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Abstract

Relation extraction plays a vital role in knowledge graph construction. In contrast with
the traditional relation extraction on a single sentence, extracting relations from multi-
ple sentences as a whole will harvest more valuable and richer knowledge. Recently, the
Transformer-based pre-trained language models (TPLMs) are widely adopted to tackle
document-level relation extraction (DocRE). Graph-based methods, aiming to acquire
knowledge between entities to form entity-level relation graphs, have facilitated the rapid
development of DocRE by infusing their proposed models with the knowledge. However,
beyond entity-level knowledge, we discover many other kinds of knowledge that can aid
humans to extract relations. It remains unclear whether and in which way they can be
adopted to improve the performance of the Transformer, which affects the maximum per-
formance gain of Transformer-based methods. In this paper, we propose a novel weighted
multi-channel Transformer (WMCT) to infuse unlimited kinds of knowledge into the vanilla
Transformer. Based on WMCT, we also explore five kinds of knowledge to enhance both
its reasoning ability and expressive power. Our extensive experimental results demonstrate
that: (1) more knowledge makes the performance of the Transformer better and (2) more
informative knowledge leads to more performance gain. We appeal to future Transformer-
based work to consider exploring more informative knowledge to improve the performance
of the Transformer.

Keywords: Document-level relation extraction; graph-based method; a weighted multi-
channel Transformer

1. Introduction

Relation extraction, as the foundation of constructing the knowledge base, aims to extract
the entities and relations to form relation triples from text collections. Early research on
relation extraction (Zhang et al., 2019; Soares et al., 2019; Guo et al., 2019) mainly focuses
on the sentence level, namely predicting the relation facts between entity pairs in a single
sentence. However, at the document level, cross-sentence relation triples are common. It is
reported that more than 40% of relation triples are extracted across multiple sentences (Yao
et al., 2019). Therefore, document-level relation extraction has attracted increasing research
interests recently (Ye et al., 2020; Nan et al., 2020; Zeng et al., 2020).
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Figure 1: A multi-hop inference example. Evidence word refers to the keyword that is
more relevant and informative for the inference of the corresponding relations.
Mention refers to the different descriptions of an entity. In this Figure, “locality”,
“located”, and “capital” are the evidence words and provide important clues to
indicate the relations between an entity pair. “It” is a pronoun refers to “The
Lakes”.

In the document-level relation extraction (DocRE), the subject and object entities in
a relation triple may be located in different sentences, and the same entity may appear
multiple times across a document in different forms including corresponding nouns, pro-
nouns, evidence words, and other expressions. These various mentions/entities are very
informative for relation extraction in the document-level context. Figure 1 shows a multi-
hop inference example. There are two mentions of the entity “The Lakes”: “The Lakes” in
the first sentence and “It” in the second sentence. To extract the relation “Capital of” be-
tween “Perth” and “Western Australia”, we need to first recognize that “It” refers to “The
Lakes”. Second, we extract the fact that “The Lakes” is located in “Western Australia”
and “It” is located in the capital city of “Perth”. Finally, we can reason that the relation
between “Perth” and “Western Australia” is “Capital of”.

As Figure 1 shows, the major challenge in document-level relation extraction is the
indirect and multi-hop relation extraction. To deal with the problem, the graph-based
methods (Christopoulou et al., 2019; Zeng et al., 2020; Nan et al., 2020; Xiao et al., 2022)
appear in recent years with the purpose of performing inter-sentence reasoning for DocRE.
They employ a Transformer-based pre-trained language model (TPLM) as the encoder and
then use their delicately designed rules to construct entity-level graphs, which consider
entities and their mentions as nodes and their coreference relationships as edges for aiding
in reasoning. However, abundant useful information (e.g., evidence words and pronouns) in
the context is neglected in their constructed graphs. The information loss breaks the logic
chain for reasoning and thus impedes the achievement of accurate relation predictions, which
limits the performance of graph-based methods. Meanwhile, previous work (Xu et al., 2021;
Yu et al., 2022) tries to facilitate the development of both graph-based methods and DocRE
by using knowledge (e.g., co-occurrence and coreference entity structure) to improve their
common backbone (Transformer). Therefore, using an appropriate method to incorporate
comprehensive knowledge into Transformer is of the essence. This raises three crucial yet
rarely discussed questions: (1) What method can infuse the Transformer with various kinds
of (comprehensive) knowledge? (2) What factor of the kind can cause more significant
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performance improvement? (3) Does the number of kinds affect the performance of the
Transformer?

In this paper, we address the three crucial problems by proposing a novel model named
weighted multi-channel Transformer (WMCT), which encodes various kinds of knowledge
together with context, and then analyze the effectiveness of these kinds both individually
and in combination. Specifically, we explore knowledge by capturing the mentions, pro-
nouns, evidence words, and dependency words to construct plentiful and various kinds of
knowledge. Then, to model the interactions between context and knowledge, we encode
context and knowledge in the TPLM model. In order to adaptively select and incorporate
key clues from various and unlimited kinds of knowledge, we propose a weighted multi-
channel Transformer to aggregate them. The extensive experimental results show that:
(1) our proposed WMCT achieves significant performance improvement compared with the
state-of-the-art (SOTA) baseline methods that focus on improving the Transformer; (2)
more informative knowledge leads to more significant performance improvement; (3) more
knowledge makes the performance of the Transformer better. Our main contributions are
summarized as follows:

• We explore and construct various kinds of knowledge represented by graphs. We
propose some delicately designed rules and leverage the dependency tree to capture
mentions, pronouns, evidence words, and dependency words to extend and enrich the
knowledge for relation inference.

• We propose a weighted multi-channel Transformer (WMCT) to aggregate and adap-
tively embed the various kinds of knowledge. WMCT exhibits competitive perfor-
mance compared with the SOTA baseline methods that focus on improving the Trans-
former.

• We evaluate our model and analyze our findings on three document-level relation ex-
traction datasets including DocRED, CDR, and GDA. Our findings suggest directions
for improvement on the methods that adopt TPLM.

2. Related Work

Early relation extraction approaches focus on predicting the relations between entities
within a single sentence. Various methods including models based on graph (Guo et al.,
2019), pre-training (Soares et al., 2019), knowledge graph (Zhang et al., 2019), and atten-
tion mechanism (Yang et al., 2019), just to name a few, are applied. Recently, researchers
start to deal with the document-level relation extraction problem. Some early works (Yao
et al., 2019; Christopoulou et al., 2019) indicate that the reasoning process is necessary for
the document-level relation extraction because many relation facts can only be predicted
based on interactions between mentions. Many previous approaches model the reasoning
process by building graphs. GCNN (Sahu et al., 2019) uses co-reference links to construct
the dependency graph and MULTISCALE (Jia et al., 2019) leverages the dependency graph
to better capture document-specific features. Entity-GCN (Cao et al., 2019) leverages co-
reference information to construct document-level entity graphs. More recently, LSR (Nan
et al., 2020) captures non-local interactions of entities from the same sentence to build de-
pendency structures. SSAN (Xu et al., 2021) explores co-occurrence and coreference entity
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Name Nodes (Knowledge Kind)

G1 only mentions (mention structural knowledge)

G2
mentions and evidence words
(relation knowledge between each mention pair)

G3
mentions and pronouns
(extended mention structural knowledge)

G4
mentions and their dependency nodes in 2-hop
(mention dependency knowledge)

G5
mentions, pronouns and evidence words
(mention structural and relation knowledge)

Table 1: Five kinds of knowledge represented by graphs.

structures for reasoning. RSMAN (Yu et al., 2022) improves entity-level features in previous
entity-level graphs by relation-specific representations.

However, all the graphs constructed in previous work contain only a single kind of knowl-
edge, which indicates that the power of knowledge is not sufficiently explored. Among these
methods, SSAN and RSMAN improve the Transformer by either incorporating knowledge
(structural guidance) or proposing a better way for incorporating knowledge. We compare
our proposed WMCT with them.

3. Methodology

We present our proposed WMCT as follows. In Section 3.1, we clarify and define the task.
Then, we introduce our formulated rules and methods to construct graphs by pronouns and
evidence words to incorporate knowledge in Section 3.2. Finally, in Section 3.3, we detail
the weighted multi-channel Transformer (WMCT).

3.1. Task Formulation

Given a document d and an entity set E = {ei}ni=1 in d, the target of document-level
relation extraction is to predict all of the relations between entity pairs (ei, ej)i,j=1...n;i 6=j
among R∪ {NA}. R is the predefined relation set . NA stands for no relation between an
entity pair. ei and ej denote subject and object entities. An entity may appear many times

in a document, we use set
{
mi

j

}Nei

j=1
to distinguish the mentions of each entity. We finally

build the extracted relation triples into the form of {(ei, rij , ej) | ei, ej ∈ E , rij ∈ R}.

3.2. Graph Construction

In graph-based relation extraction, the graphs are constructed by various rule-based meth-
ods, hence involving the knowledge of relation inference. In previous work, it is often the
case that the graph consists of a single type of nodes (e.g. mention/entity nodes). However,
as Figure 1 shows, in the context of documents, the pronouns and some keywords are very
informative and helpful for indirect or cross-sentence relation extraction. They should be
involved as new types of nodes in the graphs.



Understanding More Knowledge Improves Transformer

Apparently, it is difficult to define and derive the graphs completely due to the diversity
of knowledge and our limited scope. Consequently, based on the previous work and our
own observation, we preliminarily propose five kinds of regular graphs that carry various
knowledge as shown in Table 1. The graph set is denoted with {Gi}Mi=1 where M = 5. The
motivations of the graphs in our work are given as follows: G1 explains a mention structure
that discriminates whether two mentions reside in the same sentence or refer to the same
entity (Zeng et al., 2020); G2 introduces our proposed evidence word nodes, which creating
another path between each mention node pair to gain more attention on relevant relation; G3,
extends the knowledge of G1 by the reference relations between pronouns and their referring
mentions; G4 as a graph considering the knowledge reserved in syntactic structure, involves
the words depended by each mention in a dependency tree to describe the dependencies
among the mentions and involvements; G5 is a combination of the knowledge in G2 and G3.
Figure 2 shows our proposed graphs, where each graph Gi has its adjacency matrix Ai.

[1]Andrew Kiss is a Canadian artist ... [4]Kiss spent his early adulthood employed as a draftsman ...
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Figure 2: An example of our constructed graphs G1, G2, G3, G4, and G5.

To create the graph set, we first capture mentions and construct a base mention-level
graph where mentions are regarded as nodes. The pronouns and evidence words are regarded
as special kinds of nodes and added to the base graph to obtain the extended graphs shown
in Table 1. Rules are formed to find the candidate mentions that pronouns probably refer
to. The shortest dependency path (SDP) of a dependency tree is employed to capture
evidence words. They are bridges of the corresponding mention pair. Our proposed rules
are as follows:

• The graph consists of pronoun nodes, evidence word nodes, dependency nodes, or
mention nodes, and there are bi-directional edges between each other if they come
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from the same sentence (except dependency nodes where bi-directional edges are con-
structed by hop).

• There are two rules to confirm which entities are referred to by pronouns: 1. the
positions of the referents are in front of the current pronoun in a document; 2. types
of entities are in the “type set” of the current kind of pronouns.

• There are bi-directional edges between pronouns and the entities they probably refer
to. If there are possessive pronouns such as “his” or “her”, we replace the pronoun
with the first noun that appears behind it and then add bi-directional edges between
the noun and corresponding entities.

• There are bi-directional edges between mentions of the same entity.

We build the “type set” for each kind of pronoun by the concluded common regularity.
Specifically, for pronouns “he”, “she”, “his”, and “her”, entity type “Person” should be
in their “type set”. Meanwhile, for pronouns “it”, “its”, “they”, and “their”, entity types
including “Organization” and “Other” should be involved.

3.3. Weighted Multi-Channel Transformer (WMCT)

Our model partly inherits the architecture of the Transformer encoder, which consists of
L (L = 12 in our work) stacking layers. In each layer, there are five units including a
multi-channel graph encoder, graph aggregator, feed-forward network, residual connection,
and layer normalization. The working flow in the layer is as follows: the graph encoder
encodes the input context and various graphs through different channels by self-attention
mechanism, where the input context embedding matrix is taken as initial node embeddings.
Then the output embeddings of nodes and edges from different graphs are adaptively ag-
gregated to form their new embeddings in the graph aggregator. Next, new embeddings are
put into a feed-forward network followed by residual connection and layer normalization.
Finally, the output embeddings are adopted as the initial embeddings and input into the
next layer. The overview structure of our model is shown in Figure 3.
Graph Encoder. Our graph encoder encodes different kinds of graphs to incorporate
the knowledge for improving the performance of the Transformer. Given a document d =
{xt}Nt=1 with N words, the input context embedding matrix X l

0 ∈ RN×d in l-th layer is first
projected into query, key and value matrix respectively:

Ql = X l
0W

l
Q, K l = X l

0W
l
K , V l = X l

0W
l
V (1)

where W l
Q,W

l
K ,W

l
V ∈ Rd×k are trainable model parameters in l-th layer. The matrix is

computed in a multi-head way. We compute five kinds of attention scores by attention
mechanism in five channels and then aggregate them adaptively. Incorporated with the
adjacency matrix Ai constructed in Section 3.2, the attention score Sl

i of graph Gi in l-th
layer is calculated by:

Sl
i = QlW l

AK
lT �Ai, i = 1, . . . , 5, (2)

where � denotes the element-wise multiplication between matrix, W l
A ∈ Rk×k is a trainable

parameter matrix in l-th layer.
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Figure 3: Overview of our model. Different colors of nodes in the right part of the figure
distinguish the tokens in context. For each node, the dynamically learned weights
from different graphs are represented by dash lines in the same color, which
explains the different effects of graphs.

Multi-channel Graph Aggregator. A multi-channel graph aggregator is employed to
allocate the learned weights to each kind of attention score. Each weight indicates the
significance of the corresponding graph. All the score Sl

i are aggregated by graph aggregator.
The output attention score is produced by

Sl =
M∑
i=1

αl
iS

l
i, (3)

where Sl ∈ RN×N , αl
i is a trainable parameter which controls the influence of Gi in layer

l. Following the previous work (Zeng et al., 2020; Zhou et al., 2020; Nan et al., 2020; Xu
et al., 2021), we adopt the attention score of full context produced by TPLM and add it to
Sl to take context knowledge into consideration.

We employ the final attention score Sl to calculate the output embedding matrix of the
graph aggregator by

X l
1 = softmax

(
Sl
)
V l. (4)

Feed-Forward Network. There are three intermediate outputs in l-th layer named X l
1,

X l
2 and X l

3 respectively. The obtained embedding matrix X l
1 is input into a residual net

followed by layer normalization to derive the output embedding matrix X l
2 by

X l
2 = LayerNorm

(
X l

1 + X l
0

)
. (5)

A fully connected feed-forward network is then applied to each token embedding in
matrix X l

2 by

X l
3 = ReLU

(
X l

2W
l
1 + bl1

)
W l

2 + bl2, (6)
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which consists of two linear transformations with a ReLU activation in between. Finally,
we apply residual connection and layer normalization to the obtained matrix X l

3 again to
get the output embedding matrix for the next layer:

X l+1
0 = LayerNorm

(
X l

2 + X l
3

)
. (7)

To sum up, through L layers, the context of a document is encoded into the output
contextual embeddings XL

0 , where we can derive the embedding hmi of mention mi. For
entity embedding matrix v =

{
vep
}n
p=1

, we compute each entity embedding vep for entity
ep through its mention set Mp by

vep =
∑

j∈Mp

hmj , (8)

where p = 1, 2, . . . , n. We extract the attention score calculated in L layers for each entity to

compute the corresponding entity-aware context feature embedding A
(L)
e = {al

e}Ll=1, where
each al

e denotes the importance of context tokens to entity e in layer l. For entity pair ei
and ej , we obtain the entity-pair-aware context feature embedding by

aei =
1

L

L∑
l=1

al
ei , aej =

1

L

L∑
l=1

al
ej , (9)

aij = aei � aej , uij = aijX
L
0 , (10)

where � denotes the element-wise multiplication between matrix, and uij is the final context
feature embedding for entity pair ei and ej .
Classifier. We make pairs of the entities with each other (totally n× n− n pairs) and let
the classifier calculate their classification scores by using their entity embeddings selected
from v. For example, given vei , vej where i and j denote subject and object entity in
an entity pair, we first map the embeddings of both entities to subject and object entity
embeddings respectively to distinguish which entity is now considered as a subject entity
while estimating the relations. Second, we feed the obtained two embeddings yi and yj to
a bilinear layer in Equation 12 to compute the final classification scores. The classification
scores can be calculated as follows:

yi = σ (Ws [vei ;uij ]) , yj = σ
(
Wo

[
vej ;uij

])
, (11)

P (r | ei, ej) =σ
(
y>i Wryj + br

)
, (12)

where Ws ∈ Rd×2d,Wo ∈ Rd×2d,Wr ∈ Rd×d, br ∈ R are parameters that need to be trained.
[; ] denotes the vector concatenation, which takes the context feature of each entity pair into
consideration. Finally, We use binary cross entropy as the loss function in our model.

L = −
∑
d∈D

∑
s 6=o

∑
ri∈R

I (ri = 1) logP (ri | es, eo) (13)

+ I (ri = 0) log (1− P (ri | es, eo)) ,

where D denotes the dataset and I (.) is indication function.
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4. Experiments

4.1. Dataset

We conduct experiments on the public document-level dataset DocRED (Yao et al., 2019)
and two popular document-level relation extraction datasets in the biomedical domain in-
cluding Chemical-Disease Reactions (CDR) (Li et al., 2016) and Gene-Disease Associations
(GDA) (Wu et al., 2019). The DocRED dataset has two versions. The smaller named
DocRED contains 3,053 labeled instances, 1,000 development instances, and 1,000 testing
instances respectively. The larger is based on DocRED and named DocREDdistant since
it is amplified with 101,873 distantly supervised training instances which can be deemed
automatically annotated (Yao et al., 2019). CDR contains 500 training instances, 500 de-
velopment instances, and 500 testing instances. GDA consists of 29,192 training instances,
5,839 development instances, and 1,000 testing instances. Over 61.1% relations in DocRED
require reasoning. Among these relations, 26.6% require logical reasoning (relation estab-
lished by a bridge entity), which achieves the highest proportion among relations requiring
reasoning (Yao et al., 2019).

4.2. Experimental Settings

Our model is implemented under PyTorch (Paszke et al., 2019). We apply spaCy† to get
dependency trees employed in Section 3.2. We use AdamW (Loshchilov and Hutter, 2019)
as our optimizer and apply mixed precision training (Micikevicius et al., 2017) based on the
Apex library†. We take Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2018) as the TPLM.

For fair comparison, we use the parameters and published code declared in the corre-
sponding papers, where the learning rate equals 5e-5 in DocRED and 2e-5 in CDR and
GDA respectively.

4.3. Evaluation Metric

Following the previous works (Nan et al., 2020), we use Ign F1, Intra-F1 and Inter-F1. The
Ign F1 denotes the F1 score of the dev/test sets that excludes the relation facts appearing
in training sets. The Inter-F1 denotes the F1 score of the relational facts between entity
pairs that have no mentions in the same sentence. About 45% entity pairs are involved in
the “Inter” condition in DocRED. The other entity pairs are included in the calculation of
Intra-F1.

4.4. Baselines

We compare our model with the following baseline models.
Sequence-based Models. These models use different neural architectures including con-
volutional neural network (CNN) (LeCun et al., 2015) and bidirectional long short-term
memory network (Bi-LSTM) (Schuster and Paliwal, 1997) to encode a document. Then

†. https://spacy.io
†. https://github.com/NVIDIA/apex

https://spacy.io
https://github.com/NVIDIA/apex
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Dev Test
Model Intra-F1 Inter-F1 Ign F1 F1 Ign F1 F1

CNN(Yao et al., 2019) 51.87 37.58 41.58 43.45 40.33 42.26
LSTM(Yao et al., 2019) 56.57 41.47 48.44 50.68 47.71 50.07
BiLSTM(Yao et al., 2019) 57.05 43.49 48.87 50.94 48.78 51.06
Context-Aware(Yao et al., 2019) 56.74 42.26 48.94 51.09 48.40 50.70

BERTBASE(Wang et al., 2019) 61.61 47.15 - 54.16 - 53.20
SSANDecomp(Xu et al., 2021) - - 56.68 58.95 56.06 58.41
SSANBiaffine(Xu et al., 2021) - - 57.03 59.19 55.84 58.16
SSANDecomp + RSMAN(Yu et al., 2022) - - 57.22 59.25 57.02 59.29
WMCT-BERTBASE 67.66 53.37 59.44 61.29 59.13 61.11

Table 2: Performance comparisons on DocRED.

Dev Test
Model Intra-F1 Inter-F1 Ign F1 F1 Ign F1 F1

BERTBASE
†(Xu et al., 2021) 68.87 55.29 60.45 62.49 55.31 62.63

GAIN-BERT†BASE(Zeng et al., 2020) - - 61.38 63.49 60.60 62.87

ATLOP-BERT†BASE(Zhou et al., 2020) 70.63 56.04 62.23 64.19 61.79 63.90

SSAN-BERT†BASE(Xu et al., 2021) 70.29 55.72 61.52 63.55 61.19 63.40

WMCT-BERT†BASE 71.39 56.01 62.57 64.45 62.04 64.36

Table 3: Performance comparisons on DocREDdistant. Signal † denotes that the model is
pre-trained on DocREDdistant.

they usually classify an entity pair with a bilinear function based on the encoded entity
embeddings.
Graph-based methods. These models fine-tune the TPLM on document-level relation
extraction under different model structures. Usually, their first step is to encode a docu-
ment by TPLM. In the second step, they utilize various model structures to capture the
different statistical significance of data (Wang et al., 2019). Some of these models conduct
an inference graph in the second step by co-reference links (Sahu et al., 2019), dependency
trees (Nan et al., 2020; Guo et al., 2019) or knowledge (Christopoulou et al., 2019) including
LSR, GAIN, and CorefBERT. The others build a fully connected graph instead and use the
attention mechanism to calculate every edge weight in the graph (Veličković et al., 2018).
More recently, SSAN (Xu et al., 2021) and RSMAN (Yu et al., 2022) focus on facilitating
graph-based methods by improving their common backbone: Transformer. They infuse the
Transformer with graphs to enhance its reasoning ability.

4.5. Results on DocRED

In this section, we conduct experiments on DocRED and DocREDdistant to evaluate the
effectiveness of different kinds of methods including graph-based methods and sequence-
based models. The experimental results are shown in Table 2 and Table 3.

We can observe from Table 2 that our proposed WMCT outperforms the baseline meth-
ods that aim to enhance the reasoning ability of the Transformer. Specifically, WMCT
surpasses SSAN and RSMAN by at least 3.07/1.82 F1 and 2.70/2.11 Ign F1 on the test set
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Dataset Model F1 Intra-F1 Inter-F1

CDR

CNN (Gu et al., 2017) 61.3 57.2 11.7
CNN+CNNchar (Nguyen and Verspoor, 2018) 62.3 - -
BRAN (Verga et al., 2018) 62.1 - -
GCNN (Sahu et al., 2019) 58.6 - -
LSR (Nan et al., 2020) 61.2 66.2 50.3
EoG (Christopoulou et al., 2019) 63.6 68.2 50.9
LSR w/o MDP nodes (Nan et al., 2020) 64.8 68.9 53.1
WMCT-BERTBASE 66.4 71.7 53.2

GDA

EoG(NoInf) (Christopoulou et al., 2019) 74.6 79.1 49.3
LSR (Nan et al., 2020) 79.6 83.1 49.6
EoG(Full) (Christopoulou et al., 2019) 80.8 84.1 54.7
EoG(Sent) (Christopoulou et al., 2019) 81.5 85.2 50.0
WMCT-BERTBASE 82.0 85.6 59.9

Table 4: Model performance on the test set of CDR and GDA dataset.

of DocRED, respectively. Since SSAN only adopts a single kind of graph containing entity-
level information (co-occurrence and coreference links) while our proposed WMCT contains
various kinds of graphs beyond entities, the results indicate that our proposed WMCT ex-
ploits the knowledge more effectively than SSAN. Furthermore, WMCT performs better
than RSMAN which further improves the information aggregation of entities in SSAN. It
also implies that merely exploring a single kind of knowledge will constrain the performance
and potential of the Transformer. The effectiveness of various kinds of knowledge is more
significant than that of improving the Transformer by using a single kind of knowledge.

By investigating the datasets, we find that DocRED just contains 3,053 labeled in-
stances, which implies that the latent knowledge is very limited. On the contrary, the
dataset of DocREDdistant contains 101,873 distantly supervised training instances based on
DocRED. It means that more plentiful knowledge can be explored for performance im-
provement. However, the amount of noise information also becomes larger as the dataset
is automatically obtained without manually labeling. In this scenario, the guidance of the
knowledge, which is exploited in an unsupervised way, is of the essence. The experimental
results on DocREDdistant shown in Table 3 demonstrate that our improved Transformer pos-
sesses stronger reasoning ability originating from the guidance of various kinds of knowledge.
WMCT surprisingly surpasses the two representative methods in DocRE which adopt addi-
tional modules (e.g., graph convolutional network, adaptive threshold, and localized context
pooling) to improve their performance. This also suggests directions for improvement of
future methods that are based on the Transformer.

4.6. Results on CDR and GDA

We evaluate our model on CDR and GDA compared with the stat-of-the-arts on these
datasets. The results are shown in Table 4, which also demonstrates the effectiveness of our
model, and indicates that pronouns and evidence words are important in document-level
relation extraction. According to the experimental results, our proposed model outperforms
the previous work (Christopoulou et al., 2019) by 1.6 F1 on CDR and outperforms EoG
by 0.5 F1 on GDA, which demonstrates the effectiveness of our formulated graphs and the
joint methods.
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Model Intra-F1 Inter-F1 Ign F1 F1

Ours all-graph 71.09 56.13 62.53 64.45
w/o G1 70.72 56.55 62.49 64.36
w/o G2 70.80 55.67 62.13 64.00
w/o G3 70.87 56.32 62.47 64.25
w/o G4 70.82 55.96 62.29 64.17
w/o G5 70.77 55.40 62.01 63.88

Table 5: The ablation study on DocRED.

4.7. Ablation Study and Discussion

We exhibit ablation studies of our model and conduct experiments for a comprehensive
discussion. As a key part of our model, the multi-channel aggregator allocates weights
adaptively to different graphs. It is instructive to explore whether graphs indeed impact.
For this purpose, we design two models. One model only picks one kind of graph. The
other model excludes a graph and takes the rest kinds of the graphs into consideration.
The experimental results are shown in Figure 4 and Table 5 respectively. In Figure 4, we
evaluate the effectiveness of a single graph by adjusting its weight. Meanwhile, as Table 5
and Figure 4 show each graph impacts to the relation extraction, where G2, G4 and G5

effects the most. With only one kind of graph, the performance of our model drops at least
by 1.20 Ign F1 and 1.43 F1 on the DocRED test set. Specifically, the exclusions of G1, G2,
G3, G4 or G5 lead to the declines of model performance by 0.09, 0.45, 0.20, 0.28 and 0.57
in F1 respectively, while the involvements of G1, G2, G3, G4 or G5 improve the performance
of BERTBASE by 0.73, 0.86, 0.78, 1.10 and 1.26 in F1 respectively. It means that graphs
extended by dependency words, evidence words, or a combination of pronouns and evidence
words are more important than those that only contain mentions and pronouns.

To further investigate the effect of each graph, we show the weights of the graphs
distributed in 12 layers of our model in Figure 5. We observe that the G2, G4 and G5 graphs
are always assigned heavier weights by the aggregator introduced in the weighted multi-
channel Transformer section throughout 12 layers. The results shown in Figure 5 indicate
the significance of graphs sorted in ascending order represented by G1,G3,G2,G4,G5 (the last
layer impacts the most). The figure shows that the influence of G1 and G3 is limited when
compared with the other graphs. The former is composed of mentions which are widely
used in previous work, and the latter consists of mentions and pronouns which has a similar
nature to the former about referring entities. Consequently, we can derive that mentions
or pronouns are not enough for document-level relation extraction, and the improvement
will be more significant while combining pronouns with evidence words because they can
be bridges to connect the mentions for unobstructed information transmitting, and thus
enrich the knowledge and extend the graphs for relation inference. In other words, a more
informative graph leads to more significant improvement due to the complete logic chain.

To summarize, according to the experimental results in this section, we can derive three
conclusions. First, it is that not only mentions but also dependency words, pronouns, and
evidence words are also very informative for relation inference. Second, the diversity of
graphs (knowledge) is helpful for document-level relation extraction. Third, we argue that
graphs, especially with richer knowledge, are indeed important and can contribute to the
final improvement while applying an appropriate method.
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Figure 4: The influence of graphs. We evaluate the influence of five graphs one after another
based on BERTBASE on the development set.

Figure 5: The weights of five graphs distributed in different layers. Our all-graph model is
trained on DocRED, CDR, and GDA respectively.

5. Conclusion

In this work, we explore various kinds of knowledge represented by graphs for document-
level relation extraction. We propose the weighted multi-channel Transformer to effectively
aggregate such graphs in an adaptive way. Our model deals with the document-level relation
extraction problems from both contextual inferring and knowledge inferring interactively
and simultaneously. The experimental results demonstrate the importance of informative
knowledge and the effectiveness of our proposed model. For future works, we plan to adapt
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our model and newly constructed graphs to alleviate the inference challenge in multi-hop
question answering and reading comprehension.
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