.74 0.88 0.80 0.64
B+ D + L + P + S 0.90 0.88 0.80 0.64 0.56 0.75 0.88 0.81 0.65

by pedestrian motion, relative distance, pose, location, local context, and global context
decreased by about 1-2% on the PIE dataset. The complex background information in the
global context may contribute less to crossing intention than other features. Besides, there
is an accuracy improvement of about 3% with two novel features D and L, and individually,
about 1-2% improvement. The results prove that the efficiency of the novel two features
and the more corresponding features, the better the performance. Furthermore, it depicts
that the proposed framework is more concerned with interaction around the pedestrian.

Table 3 shows the performance for the different sequential fusions of dynamic features.
With the distance D from pedestrian to ego-car added, the overall accuracy is improved
by more than 2%. The only location in scene information L, there is still performance
improvement, which is slightly lower than distance information. Besides, the sequence
with distance, location, and observed motion performs best. It depicts that the proposed
framework is concerned more with interaction around the pedestrian.

As Table 4 shows, location in scene information L combines with pedestrian’s observed
motion B, pose kye points P will give an accurate prediction accuracy as these three factors
usually work together. With the distance D from pedestrian to ego-car S added, the overall
accuracy is improved by more than 2%. Only changing fusion of dynamic information, while
visual information keeping local and global sequence, has been proven effective benchmarks
in this section. We follow the common group accepted by visual perception. For example,
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Table 4: Performance of the proposed method with different fusion sequences of dynamic
information on JAAD

Models JAADbeh JAADall

ACC AUC F1 ACC AUC F1
Cli + Cg +B + S + P +D + L 0.64 0.55 0.74 0.88 0.80 0.64
Cli + Cg +B +D + P + L+ S 0.64 0.56 0.75 0.88 0.82 0.65
Cli + Cg +B + L+D + P + S 0.65 0.56 0.77 0.89 0.81 0.66
Cli + Cg +D + L+ S +B + P 0.64 0.54 0.75 0.88 0.81 0.65

a man standing and facing the road will have a large probability of crossing the road, which
means a group of P and L. A long-distance D with pedestrian’s location L, pose P , and
motion B will have comprehensive prediction results. Therefore, the group order of features
will impact the final prediction. This experiment shows that if an interaction exists between
features, the correct group of feature sequences will achieve better results.

Figure 7: Samples related to distance and sence location

Furthermore, an ablation study about sequential fusion is conducted. Table 4 shows
that location in scene information L combines with pedestrian’s observed motion B, pose
kye points P will give an accurate prediction accuracy as these three factors usually work
together. With the distance D from pedestrian to ego-car S added, the overall accuracy
is improved by more than 2%. This experiment shows that if there exists an interaction
between features, the correct order of feature sequences will achieve better results.

4.2. Qualitative Results

Figure 7 displays some samples from the proposed model evaluated on JAAD dataset and
PIE dataset. With additional distance and location information, novel interaction with ego-
car and surroundings is further explored. Whether a pedestrian stands at crossing points
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Figure 8: PCPA Kotseruba et al. (2021) and proposed models Qualitative results.

or on the street has a large probability for future motion. Some complicated samples are
shown in Figure 8, which require more information to perform prediction. Besides, changing
moving direction suddenly, bad weather conditions (e.g., bad illumination caused by rainy
or snowy light), would affect prediction results.

5. Conclusion

In this paper, a novel crossing intention prediction framework is proposed. The proposed
method explicitly considers the interactive information between surroundings and pedes-
trians. Two novel interactive features, distance from pedestrian to ego-car and location of
pedestrian in the scene, are introduced. The relative distance derived from the monocular
depth and semantic segmentation map, respectively, as the complement of provided dy-
namic features. Results show that more additional dynamic features, both from the visual
model and proved by the dataset, will generate obvious results compared to hidden visual
information. Two fusion strategies are proposed to explore the feature interactions: se-
quential and group features. Based on results, real scenarios considering features sequence
and group will give better results than solely sequential. Future work can focus on feature
fusion improvement around target pedestrians for the robustness of prediction. More stable
features will be explored for complicated scenarios, such as sudden changes, occlusion, and
bad illumination.
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