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Abstract

In this paper, we propose a new approach called Adaptive Behavioral Costs in Reinforce-
ment Learning (ABC-RL) for training a human-like agent with competitive strength. While
deep reinforcement learning agents have recently achieved superhuman performance in var-
ious video games, some of these unconstrained agents may exhibit actions, such as shaking
and spinning, that are not typically observed in human behavior, resulting in peculiar
gameplay experiences. To behave like humans and retain similar performance, ABC-RL
augments behavioral limitations as cost signals in reinforcement learning with dynami-
cally adjusted weights. Unlike traditional constrained policy optimization, we propose a
new formulation that minimizes the behavioral costs subject to a constraint of the value
function. By leveraging the augmented Lagrangian, our approach is an approximation of
the Lagrangian adjustment, which handles the trade-off between the performance and the
human-like behavior. Through experiments conducted on 3D games in DMLab-30 and
Unity ML-Agents Toolkit, we demonstrate that ABC-RL achieves the same performance
level while significantly reducing instances of shaking and spinning. These findings under-
score the effectiveness of our proposed approach in promoting more natural and human-like
behavior during gameplay.
Keywords: Deep reinforcement learning, Human-like agent, Constrained policy optimiza-
tion

1. Introduction

In recent years, many deep reinforcement learning (DRL) agents have achieved superhuman
performance in many games, such as Agent57 (Badia et al., 2020) for Atari games, AlphaS-
tar for StarCraftII (Vinyals et al., 2019b), OpenAI Five for Dota2 (Berner et al., 2019),
and For The Win (FTW) agent for Quake III Arena (Jaderberg et al., 2019). Although
many agents can achieve good performance, they do not always behave like humans. One
example is a high number of action per minute (APM). Without a limitation of APM, the
peak APM in AlphaStar (Vinyals et al., 2019a,b) sometimes reached 900 and even 1500,
far above any human players, at most 600. For this problem, they limited the APM of

*. These authors contributed equally to this work

c© 2023 K.-H. Ho, P.-C. Hsieh, C.-C. Lin, Y.-R. Luo, F.-J. Wang & I.-C. Wu.



Ho Hsieh Lin Luo Wang Wu

AlphaStar for a fair comparison to human players. Another example is frequent actions
of shaking and spinning in 3D games, as observed in Banana Collector, a game in Unity
Machine Learning Agents Toolkit, denoted as ML-Agents Toolkit (Juliani et al., 2018).
We noticed that the agent achieved a commendable score; however, its actions frequently
exhibited shaking or spinning, which resulted in peculiar actions that were unsettling for
human players. The phenomenon of shaking was also observed in the demo video* of FTW
agent (Jaderberg et al., 2019).

As we reviewed the aforementioned studies with notable performance, some researchers
are further exploring methods for demonstrating human-like behavior in games (Momenne-
jad, 2023; Najar and Chetouani, 2021). For example, Devlin et al. (2021) and Zuniga et al.
(2022) proposed different approaches to evaluate the human-likeness of navigation behavior
in video games. In addition, Milani et al. (2023) developed a human-like navigation agent
using reward-shaping techniques (Rosenfeld et al., 2018). Also, in the work by Jacob et al.
(2022), a regret minimization algorithm was employed for search, demonstrating a pol-
icy that matches the human prediction and performs strongly in the no-press Diplomacy
game. Other approaches incorporate human data to achieve human-like behaviors (Zhu
et al., 2019; Emuna et al., 2020; de Woillemont et al., 2022). These studies have compre-
hensively advanced the development of human-like agents in various games from different
perspectives.

To leverage human data, a straightforward approach is to employ imitation learning
(IL) using human demonstrations. Techniques such as behavior cloning and generative ad-
versarial imitation learning (GAIL) can be utilized for this purpose (Ho and Ermon, 2016).
In addition to directly learning from human demonstrations, it is possible to incorporate
techniques from offline reinforcement learning to ensure agents do not deviate significantly
from the provided demonstrations. Examples of such techniques include Conservative Q-
Learning (Kumar et al., 2020) or Extreme Q-Learning (Garg et al., 2023). While these IL
approaches can capture human-like behavior, they usually heavily rely on demonstrations,
thereby requiring sufficient samples for training. The performance of agents is bounded by
these demonstrations. Thus, we explore another avenue besides imitation learning.

In this paper, we employ constrained reinforcement learning and intuitive human-like
metrics to achieve human-like behavior. These metrics are associated with biological con-
straints, such as behaviors like shaking or spinning in 3D games. The term Biological
Constraints was introduced by Fujii et al. (2013) to define the physical limitations influ-
encing human-like behavior in the context of games. They proposed methods to train an
agent for the game Mario using these constraints. These constraints encompass sensory
error, perceptual and motion delay, physical fatigue, and the balance between repetition
and novelty. The limitation of APM described above can be viewed as one example of
the biological constraints. Fujii et al. (2013) also proposed some methods to address these
constraints. For instance, they suggest adding noises to the game states to account for sen-
sory error and delaying the input frame for perceptual and motion delay. However, some
of these methods require internal information. Therefore, achieving human-like behavior
through end-to-end training remains challenging. Thus, for simplicity, we focus on the issue
of frequent actions of shaking and spinning as previously described.

To solve the issue of frequent actions of shaking and spinning, we first propose a metric
to indicate the cost of such behaviors due to biological constraints, called behavioral costs in
this paper. The metric of behavioral costs can be defined by game designers or biologists,
e.g., the costs go high for frequent shaking and spinning.

Second, letting the behavioral costs as a negative reward to discourage non-human
behaviors, our goal is to find a reinforcement learning (RL) policy that minimizes behavioral
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costs while achieving sufficiently high total rewards. Thus, the problem can be viewed as
a kind of constrained policy optimization (CPO) problem. Notably, in most traditional
CPOs, the target is to find a policy that maximizes the total rewards subject to the given
constraints, such as the limitation of behavioral costs. Unlike traditional constrained policy
optimization, we propose a new formulation that minimizes the behavioral costs subject to
a constraint of the value function.

Third, leveraging augmented Lagrangian, our approach is to transfer the problem into
unconstrained policy optimization. Primal–dual optimization (PDO) is a widely used ap-
proach for Lagrangian, but its solution for the primal problem must satisfy its dual con-
straint. In this paper, the agent is allowed with a few violations as the fact that a human
player sometimes shakes or spins. Thus, we propose a new approximation approach, called
Adaptive Behavioral Costs in Reinforcement Learning (ABC-RL), to adjust rewards dy-
namically, so that we can obtain high performance while making the action of shaking and
spinning less frequent.

Finally, we justify the ABC-RL approach by experimenting with training agents in
Banana Collector and DMLab-30 (Beattie et al., 2016). The experiments show that the
agents trained by our approach greatly reduce the numbers of shaking and spinning while
preserving the same performance level. In addition, we also compare our agents to human
players. In this experiment, while outperforming human players, our agents take slightly
more spinning actions than human players do, but less shaking actions. Our conjecture
about this is that human players tend not to spin than to shake.

2. Preliminaries

In this section, we introduce two preliminaries and its related works, including reinforce-
ment learning (RL) and constrained policy optimization(CPO).

2.1. Reinforcement Learning

A RL problem is usually formulated as a Markov Decision Process (MDP), defined by a
tuple (S, A, R, P, γ), where S is the finite set of the states, A is the set of the available
actions, R: S × A → R is the reward function, P : S × A → S 7→ [0, 1] is the transition
probability function and γ is the discounted factor. At each time step t, the agent decides
an action at ∈ A by its policy π(at|st) at state st ∈ S; then, by applying the action at, the
state of the environment is changed from st to st+1 according to the environment transition
probability function P and the agent receives a feedback reward rt ∈ R. The above process
continues until the agent reaches a terminal state.

The goal for a RL agent is to learn a policy πθ parametrized by θ from some pa-
rameter set Θ for maximizing its performance measure, called objective function J(πθ).
For a fixed policy, the objective function can be represented as the expected total infinite
horizon discounted rewards, Jv(πθ) = Eτ∼πθ [

∑∞
t=0 γ

trt], where τ = (s0, a0, s1, a1, . . . ) is
a trajectory played by this fixed policy πθ and τ ∼ πθ presents the distributions of the
states and actions over the trajectories depending on πθ. We denote a return G(τ) as
the total discounted rewards of a trajectory; thus, the objective function can be rewrit-
ten as Jv(πθ) = Eτ∼πθ [G(τ)]. It is considered as an optimization problem that finding
the parameters θ for a policy to maximize the objective function Jv(πθ), as Eq. 1. This
optimization problem is a policy optimization problem, which is usually solved by policy
gradient approaches (Sutton and Barto, 2018).

max
θ
Jv(πθ) = max

θ
Eτ∼πθ [

∞∑
t=0

γtrt] (1)
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Since deep Q-learning network (DQN) (Mnih et al., 2015) had great success in Atari
games, it has been more popular to use neural networks to parameterize the agent’s policy.
Researchers have improved the performance with many techniques, such as refining the
value function (van Hasselt et al., 2016; Wang et al., 2016) and accelerating the training
process with a distributed system (Mnih et al., 2016; Horgan et al., 2018; Kapturowski
et al., 2019). However, the target of those approaches is for high performance, such as
getting more game scores. Without extra limitations, the behaviors of the agent are not
guaranteed to be human-like. Inspired by the work of Fujii et al. (2013) , which introduced
”biological constraints” to make RL agent more human-like, the behavioral limitations are
introduced as constraints to training a human-like agent.

2.2. Constrained Policy Optimization

Constrained Markov Decision Processes (CMDP) (Altman, 1996) is an extension of MDP
with introducing constraints that the policy must fulfill. The general form is

max
θ
Jv(πθ), subject to Jc(πθ) ≤ τ, (2)

where τ is the threshold for the constraints and Jc(πθ) is the constrained costs, such as
discounted total costs Jc(πθ) = Eτ∼πθ [

∑∞
t=0 γ

tC(t)], where C(t) is the behavioral costs
signal at time t.

CMDP is one of the approaches for Safe RL, which is RL with safety constraints to
avoid dangerous actions , and it is also considered as constrained RL (Garćıa and Fernández,
2015). The Lagrangian approach is a widely used technique for solving CMDP problems,
such as primal–dual optimization (PDO) (Abad and Krishnamurthy, 2003; Chow et al.,
2017) and multi-timescale actor-critic approach (Borkar, 2005; Tessler et al., 2019). Re-
cently, Achiam et al. (2017) introduced the Constrained Policy Optimization (CPO), a pol-
icy search algorithm for CMDPs. Their experiments in control tasks showed CPO was able
to maximize the return while approximately satisfying constraints. But, CPO only handles
single constraint, which is not suitable for behavioral costs. There are many approaches for
constrained RL, such as Interior-point Policy Optimization (IPO) (Liu et al., 2019), which
uses first-order policy optimization method, and Projection-Based Constrained Policy Op-
timization (PCPO) (Yang et al., 2020), which finds a policy that satisfies the constraints
by projections. However, we consider both approaches are not suitable for our problem.
IPO is not able to violate the constraints during training while our approach gives some
freedom in taking non-human-like behavior. Also, we think computing for projections is
too complex in PCPO. Thus, we provide a novel view to solve CPO.

3. Methods

3.1. Human-Like Reinforcement Learning via Adaptive Behavioral Costs

In this section, we present the general ABC-RL framework to attain competitive perfor-
mance as well as human-like behavior. To achieve both targets simultaneously, we resort to
the paradigm of constrained policy search, i.e., formulate one of the targets as the objective
function while taking the other into account through constraints. In the typical constrained
policy optimization problem (Achiam et al., 2017), a RL agent is trained by maximizing the
expected total return subject to the constraints of the total expected costs. While being an
attractive solution, this formulation is not directly applicable to human-like reinforcement
learning for the following reason: To learn a competitive policy, the agent may still re-
quire some freedom in taking non-human-like behavior. For example, in Banana Collector,
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the agent needs to make a minimum level of shaking to effectively collect bananas. How-
ever, without experiments, it is usually impractical for the researchers to configure the cost
constraints at an appropriate level. Without the well-configured constraints, the training
progress may stall, or the performance of the learned policy can be rather poor.

To address this issue, we propose the following formulation for policy optimization:

min
θ
Jc(πθ), subject to Jv(πθ) ≥ Vth, (3)

where Jc(πθ) ≥ 0 presents the total discounted costs, Jv(πθ) is the expected value of the
policy πθ and Vth is a threshold of the value. The above formulation is more natural
to human-like reinforcement learning since it aims to minimize unnecessary non-human-
like behavior while guaranteeing sufficiently high performance. Note that in the above
formulation, we do not assume any specific forms of the behavioral costs, which are to be
designed by the researchers for their own purposes. As will be seen in Section 3.2 and
4, we implement two types of behavioral costs to evaluate the proposed framework. One
way to define the behavioral costs signal is given in Section 3.2, and also followed in our
experiments in Section 4. Vth could be a hyperparameter or be assigned as a fraction of
the maximum historical value (Vmax) in the unconstrained case. Equation 3 indicates the
behavioral costs are going to decrease after the performance reaches a certain threshold. In
practice, we propose to select Vth based on the achievable performance of the unconstrained
problem. In our experiments, it is suggested that Vth = 0.8 · Vmax.

To solve the optimization problem of the ABC-RL, one typical approach is to approxi-
mately solve Equation 3 by converting the constrained problem into a single unconstrained
problem via the quadratic penalty method. Specifically, the quadratic penalty method re-
laxes the constraint by adding to the original objective a high penalty that reflects the
constraint violation. Despite its simplicity, the penalty method is known to suffer from
the ill-conditioning issue (Bertsekas, 1999). To address this issue, we adopt the augmented
Lagrangian approach (Bertsekas, 1999), instead of the quadratic penalty method. To con-
struct the augmented Lagrangian of Equation 3, we first introduce a dummy scalar variable
z ∈ R such that the constraint can be rewritten as Vth − Jv(πθ) + z2 = 0. The augmented
Lagrangian associated with Equation 3 is defined as

L(θ, z;λ, µ) := Jc(πθ) + λ(Vth − Jv(πθ) + z2) +
µ

2
(Vth − Jv(πθ) + z2)2, (4)

where λ is the Lagrange multiplier, and µ is the penalty parameter. Subsequently, Equa-
tion 3 can be approximately solved as follows:

min
θ∈Θ,z∈R

L(θ, z;λ, µ). (5)

Since Equation 5 is equivalent to the double minimization problem minθ∈Θ minz∈R L(θ, z;λ, µ),
we can simplify the procedure by first handling the inner minimization over z.

Proposition 1 The solution of θ to Equation 5 is the same as that to the following problem:

min
θ∈Θ

Jc(πθ) +
1

2µ

(
(max{0, λ+ µ(Vth − Jv(πθ))})2 − λ2

)
. (6)
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The proof of Proposition 1 is as follows:

min
θ∈Θ,z∈R

L(θ, z;λ, µ) (7)

= min
θ∈Θ

min
z∈R

Jc(πθ) + λ(Vth − Jv(πθ) + z2) +
µ

2
(Vth − Jv(πθ) + z2)2 (8)

= min
θ∈Θ

min
y≥0

Jc(πθ) + λ(Vth − Jv(πθ) + y) +
µ

2
(Vth − Jv(πθ) + y)2 (9)

= min
θ∈Θ

Jc(πθ) + λ(max{Vth − Jv(πθ),−
λ

µ
}) +

µ

2
(max{Vth − Jv(πθ),−

λ

µ
})2 (10)

= min
θ
Jc(πθ) +

1

2µ
(max{0, λ+ µ(Vth − Jv(πθ))})2 − λ2). (11)

Equation 9 is replaced the variable z in Equation 8 with a non-negative variable y. As
Equation 9 is a quadratic function of y, we can simplify Equation 9 to Equation 10 by
y = 0 or y = −λ/µ − (Vth − Jv(πθ)). By analyzing the value of the maximum term
(max{Vth − Jv(πθ),−λ/µ} = Vth − Jv(πθ) or −λ/µ), the solution of θ to Equation 10 is
equal to that to Equation 11.

Given that the parameter θ is updated iteratively during training, we consider an
iterative procedure to implement Equation 6 as follows: If the old policy and the new
policy are close enough, we can apply the linear approximation to represent the first-order
differential for the second term in Equation 6 . Specifically, we consider

min
θ∈Θ

Jc(πθ)− (max{0, λ+ µ(Vth − Jv(πθold))})Jv(πθ) (12)

subject to |Jv(πθ)− Jv(πθold)| ≤ ε, (13)

where Equation 13 is the proximity constraint. In practice, there are various ways to ensure
that Equation 13 is satisfied, such as the inclusion of a KL divergence constraint (Achiam
et al., 2017) or using the clipped objective function (Schulman et al., 2017). Let λt
denote the Lagrange multiplier for the t-th episode. Following the augmented Lagrangian
(Bertsekas, 1999), the Lagrange multiplier λ will be updated at the end of each episode
as λt+1 = max{0, λt + µ

(
Vth − Jv(πθ)

)
}. To make Equation 12-13 more compatible with

the convention of maximizing total return in RL, we consider the following equivalent
maximization problem as

max
θ∈Θ

Jv(πθ)−
1

max{0, λ+ µ
(
Vth − Jv(πθold)

)
}
Jc(πθ) (14)

subject to |Jv(πθ)− Jv(πθold)| ≤ ε. (15)

Equation 12-13 and Equation 14-15 are equivalent if λ + µ(Vth − Jv(πθold)) > 0. If λ +
µ(Vth − Jv(πθold)) ≤ 0, this implies that Jv(πθold) is sufficiently large (i.e., Jv(πθold) ≥
Vth+λ/µ) such that (i) the objective in Equation 12 reduces to the total expected behavioral
cost Jc(πθ) and (ii) the weight of Jc(πθ) in Equation 14 shall be negative infinity. In
practice, we can avoid zero denominator in Equation 14 by either clipping the value of

1
(max{0,λ+µ(Vth−Jv(πθold ))}) or selecting a small δ > 0 and use 1

(max{δ,λ+µ(Vth−Jv(πθold ))}) .

Note that Equation 14 suggests a simple and intuitively appealing way to implement
the ABC-RL framework. That is, the term (λ+ µ

(
Vth − Jv(πθold)

)
)−1 can be viewed as a

weight for tuning the penalty induced by the cost signals, and this weight is determined
automatically based on the current learning progress reflected by Vth−Jv(πθold). Moreover,
we discuss the following two regimes:

• Low-penalty regime: If Vth is much larger than Jv(πθold), the penalty weight is rather small,
and the agent shall behave as if there is no behavioral cost. This regime guarantees effective
learning during the initial training phase.
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• High-penalty regime: If Vth − Jv(πθold) is close to 0, then the penalty weight is roughly equal
to 1/λ. Hence, Equation 14 is reduced to the form of the standard Lagrangian.

Built on the above derivation of Equation 14, we further discuss the practical consider-
ation in the algorithm design: First, as the true value of Jv(πold) is not directly accessible
and requires estimation, we use the average of total return over the previous episodes
(denoted by Vavg) as an estimate of Jv(πθold), which makes the training progress more
stable. Second, in the low-penalty regime, the penalty weight is determined by multiple
parameters, including λ, µ, and Vth. To guarantee a sufficiently small penalty weight for
various environments in a more holistic manner, we propose to use the sigmoid function
as the surrogate for the derived penalty weight in Equation 14. Specifically, the variant of
Equation 14 with the sigmoid surrogate function is

max
θ∈Θ

Jv(πθ)−W · Sigmoid
(Vavg − Vth

h

)
· Jc(πθ), (16)

where W denotes the maximum weight for the penalty, h is the parameter that determines
the slope of the sigmoid surrogate function and Vavg is the average over the most recent
k episodes, where k is 10 in our setting. For ease of notation, we define Λ := W ·
Sigmoid((Vavg − Vth)/h) and call Λ the adaptive behavioral weight. There are three salient
features of the proposed sigmoid surrogate function: (i) In the low-penalty regime, the
value of the sigmoid surrogate is expected to be close to 0 since Vavg is much smaller than
the threshold Vth; (ii) In the high-penalty regime, the surrogate function well mimics the
behavior of the original penalty weight. That is, given the property that 1

1+e−x ≈
1

2−x , for
all x� 1, we know that if Jv(πθold) is close to Vth,

1

λ+ µ(Vth − Jv(πθold))
=

1

λ

1

1 + µ
λ (Vth − Jv(πθold))

(17)

≈ 2

λ

1

1 + exp
(
− 2µ

λ (Jv(πθold)− Vth)
) (18)

=
2

λ
Sigmoid

(Jv(πθold)− Vth

λ
2µ

)
. (19)

(iii) The sigmoid surrogate provides a smooth transition between the low-penalty and the
high-penalty regimes. Algorithm 1 shows the pseudocode of the ABC-RL approach based
on Equation 16.

On the other hand, the learning algorithm suggested by Equation 14 along with the
corresponding Lagrange multiplier update is called AB-CPO in the rest of the paper. Al-
gorithm 2 describes the pseudo code for Equation 14. In Algorithm 2, it needs to calculate
λ when the policy is stable. However, it is non-trivial to judge whether the policy is stable
and what is the value of the penalty parameter µ, which affects the Lagrange multiplier λ.
In practice, the policy is regarded stable if the average policy loss under the current training
batch is below some threshold. Notably, as an alternative, using Vavg as a surrogate for
Jv(πθ) could also mitigate the possible uncertainty and stochasticity in the observed total
return.

3.2. Shaking and Spinning Cost

In the previous subsection, the behavioral costs signal is defined in a general aspect. For
simplicity of analysis, we substantiate the proposed ABC-RL framework with two common
types of behavioral costs signals in this subsection:

C(t) = Csh(t) + αCsp(t), (20)
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Algorithm 1 Reinforcement Learning via Adaptive Behavioral Costs (ABC-RL)

Initialize policy weigh θ, replay buffer B
Initialize constant W , h and Vth
for episode=1 to M do

Initialize state s0
for t=1 to T do

Apply the action at from policy πθ(st, at) and observe the reward rt and new state
st+1

Calculate the costs C(t)

Adjust reward r′t = rt − Λ · C(t), where Λ = W · Sigmoid(
Vavg−Vth

h )
Store transition (st, at, r

′
t, st+1)

Update θ by given RL method
end

end

Algorithm 2 Adaptive Behavioral Constrained Policy Optimization (AB-CPO)

Initialize policy weigh θ, replay buffer B, variables for each costs λ0
Initialize constant µ and Vth
for episode=1 to M do

Initialize state s1
for t=1 to T do

Apply action at from policy πθ(st, at) and observe reward rt and new state st+1

Calculate costs C(t) and adjust reward r′t = rt−Λ ·C(t), where Λ = 1
λt+µ(Vth−Jv(πθ))

Store transition (st, at, r
′
t, st+1)

Update θ by given policy gradient method
end
if the policy is stable then

Update the variables: λt+1 = max{0, λt + µ(Vth − Jv(πθ))}
end

end

where Csh(t) denotes the shaking cost at time t, Csp(t) the spinning cost, and α is a
hyperparameter for the importance between the penalties of the two costs. Despite that
the measures of human-like behavior can be rather subjective, we observe that excessive
shaking and spinning are two major factors that make a well-trained RL agent appear
non-human-like in 3D games. This subsection presents one way to define the two costs.

First, consider the shaking cost. In 3D games, the shaking behavior of an agent is
usually recognized from the quick vibratory movements along a horizontal axis within a
short period of time. In many games, shaking is an effective way for computer agents to
search target, however, human players tend not to shake too often due to physical fatigue.
In this paper, we quantify the amount of shaking as the number of changes in direction
within a sliding time window of a fixed size w ∈ N. Specifically, the shaking cost Csh(t)
at time t is defined as follows. For simplicity, let horizontal actions include the three kinds
of actions, move-left, move-right, and no operation (no-op). For a sequence of consecutive
actions < ai, ..., aj >, if both ai and aj are opposite actions, namely move-left versus move-
right, and all actions between the two are no-op, then count one for shaking. In a sequence
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(a) shaking cost (b) spinning cost

Figure 1: Shaking and spinning costs

of w horizontal actions < at−w+1, ..., at >, the shaking cost Csh(t) is the total count divided
by w−1 for normalization. Note that w−1 is the maximum count for shaking in a window.
As illustrated by an example in Figure 1 (a), the shaking cost for the upper window of size
8 is 3/7, and that for the lower window is 4/7.

Second, consider the spinning cost. In 3D games, shaking is also an effective way for
computer agents to search target, and human players tend not to spin too often also due to
physical fatigue. In this paper, we quantify the amount of spinning as the number of turning
around and back to the original orientation. Specifically, the spinning cost Csh(t) at time
t is defined as follows. Count one for spinning whenever the agent turns one whole around,
either left or right, and then face to the same orientation. As illustrated by an example in
Figure 1 (b), the spinning cost is one for the left with the five actions < a1, ..., a5 >, and
nothing for the right. Note that for the left we count one more if the next five actions are
the same as < a1, ..., a5 >.

4. Experiments

Our experiments are run for a game on the ML-Agents Toolkit, called Banana Collector
and some of the games on DMLab-30, described in Subsections 4.1 and 4.2 respectively.

4.1. ML-Agents Toolkit Experiment

Our version of ML-Agents Toolkit is 0.8.1. In the game of Banana Collector, the goal of the
agent is to get as many yellow bananas (each with reward +1) as possible, while avoiding
touching blue bananas (each with reward -1). The game is in a square area, and is ended
after the agent takes 2000 steps. To make the area always exist some bananas, bananas
will be refilled to the game periodically. For simplicity, the action space only includes the
actions of moving and rotating. Other details are listed in Table 1.

The ML-Agents Toolkit supports Proximal Policy Optimization (PPO) (Schulman
et al., 2017) as a default implementation of the learning algorithm, which serves as the
baseline agent (without behavioral costs) in this experiment. As this PPO version is imple-
mented with a clipped surrogate objective version, it also enforces the proximity constraint
Equation 13. With behavioral costs, we train three agents, named ABC-RL, AB-CPO,
and Const, based on Algorithm 1 with the PPO implementation for update and with three
different settings for the behavioral weight Λ respectively. The agent named ABC-RL uses
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Table 1: Environment settings

Statement Description

Input 160x90 RGB image

Reward
yellow banana: +1
blue banana: -1

Action
moving: forward, backward, none
rotating: left, right, none

Game
setting

Game steps: 2000
Total agents: 4
FPS: 50
Frame skip: 4

the same behavioral weight as in Algorithm 1, AB-CPO lets the weight Λ follow the formula
in Equation 14, and Const fixes Λ to constant 1. The behavioral costs follow the formula
in Equation 20, but let α = 1 for simplicity. Namely, C(t) = Csh(t) +Csp(t). The window
size for shaking costs is all set to be 8, i.e., w = 8. Each experiment is run three times with
one million steps each.

(a) Cumulative rewards

(b) Shaking costs

(c) Spinning costs

Figure 2: Results in ML-Agents Toolkit with training steps

The performances of the above four agents are shown in Figure 2, including cumulative
rewards, shaking costs, and spinning costs, where each curve presents the average value
of three runs. Without considering behavioral costs, the baseline performs the best for
the cumulative rewards, while both shaking and spinning costs are apparently higher than
others in most cases. With constant behavioral weight, the agent Const performs the worst
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clearly, while its shaking costs are the lowest among all agents and its spinning costs are
apparently higher than ABC-RL and AB-CPO but comparable to the baseline near the end
of the training. The reason for the nearly zero shaking costs under Const is that the value of
the shaking cost dominates the objective. Thus, the agent Const learns to prioritize shaking
costs, while compromising on spinning costs. Both ABC-RL and AB-CPO perform nearly
equally, and near the level of the baseline, though slightly worse. While its performance is
retained, both shaking and spinning costs are greatly reduced with respect to the baseline.
The spinning costs for both ABC-RL and AB-CPO are very close to 0, much lower than
Const. For shaking costs, AB-CPO has a lower curve than ABC-RL.

For comparison to human players, we also record 80 games in total played by 8 human
players. The experimental results are shown as horizontal dashed lines in Figure 2. The
result shows that all the four agents perform better than human players and that the
shaking costs of AB-CPO are comparable to human players, and the spinning costs of
both ABC-RL and AB-CPO are close to zero, nearly the same as human players. This
also shows that human players tend not to spin. Thus, the comparison shows that both
ABC-RL and AB-CPO, particularly for AB-CPO, are able to retain a similar performance
while behaving like humans in the aspects of shaking and spinning.

4.2. DMLab-30 Experiments

DMLab-30, provided by DeepMind Lab, is a collection of game environments for DRL
research in first-person 3D world space. In our study, we conducted experiments on four
specific games from DMLab-30 as following:

1. rooms collect good objects: In this game, the agent’s objective is to collect good objects while
avoiding bad objects. This game is similar to the Banana Collector game in the ML-Agents
Toolkit.

2. rooms keys doors puzzle: This game presents a procedural planning puzzle. The agent must
navigate through a series of colored doors that block access to the goal object. The agent
is able to keep only one single-use colored key to open the corresponding colored door. The
challenge lies in determining the correct sequence of collecting keys and traversing rooms to
reach the goal.

3. rooms watermaze: In this game, the agent’s objective is to locate a hidden platform. Whenever
the platform is discovered, the environment generates a reward for the agent and reset the
agent’s position. Finding the platform is challenging in initial trails, but the agent should
remember its location in subsequent trials and navigate directly to it.

4. lasertag three opponents small: In this game, the agent plays laser tag with other three op-
ponent bots in a small map. The environment contains gadgets and power-ups, which are
randomly generated.

These games provide diverse challenges and serve as a testbed for evaluating whether our
proposed metrics and the training approach could be a general solution to the problem of
creating human-like agents.

For DMLab-30, our experiments are based on the framework SEED RL*. As SEED
RL supports the implementation of v-trace, but not PPO, the version of V-trace serves
as the baseline (without behavioral cost). With behavioral costs, both agents, ABC-RL
and Const, are trained in the same way as those in Section 4.1. Note that the proximity
constraint Equation 13 is not supported in V-trace. So, we do not implement the agent

*. https://github.com/google-research/seed rl
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rooms keys doors puzzle

(a) return (b) shaking cost (c) spinning cost

rooms collect good objects train

(d) return (e) shaking cost (f) spinning cost

lasertag three opponents small

(g) return (h) shaking cost (i) spinning cost
rooms watermaze

(j) return (k) shaking cost (l) spinning cost

Figure 3: Results in DMLab-30 with training steps
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AB-CPO for fairness of comparison mainly to the baseline, because ABC-RL is also repre-
sentative as shown in the previous subsection. We run each experiment three times, each
with around 100 million frames.

Figure 3 shows the performances of the three agents, ABC-RL, baseline and Const, for
the four games respectively. For the game, rooms keys doors puzzle, the performance of
ABC-RL is comparable to the baseline, while both shaking and spinning costs are nearly
zero, much lower than the baseline. It is similar for the game, rooms collect good objects.
For lasertag three opponents small, all methods are steadily improving in raw returns,
but different in shaking and spinning costs. ABC-RL and Const obtain near zero about
shaking and spinining costs because they consider behavior costs. Baseline shakes and
spins a lot in the beginning, but after training, there is a slight amount of shaking and
spinning left. For the game, rooms watermaze, ABC-RL performs better than Const
and worse than the baseline, while both shaking and spinning costs are also nearly zero,
much lower than the baseline. However, it is interesting to observe the fluctuation of the
performance of ABC-RL. Since agents in this game need to a find hidden platform for
rewards*, it is critical to take shaking and spinning actions. Once the agent ABC-RL
receives high rewards, the behavioral weight grows, and hence it discourages the actions of
shaking and spinning. In such a situation, it becomes hard to find platforms and therefore
the subsequent performance is reduced. The phenomenon illustrates the case that the
behavioral costs are highly correlated to the performance increase. Whether there is a way
of defining the cost to prevent this case is not in the scope of this paper.

5. Conclusion

The contribution of this paper is summarized as follows. First, we propose a new ap-
proach called Adaptive Behavioral Costs in Reinforcement Learning (ABC-RL) for train-
ing a human-like agent with competitive strength. To behave like humans and retain
similar performance, ABC-RL augments behavioral limitations as cost signals in reinforce-
ment learning with dynamically adjusted weights. Second, for ABC-RL, we propose a
novel formulation that minimizes the behavioral costs subject to a constraint of the value
function. By leveraging the augmented Lagrangian, our approach is an approximation of
the Lagrangian adjustment, which handles the trade-off between the performance and the
human-like behavior. Although this paper presents behavioral costs based on shaking and
spinning, we leave the definition of the costs open, e.g., different α or other non-human-like
actions. Third, in the 3D games of DMLab-30 and Unity ML-Agents Toolkit, our exper-
iments show that ABC-RL preserves nearly the same performance level with significantly
less shaking and spinning, as shown in Figures 2 and 3.
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Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 2019a.

Oriol Vinyals, Igor Babuschkin, Wojciech Marian Czarnecki, Michaël Mathieu, Andrew Joseph
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