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Abstract
The recent surge of interest surrounding Multimodal Neural Networks (MM-NN) is attributed to
their ability to effectively process and integrate multiscale information from diverse data sources.
MM-NNs extract and fuse features from multiple modalities using adequate unimodal backbones
and specific fusion networks. Although this helps strengthen the multimodal information rep-
resentation, designing such networks is labor-intensive. It requires tuning the architectural pa-
rameters of the unimodal backbones, choosing the fusing point, and selecting the operations for
fusion. Furthermore, multimodality AI is emerging as a cutting-edge option in Internet of Things
(IoT) systems where inference latency and energy consumption are critical metrics in addition
to accuracy. In this paper, we propose Harmonic-NAS1, a framework for the joint optimization
of unimodal backbones and multimodal fusion networks with hardware awareness on resource-
constrained devices. Harmonic-NAS involves a two-tier optimization approach for the unimodal
backbone architectures and fusion strategy and operators. By incorporating the hardware dimen-
sion into the optimization, evaluation results on various devices and multimodal datasets have
demonstrated the superiority of Harmonic-NAS over state-of-the-art approaches achieving up to
∼10.9% accuracy improvement, ∼1.91x latency reduction, and ∼2.14x energy efficiency gain.
Keywords: Multimodal Learning, Data Fusion, Neural Architecture Search, Edge Computing.

1. Introduction

Our environment is continuously providing us with a broad stream of sensory modalities. Selecting
and processing these modalities allows us to take action, react appropriately, and get insights into
our surroundings. The term modality is used to describe the several forms that sensory information
might take (e.g., visual, textual, acoustic) Liang et al. (2021). This multimodal perception paradigm
has been brought to the sphere of Artificial Intelligence (AI) to bridge further the gap between
human brain functioning and neural networks Huang et al. (2021). Recently, Multimodal Neural
Networks (MM-NN) have captivated a lot of interest within the deep learning community since
they have proven to be more accurate than their unimodal counterparts in several tasks such

† Corresponding author.
1. https://github.com/Mohamed-Imed-Eddine/Harmonic-NAS

© 2023 M.I.E. Ghebriout, H. Bouzidi, S. Niar & H. Ouarnoughi.



Ghebriout Bouzidi Niar Ouarnoughi

as action recognition Molchanov et al. (2016), image-video captioning Pramanick et al. (2021),
sentiment analysis Gong et al. (2023), and healthcare Soenksen et al. (2022). However, multimodal
neural networks are computation- and memory-demanding. Thus, their deployment on Edge and
Tiny devices is constrained by the availability of hardware resources Hou et al. (2022).

Designing unimodal neural networks is still challenging as it requires tuning a broad set of
architectural parameters Elsken et al. (2019). The design landscape becomes more complex for
multimodal neural networks Pérez-Rúa et al. (2019) as it typically involves various backbones and
fusion networks for unimodal and multimodal feature selection and extraction, respectively. Each
unimodal backbone and fusion network is characterized by a specific set of architectural parame-
ters and assigned a particular role in the multimodal learning scheme. Furthermore, incorporating
the hardware dimension into the design process of multimodal networks limits their ability to fuse
a large quantity of information Rashid et al. (2023).

Recently, Neural Architecture Search (NAS) Elsken et al. (2019) has emerged as a data-driven
approach to automate the design of neural networks by searching for the optimal set of architec-
tural parameters within a predefined search space. Typical NAS approaches adopt evolutionary
algorithms Jian et al. (2023) or differentiable architecture search Liu et al. (2019) as a search strat-
egy. With the emergence of Edge-AI, Hardware-aware NAS Cai et al. (2018) also added hardware
efficiency (e.g., latency, energy, memory) as an optimization objective. The NAS paradigm has
been leveraged for multimodal networks since MFAS Pérez-Rúa et al. (2019) and MM-NAS Yu
et al. (2020) in which the fusion architecture is searchable for visual-textual modalities. BM-NAS
Yin et al. (2022) provides a more general framework to jointly search for the fusion architecture
and operators. However, related works have yet to investigate making the MM-NN fully search-
able -through unimodal backbones and multimodal fusion networks- across different modalities,
tasks, and datasets. Furthermore, the hardware dimension still needs to be included in existing
multimodal-NAS frameworks to ease the deployment on resource-constrained devices.

1.1. Novel Contributions

In this paper, we present Harmonic-NAS, a novel Hardware-aware NAS framework for the design
of Multimodal Neural Networks on resource-constrained Edge devices. Our proposed framework
encompasses the following novelties and contributions:

1. Harmonic-NAS co-optimizes the design of unimodal backbones and fusion networks to learn
an effective joint embedding of features from multiple modalities.

2. We make the MM-NN fully searchable through a hierarchical search space for (i) Unimodal
backbones, built upon the once-for-all supernets Cai et al. (2019) and (ii) Multimodal fusion
networks, built upon the differentiable search space of DARTS Liu et al. (2019).

3. To solve the bi-level design space exploration problem, Harmonic-NAS includes a two-tier
optimization, where the first search stage is an evolutionary algorithm for unimodal back-
bone networks, whereas the second search stage is a differentiable NAS for fusion networks,
with an integrated hardware-related loss function in both search stages.

4. We demonstrate the efficiency of Harmonic-NAS by conducting experiments on various mul-
timodal datasets and Edge devices. Empirical results have seen up to ∼10.9% accuracy im-
provement, ∼1.91x latency reduction, and ∼2.14x energy gain, stipulating further the im-
portance of the hierarchical design optimization for multimodal NNs on Edge devices.
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2. Related Work

2.1. Multimodal Neural Networks

The multimodality paradigm involves feature fusion from multiple modalities to learn a joint em-
bedding of global information. Initially, fusion approaches operate on the extreme levels of feature
abstraction within the neural network on early layers with low-level features and on the last lay-
ers with high-level features. Early fusion operates on an input level, whereas late fusion operates
on an output level using aggregation operators such as averaging or voting. As modern unimodal
backbones are deeper and larger with features extracted at many levels, intermediate fusion has
been introduced to provide more flexibility in the fusion position by operating on the intermediate
feature-map level Vielzeuf et al. (2018). However, one challenge arises in determining the fusion
placement as dense fusion networks Yu et al. (2020) fail to scale when the unimodal backbone
networks deepen, resulting in an exponential increase of the fusion parameters. Fused data and
fusion operators define the joint embedding granularity and quality. Simple features can be fused
using sum, concatenation, or tensor operations Liu et al. (2018b). Nevertheless, for complex multi-
modal tasks, sophisticated fusion networks such as Attention Nagrani et al. (2021), Graph Neural
Networks Cai et al. (2022), and Mixture-of-experts Mustafa et al. (2022) are needed to effectively
learn the complex interactions between modalities.

2.2. Neural Architecture Search

Neural Architecture Search (NAS) aims to automate the design exploration of neural networks
Elsken et al. (2019). The NAS is typically viewed as a black-box optimization taking as input the
search space and the optimization objective (e.g., accuracy). As a search strategy, existing NAS
frameworks generally employ evolutionary Bouzidi et al. (2023); Odema et al. (2023); Jian et al.
(2023), or differentiable Liu et al. (2019) search algorithms. However, the NAS process is labor
intensive, requiring many training-validation trials on the explored neural networks. To alleviate
this problem, progressive shrinking Liu et al. (2018a) and once-for-all (OFA) supernets Cai et al.
(2019) have been proposed. The once-for-all scheme is widely adopted for one-shot NAS Dong
and Yang (2019), which consists of training a supernet comprising all the NN candidates once via
weight-sharing and reusing the pretrained supernet to sample NNs during the search. While tra-
ditional NAS paradigms assume a discrete encoding of the NN architecture, Differentiable NAS
(DARTS) Liu et al. (2019) proposed a continuous relaxation of the NN encoding, allowing for
gradient-based optimization. The NAS paradigm has been incorporated first by MFAS Pérez-Rúa
et al. (2019) to serve multimodal NNs. However, MFAS operates on a priori fixed backbones and
only uses concatenation as a fusion operator while searching for the fusion positions. MM-NAS Yu
et al. (2020) then followed up by refashioning the MM-NN into an encoder-decoder scheme with
fully searchable fusion operators. Still, the unimodal backbones in MM-NAS are highly specialized
and lack scalability to other types of neural networks. MUFASA Xu et al. (2021) has first attempted
to jointly optimize the unimodal backbones and the fusion network using an evolutionary NAS
and a Transformer backbone on the MIMIC-CCS dataset Johnson et al. (2016). Nevertheless, MU-
FASA targets one small dataset with a relatively simple search space. Moreover, their one-stage
evolutionary search is not scalable to sophisticated backbones, fusion operators, and multimodal
tasks. The recent BM-NAS framework Yin et al. (2022) provides a more general and scalable fu-
sion search using differentiable NAS Liu et al. (2019). Nevertheless, BM-NAS operates on fixed
unimodal backbones, overlooking opportunities for further performance gains from optimizing



Ghebriout Bouzidi Niar Ouarnoughi

the unimodal feature extraction. Additionally, the hardware dimension is still missing in existing
multimodal NAS approaches for further deployment on resource-constrained devices.

2.3. Hardware Acceleration for Multimodal Neural Network

Modern IoT systems (e.g., wearable devices) comprise sensors gathering data from multiple modal-
ities (e.g. image, audio, text). Processing these data requires over-parameterized multimodal net-
works with high computation and memory demands. Commodity Tiny and Edge devices have lim-
ited resources, burdening further the deployment of MM-NNs Rashid et al. (2023). Thus, hardware-
aware optimization is needed when designing MM-NNs. Hardware-aware NAS approaches Cai
et al. (2018); Wu et al. (2019) have contemplated integrating the hardware dimension into the NAS
process for unimodal neural networks. Nonetheless, the multimodal case is still understudied.
While few attempts have been made towards the optimization of MM-NN on Tiny and Edge de-
vices by integrating latency as objective Liu et al. (2021), exploiting computation parallelism Zhang
et al. (2022) and mixed-precision quantization Rashid et al. (2023), a holistic design exploration
framework for HW×MM-NN is lacking in existing works.

Table 1: Comparison between existing works on Multimodal-NAS and ours.
Multimodal-NAS work MFAS MM-NAS MUFASA MMTM BM-NAS Harmonic-NAS (ours)
Unimodal backbone search ✓ ✓
Unimodal feature selection ✓ ✓ ✓ ✓ ✓
Fusion micro-arch. search ✓ ✓ ✓ ✓ ✓ ✓
Fusion macro-arch. search ✓ ✓
Multimodal design flexibility ✓ ✓
Multimodal tasks scalability ✓ ✓ ✓ ✓
Hardware awareness ✓

Previous multimodal-NAS approaches in MFAS Pérez-Rúa et al. (2019), MM-NAS Yu et al. (2020),
MUFASA Xu et al. (2021), MMTM Joze et al. (2020), and BM-NAS Yin et al. (2022) mostly rely on
a priori fixed pretrained backbones as unimodal feature extractors and search only for the fusion
network. However, this approach incurs the following drawbacks: (i) The a priori fixed unimodal
backbones are not initially designed to serve multimodal networks. (ii) The Multimodal fusion
performance depends highly on the quality of the extracted unimodal features. (iii)The overlooked
performance and efficiency gains that can be obtained from specializing the multimodal fusion
to less hardware-demanding backbones. Thus, Harmonic-NAS aims to make the MM-NN fully
searchable by hierarchizing the architectural parameters related to the unimodal backbones and
multimodal fusion networks design and optimizing them at once through a two-tier optimization
strategy. Harmonic-NAS also includes the hardware dimension as an optimization objective to ease
the deployment of MM-NNs on Edge devices that characterize modern IoT systems. In Table 1, we
highlight the key differences between related works on multimodal-NAS and ours.

3. Methodology

In this paper, we propose Harmonic-NAS, a novel framework that aims to make the design of MM-
NN fully searchable. As illustrated in Figure 1, Harmonic-NAS comprises a two-tier optimization
stages: (i) The first-stage searches for optimal unimodal backbones for each modality. This in-
volves exploring a search space of modality-specific backbone architectures and evaluating their
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Figure 1: An overview of Harmonic-NAS for multimodal neural architecture search.

performance on the target task and their hardware efficiency on the Edge device. (ii) Within this
process, the most promising unimodal backbones are selected for fusion network optimization in
the second-stage to derive multimodal networks. The aim of the second-stage is to find a fusion net-
work capable of effectively learning a joint embedding of features, thereby fully leveraging data’s
intrinsic multimodality. Harmonic-NAS addresses this challenge by leveraging differentiable NAS
(DARTS) to adapt the fusion network to the selected unimodal backbones. The two search stages
are executed iteratively until reaching a final optimization budget (e.g., evolutionary generations).

3.1. First-stage: Unimodal Backbone Search

3.1.1. Unimodal backbone design and training

Given the heterogeneity of modalities, tasks, and hardware devices, a meticulous design of uni-
modal backbones is essential to achieve the optimal performance-efficiency tradeoff. To achieve
this, Harmonic-NAS adopts a once-for-all approach by designing a Supernet comprising diverse
neural architecture configurations. This will save valuable time for the unimodal backbones search
step and facilitate the discovery of more efficient and task-specific NN architectures.
1⃝ Supernet Design Specifications: A modality-specific supernet Si is defined as a hyper-

network of subnets sharing the same macro-architecture (i.e., neural blocks) and weights as de-
picted in Figure 2-(a). A unimodal backbone Bi(·) (i.e., subnet from Si) for the ith modality is
represented as a succession of m neural blocks each comprising a sequence of layers L as follows:

Bi(·) = Bm
i ◦ Bm−1

i ◦ ... ◦ B1
i | Bj

i = Ldj ◦ Ldj−1 ◦ ... ◦ L1 | for each Bi ∈ Si (1)

Each block Bj
i is characterized by a unique micro-architecture parameterized by a dynamic depth

dj , kernel sizes kj , and channel expand ratio ej . As we target deploying MM-NN on resource-
constrained devices, we leverage the same search space based on the MobileNet-v3 baseline in Cai
et al. (2019). We note that the backbone search space for the ith modality is designated as Si.
2⃝ Supernet Training: Training a Supernet can be a challenging task. It differs from training a

single NN since we jointly optimize the shared weights of all the subnets as follows:

min
W

∑
subneti

Ltest

(
K(W, subneti),Y

)
(2)
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Figure 2: (a) An illustration of the unimodal supernet with subnets sharing weights and neural
macro-architecture. (b) A high-level overview of the multimodal NN with modality-
specific backbones and fusion network comprises multiple cells. (c) A detailed view of
one fusion cell with multiple nodes, each assigned a particular fusion operator.

whereW denotes the shared weights from the supernet for the architectural configuration subneti
obtained by a sampling method denotedK , andY is the ground truths labels. The aim is to optimize
W for each sampled subnet while minimizing the cost of the independent training of subnets via
the weight-sharing and adequate sampling scheme that maintains fairness across subnets.

We train our unimodal supernets using knowledge distillation from the largest subnet (i.e.,
teacher) to guide the training of smaller subnets (i.e., students) Wang et al. (2021). By distilling the
knowledge from the largest subnet, we aim to transfer its learned unimodal feature representations
to smaller subnets. We also employ the sandwich rule Yu and Huang (2019) to sample subnets at
each epoch. This rule involves sampling two types of subnets – those following a random distribu-
tion Γ over the search space Si and those belonging to a presdefined set J from Si. Alternatively,
we define the overall set of unimodal subnets evaluated at each epoch as follows:

{Bim|Bim ∼ Γ(Si)} |Si|
m=1 ∪ {Bin|Bin ∈ J } |Si|

n=1 (3)

Therefore, by considering our selection method, the training process of the unimodal supernet
aims to optimize the shared weights W by choosing a uniform distribution of subnets Γ in addition
to the max-subnet and the min-subnet in J . Our supernet training loss is depicted in equation 4.

argmin
W

( ∑
Bim∈Γ(Si)

L (Bim,W,Y) +
∑

Bin∈J
L(Bin,W,Y)

)
(4)

3.1.2. Evolutionary search strategy

Once the unimodal supernets are fully trained, Harmonic-NAS employs an evolutionary search
strategy at the first-stage to explore the design spaces of backbones. The evolutionary search is set
to be run for a specific number of generations. For each generation, it creates populations PSi

g of
backbones - for each modality - from which the multimodal networks will be procured. A value-
encoding step is also used to create discrete vectors characterizing the architectural parameters of
the neural blocks (i.e., depth, kernel size, and channel expand ratio) of the sampled backbones.
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Afterward, each backbone undergoes an evaluation to assess its unimodal performance on the
validation set and its hardware metrics of the inference (i.e., latency and energy consumption).
The hardware metrics are directly computed using device-specific lookup tables (LUTs). For each
backbone Bi ∈ PSi

g , the evaluation function of the unimodal performance is defined as follows:

U(Bi) = Eval score(Acc(Bi), Lat(Bi), Enrg(Bi)) (5)

To compute Eval score in the underlying multi-objective context, Harmonic-NAS incorpo-
rates a Pareto ranking using the non-dominated sorting algorithm on the unimodal performance
metrics (i.e., accuracy, latency, and energy) and a crowding distance that measures the diversity of
backbones in the objective space Deb et al. (2000). The evaluation score is then used to identify a
subset of the top-performing unimodal backbones P ′Si

g ⊂ PSi
g on which the second search stage

for fusion network will be performed to derive optimal multimodal networks.
After the completion of the fusion search on P ′Si

g , Harmonic-NAS proceeds, through the evo-
lutionary search engine, to the creation of the next population PSi

g+1 of unimodal backbones using
mutation and crossover. Within this process, a second selection criterion is set only to pick back-
bones achieving the best performance in their multimodal variant (i.e., with fusion network) as
elite solutions for mutation and crossover. A uniform mutation is employed on the neural block
level of backbones by sampling new depth, kernel size, and channel expand ratio under a proba-
bility threshold of 0.4. The crossover is applied by randomly picking two unimodal backbones -for
the same modality- and swapping their neural blocks under a probability threshold of 0.8.

3.2. Second-stage: Multimodal Fusion Search

3.2.1. Fusion network search space

In light of the scalability of Harmonic-NAS to the multimodal task complexity and diversity of back-
bone architectures, it’s crucial to define a generalized search space with all the possible options
for the fusion macro-architecture (i.e., number of fusion cells and nodes) and micro-architecture
(i.e., fusion positions and operators). To this end, we adopt a cell-based fusion search space as in-
troduced in Yin et al. (2022) with a parameterized fusion macro-architecture. As depicted in Figure
2-(b), the fusion network is built upon fusion cells, wherein each cell selects unimodal features to
be fused. These unimodal features can be chosen from the output of intermediate blocks of the
backbones or the outputs of previous fusion cells. A fusion cell comprises multiple fusion nodes,
as shown in Figure 2-(c), each performing a specific fusion operator on the selected features.
1⃝ Unimodal Feature Selection: Assuming the availability of m modality each processed by

a specific backbone B1, . . . , Bm, respectively. A unimodal feature extracted by the jth neural
block of the ith backbone is denoted as B(j)

i . The unimodal feature selection procedure consists
of choosing for each fusion Cell(p), two input features from the unimodal features set F1 as given
by (6), enabling both inter and intra-modality fusion:

F1 = [B
(1)
1 , ..., B

(NB1
)

1 , B(1)
m , ..., B

(NBm )
m ,Cell(1), ...,Cell(p−1)] (6)

By performing a continuous relaxation on our search space, each fusion Cell(p) receives a weighted
sum of the F1 elements with their corresponding probabilities (α) of being selected or not. These
probabilities are updated during the training phase of the fusion network using DARTS. Then,
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each fusion Cell(p) operates on the received weighted sum of input features as follows:

Cell (p) =

|F1|∑
k=0

a(k,p) (F1[k]) , a(k,p)(s) =
∑
a∈A

exp(α(k,p)
a )∑

a′∈A
exp(α(k,p)

a′ )
a(s) (7)

Here A represents a set of two functions: Identity (o(x) = x) and Zero (o(x) = 0). At the
evaluation phase, only the input features (X,Y ) depicting the highest probabilities will be chosen
as unimodal features as follows :

(X,Y ) = argmax
p<r<k, a∈A

(α(p,k)
a · α(r,k)

a ) (8)

2⃝ Multimodal Feature Selection and Fusion Operators: At this stage, we investigate the
design of the inner structure of one fusion Cell(p). A fusion cell constitutes D fusion nodes, each
assigned a particular fusion operator from our predefined fusion operators set FP (See Table 2).
A fusion Node(d) operates on two inputs – In the case of the first fusion node, the inputs are
directly Cell(p)’s inputs. However, for subsequent fusion nodes, the inputs can also be the outputs
of previous fusion nodes. More formally, the inputs of a fusion Node(d), are selected from the
multimodal features set F2 defined as follows:

F2 = [X,Y,Node(1), ...,Node(d−1)].

where (X,Y ) are the inputs of the current fusion Cell(p) while Node(1,...,d−1) denotes the output of
the underlying fusion node within Cell(p). Similarly to the unimodal feature selection mechanism
for the fusion cell, fusion nodes follow the same strategy to select their input features (x, y), as
shown in equation 7 expect that here we use the β weights instead of α and select inputs from F2.

Another layer of complexity is added by searching further which fusion operator to be used
at each fusion node. This is done by assuming (x, y) as Node(d) inputs and applying a continuous
relaxation over the fusion operators set FP as follows:

f
(d)

(x, y) =
∑

f∈FP

exp(γ(d)f )∑
f ′∈FP

exp(γ(d)f ′ )
f(x, y) (9)

where γ is the weight matrix that sets a priority score for each fusion operator to be selected
for each node. At the evaluation phase, the following criterion is used to select the best fusion
operator from the fusion set FP :

f (d) = argmax
f ∈ FP

γ
(d)
f (10)

To further ensure the multimodal fusion effectiveness across various designs of backbones, we
consider hardware efficiency as a criterion when defining FP . We select fusion operators that
minimize the hardware burden while ensuring effective multimodal fusion. Table 2 provides details
on the employed fusion operators with a brief explanation of each operator:

1. Sum: In the context of multimodal fusion, there are instances where cross-modality inter-
actions exhibit an additive nature. In scenarios where the modalities are relatively indepen-
dent, aggregating their representations through summation offers a straightforward means
of capturing joint information that incorporates each modality’s distinctive strengths.
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Table 2: The set FP of the employed fusion operators with their respective equations.
Fusion Operator Mathematical Formula

Sum Sum(X, Y ) = X + Y

Attention ScaleDotAttn(X, Y ) = Softmax(X.Y T
√
C

).Y

LinearGLU LinearGLU(X, Y ) = GLU(XW1, Y W2) = XW1 ⊙ Sigmoid(YW2)

ConcatFC ConcatFC(X, Y ) = ReLU(Concat(X, Y ).W + b)

Squeeze− Excitation SE(X, Y ) = EX ⊙ Y | EX = σ(SX .W + b)| SX = 1
L

∑L
i=1X(B,C, i)

ConcatMish ConcatMish(X, Y ) = Mish(Cat(XW1, Y W2)) | Mish(Z) = tanh(log(1 + exp(X))⊙ Sigmoid(YW2)

2. ScaleDotAttn: Motivated by the promising outcomes of the Attention mechanism in model-
ing cross-modality interactions Nagrani et al. (2021), we incorporate the scaled dot-product
attention as a fusion operator to investigate its efficiency in addressing multimodal tasks.

3. LinearGLU: Through performing element-wise multiplication⊙ on the linearly transformed
modality X and the sigmoid-gated of modality Y , this operator allows modality Y to deter-
mine the contribution of each element from the modality X .

4. ConcatFC: Here the unimodal features are concatenated on the channel dimension C . Then
a linear transformation is applied and followed by the ReLU activation.

5. Squeeeze− Excitation: The utilization of the Squeeze-and-Excitation module Hu et al.
(2018) for channel-wise recalibration has demonstrated its effectiveness when applied on
various blocks of the unimodal convolutional neural network (CNN). We further extend its
applicability to the multimodal case and include it as a fusion operator.

6. CatConvMish : This operator provides a fusion mechanism that captures both linear and
non-linear interactions between the modalities through a series of primitive operations.

3.2.2. Differentiable search strategy

In section 3.2.1, we defined the search space for the fusion network. This search space also includes
parameters related to the fusion macro-architecture, such as C, the number of fusion cells, and D,
the number of fusion nodes within each cell. We note that these parameters are also searchable
within the first evolutionary search stage, ensuring a diverse range of fusion macro-architectures.
While in the second-stage, we search for the fusion micro-architecture using DARTS for a priori
sampled combination of C and D in the first-stage of Harmonic-NAS.

During the second-stage, the weights α, β, and γ are jointly updated. This involves the use of
gradient-based optimization, which allows for the exploration of various fusion micro-architecture
configurations by training a hypernetwork with the following loss function Lfusion:

min
α,β,γ

Lfusion(H, Z, α, β, γ,Y)

Lfusion(H, Z, α, β, γ,Y) =
[
Ltask(H, Z, α, β, γ,Y)

] a
+

[
LLat(H, γ)

] b
+

[
LEnrg(H, γ)

] c

where H is the initial fusion hypernet that represents all the possible configurations for DARTS,
γ are the weights that control the fusion operator selection within the fusion cells, Z denotes the
multimodal input data, and Y are the ground truth labels. The exponents a, b, and c serve as con-
trol knobs for the importance of each performance metric in the overall loss function Lfusion. By
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adjusting these exponents, we can emphasize particular objectives such as task performance, la-
tency, or energy consumption during the search process of the fusion network. The task loss Ltask

varies depending on the target task (e.g., cross-entropy, binary cross-entropy). The hardware loss
L(Lat||Enrg) involves hardware-specific metrics – It takes as input the architectural specification
of the fusion network and a lookup table (LUTdevice) for latency and energy measurements of the
fusion operators on the target device. The hardware loss is then computed as follows:

L(Lat||Enrg)(H, γ, LUTdevice) =

C∑
p=1

D∑
d=1

γp[d] . LUTdevice(FP, (Lat||Enrg)) (11)

We also note that we first apply the softmax operation on the γ weights so that γp[d] represents
the probabilities of each fusion operator to be selected for the dth node within the pth cell, where
LUTdevice contains hardware measurements for each fusion operator within FP .

4. Experiments

4.1. Experimental Setup

4.1.1. Multimodal tasks and datasets

To evaluate the effectiveness of Harmonic-NAS in designing efficient multimodal networks, we
conduct experiments on various multimodal datasets as listed in Table 3.

Table 3: Multimodal Datasets and tasks used by Harmonic-NAS

Dataset Modalities Samples (train; val; test) Task
AV-MNIST Image, Audio {55000; 10000; 5000} Digit classification
MM-IMDB Image, Text {15552; 2608; 7799} Movie genres classification
HARM-P Image, Text {3020; 177; 355} Harmful US-Politics-related memes detection

1⃝AV-MNIST: The audio-visual MNIST for hand handwritten digits classification. It includes two
modalities: image samples of handwritten digits and audio samples of spoken digits.
2⃝MM-IMDB: The multi-modal IMDB dataset for multi-label classification of movie genres using

movie titles and metadata as textual modality as well as movie posters as a visual modality.
3⃝ Harmful Memes: We use the Harm-P dataset Pramanick et al. (2021) for detecting harmful

memes related to United States politics. The dataset contains memes images collected from various
social media platforms and text extracted from the meme image using Google’s OCR Vision API2.

4.1.2. Unimodal Backbones Settings

We build our unimodal supernets for image and audio processing upon the once-for-all framework
Cai et al. (2019). We further adjust their original search space by reducing the number of neural
blocks to 3 and 5 for the AV-MNIST and Memes-P datasets, respectively. For each block: The depth
is chosen from {2, 3, 4}, the width expansion ratio for each layer within the block is selected from
{3, 4, 6}, and the kernel size is picked from {3, 5, 7}. Overall, the search space complexity ranges
between O(2×105) and O(2×107). For textual modality, we use a Maxout network to process the
text embedding on MM-IMDB dataset and HARM-P. To train our backbones, we use Adam as an
optimizer with weight decay of 1e−4 and a cosine annealing as a learning rate scheduler with a
base learning rate of 1e−3. An early-stopping is used to determine the number of training epochs.

2. cloud.google.com/vision/docs/ocr

cloud.google.com/vision/docs/ocr
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4.1.3. Hardware Experimental Settings

The multimodal workloads are deployed using the Pytorch 1.12 framework running on top of
CUDA 11.4 and cuDNN 8.3.2. We target the following Edge devices provided by NVIDIA: (i) Jetson
AGX Xavier equipped with an NVIDIA Carmel Arm-64bit CPU and a high-performance Volta GPU
of 512 GPU cores and 64 Tensor cores. (ii) Jetson TX2 composed of an NVIDIA Denver 64Bit and
ARM-A57 CPU cores along a high-performance Pascal GPU of 256 GPU cores.

4.1.4. Evolutionary and Differentiable Search Settings

In our optimization process, we run the evolutionary search for 30 generations, each with a popu-
lation size of 128 individuals. The top quartile of the promising backbones is selected for the fusion
search to derive multimodal networks. Then, half of the elite multimodal networks are chosen for
mutation and crossover on their unimodal backbones to generate the next population of the evo-
lutionary search. The mutation and crossover probabilities are set to 0.4 and 0.8, respectively. We
run the differentiable fusion search using DARTS for 25 epochs using Adam as an optimizer and
a cosine-annealing learning rate scheduler. The learning rate ranged from e−6 to e−4.

NVIDIA Jetson TX2

NVIDIA Jetson AGX

Figure 3: The first two columns (left to right) show the explored unimodal backbones in the first
search stage for image and audio modalities, respectively. The last column shows the
explored multimodal networks in the second search stage. The first and second rows
report results on the NVIDIA TX2 and AGX devices, respectively. The red Pareto Front
(PF) highlights the models with the best tradeoff between performance metrics.
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4.2. Experimental Results

4.2.1. Two-tier optimization results analysis

To showcase the efficiency of the two-tier optimization of Harmonic-NAS, we report the search
results for the AV-MNIST dataset on two hardware devices in Figure 3. The two first columns
depict the explored unimodal backbones in the first search stage for image and audio, respectively,
whereas the last column shows the explored multimodal networks in the second search stage.
From the reported result, the explored unimodal backbones in the first search stage exhibit high
variation in TOP-1 error ranges from ∼12% to ∼27% for image modality and from ∼12% to ∼18%
for audio modality. By searching for optimal fusion networks for the two modalities in the second
search stage, as shown in the third column, the TOP-1 error ranges from ∼4% to ∼17%, improving
further the performance of the unimodal backbones by up to 63% error decrease. We can also
notice the search intensification in the region that provides low TOP-1 errors in the multimodal
case where more than ∼60% of explored networks exhibit a TOP-1 error less than ∼8%. On the
hardware efficiency, latency and energy values are generally doubled for the multimodal case as
backbones and fusion are executed in a sequential pipeline manner. However, by integrating the
hardware loss, Harmonic-NAS was able to identify a diverse set of optimal solutions in the Pareto
front with a good compromise between prediction TOP-1 error, latency, and energy consumption.

4.2.2. Pareto optimal multimodal models analysis

In this section, we provide an in-depth analysis of the Pareto optimal backbone and multimodal
models obtained by Harmonic-NAS and compare them against SoTA multimodal-NAS approaches
on different Edge devices. In the following, we analyze the results of each multimodal dataset.

Table 4: Performance evaluation on AV-MNIST dataset
SoTA work Modality Acc(%) Latency(ms) Energy(mJ)

Unimodal Backbones
MVAE Wu and Goodman (2018) Image 65.10 A:1.35,T:2.62 A:4.82,T:2.71
MFAS Pérez-Rúa et al. (2019) Image 74.52 A:1.03,T:1.93 A:3.78,T:2.11
Harmonic-NAS (T:TX2) Image 88.00 4.97 7.54
Harmonic-NAS (A:AGX) Image 87.55 3.91 18.26
MVAE Wu and Goodman (2018) Audio 42.00 A:1.92,T:4.12 A:9.73,T:11.71
MFAS Pérez-Rúa et al. (2019) Audio 66.06 A:1.78,T:2.92 A:6.98,T:5.50
Harmonic-NAS (T:TX2) Audio 88.44 4.97 7.18
Harmonic-NAS (A:AGX) Audio 88.44 3.74 18.99

Multimodal Neural Networks
MVAE Wu and Goodman (2018) Image + Audio 72.30 A:4.40,T:8.53 A:15.64,T:15.67
MFAS Pérez-Rúa et al. (2019) Image + Audio 88.38 A:4.37,T:6.41 A:10.76,T:10.67
BM-NAS Yin et al. (2022) Image + Audio 91.11 A:3.26,T:5.41 A:14.17,T:8.60

Harmonic-NAS (TX2) Image + Audio
92.88 8.96 13.93
95.55 14.41 25.49
95.33 9.11 13.88

Harmonic-NAS (AGX) Image + Audio
94.22 6.95 37.17
95.33 7.26 38.24
95.11 7.19 38.14

1⃝ The Audio-Visual MNIST: Ta-
ble 4 reports the obtained perfor-
mance metrics (Top-1 Accuracy, la-
tency, and energy) of the Pareto opti-
mal backbones and multimodal mod-
els found by Harmonic-NAS com-
pared against SoTA counterparts. In
the rest of the paper, for abbrevia-
tion, latency and energy values on
the Jetson AGX and TX2 are pre-
ceded by letters ’A’ and ’T’, respec-
tively. Firstly, we noticed that the use
of LeNet-based backbones in SoTA
models such as Wu and Goodman
(2018) and Pérez-Rúa et al. (2019) limits the unimodal feature extraction capability even if it’s
boosted with a powerful fusion architecture search strategy as in BM-NAS Yin et al. (2022). Thus,
the low-performing unimodal backbones limit the multimodal performances. However, by opti-
mizing the unimodal backbones, an accuracy improvement of up to ∼4.44% has been obtained
over the best SoTA multimodal model while enjoying low latency and energy levels. This is at-
tributed to the hierarchical design space that first searches for an optimal network to learn the
unimodal embedding of features and then proceeds to optimize the joint embedding through the
fusion architecture search. Furthermore, Harmonic-NAS has also shown an adaptation to different
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hardware devices with varying computational capacities. The Pareto fronts in Figure 3 and the
selected Pareto models in Table 4 show such hardware efficiency diversity, highlighting further
the effectiveness of Harmonic-NAS in designing efficient MM-NNs on Edge devices.
2⃝ The Multimodal IMDB: In Table 5, we show the performance of the Pareto optimal back-

bones and multimodal models of Harmonic-NAS compared to SoTA methods on MM-IMDB dataset.

Table 5: Performance evaluation on MM-IMDB dataset
SoTA work Modality F1-W(%) Latency(ms) Energy(mJ)

Unimodal Backbones
Maxout Yin et al. (2022) Text 57.54 A:0.82, T:0.99 A:3.33, T:1.27
Maxout (Ours) Text 61.18 A:0.62, T:1.09 A:2.87, T:1.40
VGG19 Image 49.21 A:30.91, T:117.94 A:791.16, T:1013.09
Harmonic-NAS (T:TX2) Image 46.12 39.82 248.05
Harmonic-NAS (A:AGX) Image 46.12 20.09 264.34

Multimodal Neural Networks
MFAS Pérez-Rúa et al. (2019) Image + Text 62.50 A:32.77, T:119.97 A:800.2, T: 1016.4
BM-NAS Yin et al. (2022) Image + Text 62.92 A:32.78, T:119.97 A:800.66, T:1016.58

Harmonic-NAS (TX2) Image + Text
63.61 21.37 113.99
64.36 28.68 163.04
64.27 23.67 121.75

Harmonic-NAS (AGX) Image + Text
63.75 11.32 130.42
64.36 14.29 177.55
64.27 13.05 140.00

As a metric for the prediction per-
formance, we use the weighted F1-
score (F1-W) instead of the TOP-1
accuracy to account for the imbal-
anced data distribution in the MM-
IMDB dataset. As shown, Harmonic-
NAS achieves superior results, sur-
passing the best results achieved by
SoTA works such as BM-NAS Yin
et al. (2022) with up to ∼1.45% im-
provement in the weighted F1-score.
On the hardware side, Harmonic-NAS models are ∼4.18x and ∼2.19x more latency and energy
efficient compared to BM-NAS multimodal Yin et al. (2022) models. Additionally, the least accurate
multimodal network in Harmonic-NAS is ∼2.89x and ∼6.14x more latency and energy efficient
than the most accurate SoTA model on the Jetson AGX. This further demonstrates our framework’s
superiority in adapting to scenarios where hardware efficiency is prioritized.
3⃝ The Harmful Politics Memes: In Table 6, we report the performance of the Pareto opti-

mal backbones and multimodal models of Harmonic-NAS and SoTA works on Memes-P dataset.

Table 6: Performance evaluation on Memes-P dataset
SoTA work Modality Acc(%) Latency(ms) Energy(mJ)

Unimodal Backbones
TextBERT Text 74,55 A:22.71, T:59.63 A:524,28, T:461.91
Maxout (Ours) Text 83.38 A:0.61, T:1.08 A:2.82, T:1.21
VGG19 Image 73.65 A:31.01, T:116.80 A:786.94, T:1001.17
DenseNet-161 Image 71.80 A:28.59, T:92.32 A:589.54, T:710.21
ResNet-152 Image 71.02 A:29.80, T:92.58 A:754.56, T:798.52
Harmonic-NAS (T:TX2) Image 84.78 10.40 28.88
Harmonic-NAS (A:AGX) Image 84.78 5.68 38.28

Multimodal Neural Networks
ViLBERT CC Lu et al. (2019) Image + Text 84.66 A:22.58, T:59.93 A:523.93, T:449.89
MOMENTA Pramanick et al. (2021) Image + Text 87.14 A:35,09, T:176,43 A:1311,22, T:1463.08

Harmonic-NAS (TX2) Image + Text
88.45 10.51 25.63
90.42 12.47 31.92
90.14 11.11 26.63

Harmonic-NAS (AGX) Image + Text
88.16 5.79 38.34
90.42 7.51 50.79
90.14 6.91 43.49

Compared to SoTA works, our frame-
work provides better unimodal and
multimodal neural networks regard-
ing accuracy and hardware effi-
ciency. The optimal multimodal net-
works found by Harmonic-NAS for
both hardware devices have shown
an improvement of up to ∼3% in the
TOP-1 accuracy while being ∼6.06x
more latency efficient than MO-
MENTA Pramanick et al. (2021) on
the AGX. In light of highlighting the
hardware awareness of Harmonic-NAS, we also found another MM-NN with a slight drop in ac-
curacy but more suitable for resource-constrained scenarios, exhibiting ∼1.19x and ∼1.32x gains
in latency and energy, respectively, compared to the most accurate MM-NN from Harmonic-NAS.

4.2.3. On the importance of the hierarchical design for multimodal networks

To further demonstrate the importance of the considered neural design parameters for multimodal
networks in Harmonic-NAS, we provide Figure 4 in which we report the obtained performances
when progressively adding new design dimensions to the search space. In the x-axis, we refer to
the fixed and searched backbones by ’FB’ and ’SB’, respectively. The fixed and searchable fusion
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networks are refereed by ’FF’ and ’SF’, respectively. The term ’HW’ in the x-axis designates the
inclusion of the Hardware efficiency metrics (i.e., latency and energy) as optimization objectives.

10.89% Acc gain

1.91x Lat gain

10.89% Acc gain

2.14x Ergy gain

Figure 4: Performance of the progressive design of multimodal networks

In the first case (FB+FF),
the unimodal back-
bones are fixed for
each modality to the
subnets with the high-
est learning capacity
from our supernets (i.e.,
the subnets with the
maximum number of
learnable weights), whereas the fusion is selected as a dense architecture with all the fusion possi-
bilities. In the second and third cases, we activate the search for the fusion network in (FB+SF) and
unimodal backbones in (SB+SF). All the results in Figure 4 are reported for the AV-MNIST dataset
on the NVIDIA Jetson TX2. From comparing (FB+FF) and (FB+SF), we notice that simply optimizing
the fusion network for fixed backbones does not always result in optimal multimodal models. This
supports our assumption of the importance of jointly optimizing the unimodal and multimodal fea-
ture embedding, as the best standalone unimodal backbones are not initially designed nor trained
for multimodal learning. In (SB+SF), incorporating the unimodal backbones optimization yields
an accuracy improvement of ∼11%. This is because our first-stage search engine could identify
unimodal backbones tailored for the multimodal scenario, even if their unimodal performances
are lower than that of the maximum subnets. Furthermore, by adding the Hardware metrics as
optimization objectives in the (SB+SF+HW) case, latency and energy gains of ∼1.91x and ∼2.14x,
respectively, have been obtained compared to the (FB+FF) case while ensuring the same accuracy
level, emphasizing further the importance of considering the hardware efficiency when designing
multimodal networks on resource-constrained Edge devices.

5. Conclusion

In this paper, we presented Harmonic-NAS, a novel framework for the joint optimization of uni-
modal backbones and fusion networks to learn an effective joint embedding of features from mul-
tiple modalities. Harmonic-NAS employs a two-tier optimization scheme with an evolutionary
search stage for the unimodal backbone networks and a differentiable search stage for the fusion
architecture design. Harmonic-NAS also includes the hardware dimension in its optimization pro-
cedure by integrating metrics such as latency and energy consumption. Evaluation results have
seen the superiority of Harmonic-NAS over SoTA multimodal-NAS approaches in discovering effi-
cient multimodal networks with up to ∼10.9% accuracy improvement, ∼1.91x latency reduction,
and ∼2.14x energy efficiency gain on different Edge devices.
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