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Abstract
Many research works focus on the robustness of convolutional neural networks (CNNs) on
image classification. Diversity loss has been demonstrated to be an effective method to
boost robustness. However, the existing diversity losses did not fully consider the strong
correlation between regional features when filters are locally activated. They focused on
improving filter responses constraint with classification loss. However, diversity loss has
deeper optimization space. We explore the combinations of different filter diversity losses
and feature diversity losses. We enhance the orthogonality between pair-wise filters to
make them more diverse and penalize irrelevance between regional response mappings.
We make multiple combinations and propose several methods on improving orthogonality,
which have different adaptations for different datasets and network models. We evaluate
their effectiveness in experiment. Our combinations could improve the efficiency of robust
image recognition.
Keywords: diversity loss; filter orthogonality; robust image classification

1. Introduction

Convolutional neural networks (CNNs) have achieved remarkable success on image recogni-
tion Dosovitskiy et al. (2020); Sun et al. (2005); Lu and Weng (2007); Petrou and Petrou
(2010). However, it remains challenging to build a robust classifier that can handle varying
data in new scenarios effectively, due to the inevitable domain shift when the actual data
is encountered at test time. As shown in Fig. 1, handwritten digits can have different dis-
tributions caused by different factors, such as various writing styles Hull (1994), different
application scenarios Neto et al. (2020), and the ray transformation.

A common solution is using transfer learning. That is, using a small well-labeled dataset
to predict relevant but unlabeled samples in a target domain, so that the distribution of the
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Figure 1: Examples of domain shift in handwritten digit recognition.

target data is as close as possible to that of the input data. However, its actual deployment
is difficult to advance in depth, and the two most significant issues are: i) the dependence
on labeled training data does not allow for manual labeling of all test data and is expensive;
ii) the feature distribution of input data will produce unpredictable displacement changes
after entering the CNN. The two problems are closely related. In convolutional space, the
input data is distributed in the form of feature scatter points, and the well trained feature
distribution in CNN implicitly reflects the sub distribution of the input image. On the
contrary, models with good robustness and generalization ability often exhibit rich feature
responses and fully activate important semantics.

We therefore explore the correlation between filter distributions in convolutional space
and input distributions. If a specific filter only captures a typical feature, it can naturally
weaken its response to noise signals, and thereby achieves a natural robustness.

Inspired by this idea, Zhuang et al. Zhuang et al. (2021) proposed a simple but effective
method to explain the activation of a filter kernel in a CNN model and pointed out that
training networks obtained by suppressing other visual features unrelated to the activation
of specific kernels are naturally interpretable. However, this natural interpretability is very
fragile, due to the strong correlation of feature responses at adjacent spatial positions and
multiple filters work together to respond to local image regions.

Then, how to enrich the filter responses as much as possible by weakening their correla-
tions? The spatial activation diversity (SAD) loss in the work of Yin et al. (2019) inspired
us greatly. The feature of a region can be strengthened or weakened by punishing different
filter weights, and the correlation between the filter responses can be weakened by combining
the modified classification losses to enrich the useful features in convolution space.

In this work, we focus on the potential variations of the SAD loss Yin et al. (2019).
We find that the number of filters used in the SAD loss is often very large so that the
SAD loss is hard to be used in practice. To ensure that diverse filters are well learned
without introducing a large computational cost, we, inspired by the method in MobileNets
Howard et al. (2017), proposed a new method to calculate the similarity between filters
. Specially, the filter kernels can be decomposed into multiple low-dimensional sub-filters
along the channel direction, and their similarity can also be measured. We use two modified
filter decomposition methods: Point-Wise and Depth-Wise. They can be used to reduce
the convolutional computation and to improve the training speed. We introduce these two
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combinations in detail in the method section and verify their effectiveness in the experimental
section.

Further, in order to enhance the discriminability between feature responses, we have
further improved the orthogonal combination of response constraints. In the work Yin et al.
(2019), they had proposed the second term response diversity loss combined with classifier
loss could decorrelation filter response and we optimize it. Given the fact, when training a
large sample set in a neural network model, a fixed batch (usually not 1) is often set. The
size of the batch determines the number of samples to be trained at once. When updating
the weight, it is also updated by batch, which usually affects the optimization process and
training speed of the model. Based on this discovery, we orthogonal the batch. Specifically,
from the perspective of four-dimensional mapping space, N can be used as the number of
Batch channels in the sample direction and F as the number of channels in the number of
filters. Orthogonal combinations of response graphs with larger than two-dimensional sizes
can be made, and their combinations can be more diversified. We believe that the addition
of F and N is conducive to weakening the strong correlation between adjacent responses
and ensuring certain independence of features.

To summarize, our contributions are in three folds: 1) We modified diversity loss to
make it be more suitable for dealing with robust image recognition problems; 2) We incor-
porate the ideas of Point-Wise and Depth-Wise into the filter constraint, which greatly
reduces the convolutional computation and enrich feature diversity; 3) We modify the filter
response constraint to incorporate batches into decomposition combinations in high dimen-
sional space, thereby reducing the correlation between characteristic responses.

2. Related Work

2.1. Understanding Features on Convolution

Deep CNNs have been pushing the frontier of visual recognition over past years. Besides
recognition accuracy, the research community’s strong need for understanding deep cellular
neural networks also prompted the development of tools that dissect pre-trained models to
visualize how they make prediction process.

The attention model Rush et al. (2015) borrows from this feature and uses the attention
mechanism to make the network model selectively "look" at different parts of the input data
and apply adjustable weights so that the subtitles pushed to each prediction can respond
effectively in a timely manner. Its idea is basically in line with ours. However, attention
mechanisms often require large-scale data labeling, which introduces additional costs com-
pared to traditional models. In addition, it may ignore some insignificant but important
semantic information, resulting in information loss. We want to study interpretability from
the characteristics of the model itself, without additional self-attention.

One potential way is to provide annotations for learning filters with local activation and
building structured representations from the bottom up. However, this is challenging to
execute and costly to manually mark in practice, which opposes our initial goal of machine
learning for convenience, and is also worse than end-to-end learned filters. In Yin et al.
(2019), interpretability is incorporated into the activation of filters and their responses, and
spatial activation diversity loss is proposed to encourage filters to be fully activated locally
and to capture more discriminating visual cues, especially in blocking face recognition.
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2.2. Kernel Orthogonality in Neural Networks

Filters play a significant role in convolutional layer and each filter has an image feature
response that it pays attention to, such as vertical edge, horizontal edge, color, texture, etc.

Orthogonal kernels are shown to stabilize the training of CNNs and make more efficient
optimization Wisdom et al. (2016); Arjovsky et al. (2016); Lezcano-Casado and Martınez-
Rubio (2019). Orthogonal weight initialization is proposed in Mishkin and Matas (2015);
Saxe et al. (2013). However, this orthogonality may not last as training progresses. In order
to ensure that weights in the whole training process are orthogonal, optimization methods
based on Stiefel manifolds are used in Harandi and Fernando (2016); Huang et al. (2018);
Miyato et al. (2018), and further extended to convolutional layers in Miyato et al. (2018).
However, their work is not directly focusing on how to improve the orthogonal measures.
And it is more complicated.

Feature redundancy is another character in deep convolution. Many works use the re-
dundancy to compress or speed up networks He et al. (2017); Howard et al. (2017). However,
the highly nonuniform spectrum may contribute to the redundancy in CNNs. To overcome
the redundancy by improving feature diversity, multi-attention Zheng et al. (2017), diversity
loss Li et al. (2018), and orthogonality regularization Chen et al. (2017) have been proposed.

2.3. Spatial Activation Diversity Constraint

Novotny et al. Novotny et al. (2017) proposed a spatial activation diversity loss (SAD-Loss)
for semantic matching by penalizing the correlations among filters weights and their re-
sponses. The diversity constraint is implemented by two diversity losses LfilterSADand L

response
SAD ,

encouraging the orthogonality of the filters and of their responses, respectively. LfilterSAD pe-
nalizes their correlations to make filters orthogonal:

LfilterSAD(F ) =
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where F pi is the extract hypercolumn of filter Fi at the spatial location p : if p is a point, then
p = (u, v). Notly, orthogonal filters are likely to respond to different image structures, but
this is not necessarily the case. Thus, the second term LresponseSAD is introduced directly decor-
relate the filters’ response maps ψIk = ψ(Fk ∗ Φ(I)), where the compact response mappings
Φ(I) are compressed from the extract hypercolumns, I is the input image:
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Further, the regularized term using smoothing response maps ψ′(I) = gσ ∗ (ψ(I)) to opti-
mize LresponseSAD loss computing. Here, the Gaussian kernel gσ plays a role to encourage filter
responses to spread further apart by dilating their activations.

In above-mentioned work, they impose orthogonal constraint on convolutional filters
and their responses. This measure strength the activation on local region and they called it
diversity constraint. Eq. (1) and Eq. (2) show the proposed combination separately.
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But they ignored that the decompositions of 4-Dimensional filter tensors and response
tensors are not unique. Especially in filter diversity constraint, the combined forms could
be changeable. We distinguish them and propose our modified filter constraint and response
constraint aiming at orthogonal combinations.

3. Proposed Method

In this section, we will specifically introduce our improved filter diversity constraint and
filter response diversity constraint, respectively.

For simplicity, we assume a convolutional layer has F filters of size k × k which are
applied to an input consisting of N samples, each with C channels, height H and width
W . Then, the layer has three 4D tensors associated with it: input X∈ RN×C×H×W , kernel
weight W ∈ RF×C×k×k and Y ∈ RN×F×H′×W ′ .

3.1. Depth-Wise Combination on Filters

Filters play an important role in "interpreting" input semantic information. The information
input into the network are firstly captured by rich filters, then split by regional filters and
respond locally, and distributed in mapping space in the form of feature scatter points. A
model with superior recognition is often efficient for exacting useful information. So, how to
make the interest features be fully activated, our main idea is focusing on transform filter
constraint Novotny et al. (2017) , as shown in Eq. (1). According penalize different kernel
weights to strengthen valuable features or weaken useless features, making the network be
interpretable.

We further illustrate it by geometric representation in Fig. 2. For easy comparison
with our proposed method, we dub it Point-Wise Filter Diversity Loss (pFDL) combination
here. We first discuss the 4D kernel weight decomposition on convolutional filters. A single
filter is described as a cubic with 3-Dimensional size (Cin × k × k) and group number is
Cout. Considering the orthogonality of filters at the same spatial position p, it would be
two understandings: i) orthogonality between 3D filters; ii) further consider the internal 2D
sub-filter orthogonality.

If we discuss the first combination, the constraint is extended towards Cout depth direc-
tion and then there are totally Cout(Cout − 1)/2 pairs, we calculate values along 3D filters
at spatial position p (ideally point).

Furthermore, we make a deep analysis on 2D sub-filter orthogonality. A 3D filter can
be understood as Cout numbers of sub-filter planes, which can be unfold to a column or a
row. As shown in the internal Pair-Wise part of Fig. 2, a 2D plane on Cin direction can
be stretched to 9 sub-boxes if k = 3. We further calculate the orthogonal values between
these boxes and this constraint is stronger. Then, the orthogonal cosine similarity of 2D
sub-filters fi can be represent as:

LInternal Pair-Wise(F ) =

∣∣∣∣∣∣
∑

m,n∈k2∪(m 6=n)

〈fmi , fni 〉
‖fmi ‖ ‖fmi ‖

∣∣∣∣∣∣ (3)

in which the size of a single sub-filter is k × k, which point m and n both ∈ k2.
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Figure 2: Geometric Representation of pFDL and dFDL.

We combine Eq. (1) and Eq. (3) and dub it depth-wise Filter Diversity Loss (dFDL). Its
constraint is stronger than the front one. Summarily, our modified filter diversity constraint
can be:

LpFDL(F ) =
∑
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3.2. Channel-Wise Combinations on Responses

In this section, we aim at another aspect: weakening the strong correlation between adjacent
features to make network be more interpretable. This somewhat frees up the design of
complex network structures and focus on fully understanding the depth features themselves.

Previous work Novotny et al. (2017); Yin et al. (2019); Zhang et al. (2018) had proposed
that the second term LresponseSAD is introduced to directly decorrelate the filtersâĂŹ response
maps ψi(I) and further regularized by using channel-wise Gaussian kernel, which is encour-
aged to expand their activation. The filter response constraint is described as Eq. (2). In
order to make features be more discriminative, Novotny et al. proposed to combine the
second term LresponseSAD with classifier loss.

Inspired by filter-decomposition idea in Section 3.1, we think the constraint strength of
combination would have a positive effect on decorrelate feature response. For a simple 2D
feature map, there is only one combination to measure the similarity between it and the
2D feature maps mapped by neighboring filters. However, combinations of similar measures
in higher dimensions are often not unique, and we focus on achieving different orthogonal
combinations of channel-wise directions.
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Conveniently comparison, we rename Eq. (2) to LiRDL, in which the filter response
mappings (F,H ′,W ′) are activated by 3D filters F and sum them. Considering the 2D
mappings inside 3D filters, we then decompose (N,F,H ′,W ′) and calculate the loss between
2D response mapping (H ′,W ′). The formula is:

LoRDL(I; Φ;F ) =
∑
i 6=j

∣∣∣∣∣∣∣
〈
ψIi , ψ

I
j

〉
∥∥ψIi ∥∥f ∥∥∥ψIj∥∥∥f

∣∣∣∣∣∣∣ (6)

Further, we put samples N into filter response loss. Sample size N and filter size F could
be thought as two channels in different directions of 2D response mapping (H ′,W ′). Then,
wise channel N , F and calculate the similarity measure of strong mapping (N ∗ F,H ′,W ′).
We defined it as ψIk and the number of k is f(N) = N ∗ F , which the formula is as follows:

LaRDL(I; Φ;F ) =
∑
i 6=j
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〈
ψIi , ψ

I
j

〉
∥∥ψIi ∥∥f(N)

∥∥∥ψIj∥∥∥
f(N)

∣∣∣∣∣∣∣ (7)

the constraint is stronger than LiRDL and LoRDL. This operation could reduce strong cor-
relation between regional responses and enhance the feature discriminability.

3.3. Discussion

In above, we introduced several orthogonal combinations of filter diversity loss LFDL and
filter response diversity loss LRDL. The constraint degree of them are different and the
effectiveness would be discussed latter in experiment section.

Further, the regularized hyperparameters could also affect the accuracy. To stabilize the
model training, we experimental finding optimal values. Combined with classifier loss LSoft,
the total function could be :

LTotal = LSoft + αLFDL + βLRDL (8)

We believe that diversity is transitive, and shallow-layer diversity would enrich deep
feature responses to a certain extent and the modified diversity loss is applied to certain deep
convolutional layer. Shown in Fig. 3 , the depth of lattice color shows intuitive representation
of cosine similarity between pair filters without or with diversity loss. Applying diversity loss
could reduce the high correlation between filters in some degree, then enrich the diversity
of filter responses.

4. Experiments

We will demonstrate the effectiveness of our proposed method in this section.

4.1. Experimental Setting

In order to make our proposed method be more adaptable, we also conduct similar exper-
iments on VGG16. The setting of batch size is set by considering the size of the utilized
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Figure 3: Block diagram of cosine similarity results for pairwise filters in LeNet5 Conv1
trained on MNIST. The size of filter ai is 3 × 3.

datasets and the complexity of the adopted network architecture. Experiments were per-
formed on five GPUs. SGD and RMSProp were used as the optimization method. We
initialized the learning rate as 0.01, which was divided by 10 after the 16K and 24K itera-
tions.

The effect of our method were evaluated on the following datasets.
MNIST Variation Larochelle et al. (2007). MNIST Variation was generated by per-

turbing samples from the popular MNIST digits, which leads to several benchmarks: mnist-
rot, mnist-back-rand, mnist-back-image, mnist-rot-back-image. The samples of MNIST
Variation are shown in Fig. 4.

CIFAR-10. CIFAR-10 Krizhevsky et al. (2009) contains 60,000 color images with size
32×32, which can be categorized into ten classes: planes, cars, birds, cats, deer, dogs, frogs,
horses, boats and trucks.

4.2. Digit Recognition on MNIST Variations

We compare the effects of the proposed diversity losses and their combinations by using
LeNet5 LeCun et al. (2015) and SphereFace10 Liu et al. (2017) on MNIST-Variations.
MNIST Variation Larochelle et al. (2007) was generated by perturbing samples (mnist-basic)
from the popular MNIST digits, which leads to several benchmarks: mnist-rot, mnist-back-
rand, mnist-back-image, and mnist-rot-back-image. The mnist-basic subset is used for train-
ing, while the other variations are used for testing. The training and test samples of MNIST
Variation are shown in Fig. 4.
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basic rot rand bg-img bg-rot

Figure 4: Training (left) and test (right) samples of MNIST Variation.

Table 1: The architecture of SphereFace10. Convd.x denotes convolutional blocks in the
d-th layer. [k× k, n]× c denotes c cascaded convolution layers with n filters of size
k×k. Sd denotes the stride is d in the convolution layers. FC is the full-connection
layer.

Layer 10-layer CNN

Conv1.x [3× 3, 64]× 1, S2

Conv2.x [3× 3, 128]× 1, S2;

[
3× 3, 128

3× 3, 128

]
× 1

Conv3.x [3× 3, 256]× 1, S2;

[
3× 3, 256

3× 3, 256

]
× 2

Conv4.x [3× 3, 512]× 1, S2

FC 512

As shown in Fig. 4, only the basic subset was chosen for training and the other four
variation subsets for testing. The architecture of SphereFace10 was shown in Table 1.

We experimentally find that imposing DL on the first or second layer usually leads to
superior performance. This is because the diversity can be transited layer by layer: if the
first layer contains diverse filters, its output will contain rich features that will further enrich
the filter kernels and filter responses of the second layer. However, enforcing DL on more
layers can certainly boost diversity, but might not boost performance. We therefore impose
the proposed DL on the first layer of LeNet5 and on Conv2.x of SphereFace10.

Table 2 compares the recognition results induced by the four diversity loss and their
combinations. The first row in Table 2 shows the recognition results without using DL. As
can be seen, for LeNet5, the FDLs (both pFDL and dFDL) lead to performance degradation
although pFDL outperforms dFDL. On the other hand, for SphereFace10, the RDLs (both
oRDL and aRDL) lead to performance degradation. It means that only applying FDL or
RDL cannot guarantee performance boosting and combing them together may be necessary.
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Table 2: Recognition results on MNIST Variations. Numbers with bold faces indicate per-
formance boosting, while numbers with gray color represent performance degrada-
tion.

LeNet5 SphereFace10

pFDL dFDL oRDL aRDL rot rand bg-img bg-rot basic rot rand bg-img bg-rot

39.48 68.91 68.28 27.10 96.77 37.60 33.63 60.84 23.17

X 39.32 71.25 68.48 27.17 96.80 37.62 34.07 61.04 23.21

X 37.98 47.03 63.09 23.88 96.79 37.67 33.79 61.07 23.17

X 39.91 68.92 69.90 28.00 96.74 37.24 34.40 60.89 22.94

X 40.40 74.69 68.73 27.74 96.80 37.63 34.00 60.82 23.10

X X 40.03 73.64 69.28 27.78 96.77 37.61 34.41 61.14 23.99

X X 40.63 74.68 69.87 27.26 96.80 37.68 34.10 60.89 23.19

Figure 5: Visualizing the feature maps of the digits "1" and "8" by using Grad-CAM. Left:
the input digit images, Middle: without using DL, Right: using dFDL and oRDL.

By combining FDL and RDL, as shown in the last two rows of Table 2, performance
degradation is well resolved. Also, FDL and RDL achieves the optimal performance in most
cases for both LeNet5 and SphereFace10.

Clearly, the model capacity could also affect the recognition performance. Generally
speaking, larger network capacity could boost performance. However, by comparing the
results of LeNet5 and SphereFace10, we observe that LeNet5 outperforms SphereFace10.
This is caused by the fact that SphereFace10 produces small feature-maps caused by large
stride in the convolutional operation.

In order to more intuitively observe the effect of the proposed diversity loss, we visualize
the feature-maps produced by the first layer of LeNet5 by using Grad-CAM. Fig. 5 shows
the visualization result. Clearly, DL enhances the significance of the output feature-maps
greatly.
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4.3. Object Recognition on CIFAR-10

Figure 6: Training (left) and test (right) samples from CIFAR-10.

Table 3: Recognition results on CIFAR-10. “\” represents no diversity loss was used.
\ pFDL dFDL

\ 56.25 59.18 58.34
oRDL 56.35 59.16 56.12
aRDL 56.59 59.21 59.52

We also evaluate our method on CIFAR-10 Krizhevsky et al. (2009). CIFAR-10 contains
60,000 color images with size 32×32 for ten categories: planes, cars, birds, cats, deer, dogs,
frogs, horses, boats and trucks. To test the robustness of the proposed diversity losses,
we add 20% random noise blocks to the test set of CIFAR-10. Training and test samples
are shown in Fig. 6. VGG16 was selected for evaluation. We impose the DL on the first
convolutional layer of VGG16.

Table 3 reports the recognition results. The optimal performance is achieved by combing
dFDL and aRDL.

4.4. Face Recognition on AR

We further test the proposed diversity loss on the AR face dataset Martínez (1998). The
AR dataset is commonly used for evaluating robust face recognition (FR) algorithms. It
contains over 4,000 facial images from 126 subjects (70 men and 56 women). For each
subject, 26 facial images are taken in two separate sessions. These images suffer different
facial variations including various facial expressions (neutral, smile, anger, and scream),
illumination variations (left light on, right light on and all side lights on), and occlusions
(sunglasses and scarves). In this section, we selected a subset of the database that consists
of 119 subjects (65 males and 54 females). The grayscale images were resized to resolution
112 × 92.

For training, we choose 8 unoccluded frontal view images with varying facial expressions
for each of 119 subjects from the first session. For testing, we consider two separate test
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Figure 7: Samples from the Training Set (a), Test Set I (b), and Test Set II (c) of the AR
dataset.

Table 4: Recognition results on AR dataset
Test Set I Test Set II

\ pFDL dFDL \ pFDL dFDL

\ 40.20 40.34 42.02 34.87 35.29 35.01
oRDL 41.04 41.32 41.60 36.56 35.71 34.31
aRDL 41.04 40.48 40.34 36.28 35.15 35.71

sets. The first/second test set contains 119 × 6 images with sunglass/scarf occlusion and
illumination variations from the two sessions. Fig. 7 shows the sample images of the training
and test sets.

SphereFace10 was selected for evaluation and the DL was imposed on Conv2.x. Batch
size is set to 16. Table 4 reports the recognition results.

For Test Set I, we can see that all DL combinations outperform only using the softmax
loss and dFDL achieves the optimal performance. For Test Set II, we can see that all DL
combinations, except for the combination dFDL+oRDL, outperform only using the softmax
loss and oFDL achieves the optimal performance.

5. Limitations

Our modified diversity loss LFDL and LRDL have multiple combinations and the constraint
degrees then are variable. Based on it, we find the optimal combination is changeable which
depends on the complexity of test datasets and which convolutional layer we expect to
impose. Thus, our limitation is that we cannot develop a unified framework to regulate our
orthogonal method. In addition, limited by lab equipment, we are not testing our approach
on a larger datasets and a more open-source environment. We also find the regularized
super-parameters in diversity loss would also affect the recognition effect to a great extent,
which we think is worth further research and mining.
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6. Conclusions

In this paper, we study the adaptive problem in the field of interpretable robust image
recognition. We focus on spatially activated diversity loss and strive to explore the inner re-
lationship of high-dimensional variables. Furthermore, motivated by MobileNets, we propose
two orthogonal combination methods: Depth-Wise and Point-Wise. To reduce the correla-
tion of regional feature response mappings, we also improve response space and propose two
new combinations: out-channel and all-channels. We demonstrated the effectiveness of our
proposed method through experiments. In the future, we would further explore and refine
our approach against the limitations of our method.
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