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Appendix for “Outlier Robust Adversarial Training”

Appendix A. Related Works

Traditional Robust Learning. Training accurate machine learning models in the presence
of noisy data is of great practical importance (Sukhbaatar et al., 2015). However, a
degradation in the performance of classification models is inevitable when there are outliers
in the training data. To combat outliers, the traditional robust learning methods are designed
from four directions. 1) The label correction methods (Wang et al., 2018) improve the quality
of the raw labels by correcting wrong labels into correct ones. However, it requires an extra
clean dataset or potentially expensive detection process to estimate the outliers. 2) The loss
correction methods (Han et al., 2020) improve the robustness by modifying the loss function
based on an estimated noise transition matrix that defines the probability of mislabeling
one class with another. However, these methods are sensitive to the noise transition matrix,
which is also hard to be estimated. 3) The refined training strategies such as Co-teaching
(Yu et al., 2019), MentorNet (Jiang et al., 2018) are robust to outliers. These studies all
rely on an auxiliary network for sample weighting or learning supervision, which is hard
to adapt and tune. 4) Some simpler and arguably generic robust loss functions are also
designed for robust learning. For example, a recent work Hu et al. (2020) proposed AoRR
loss, which can mitigate the influence of the outliers if their proportion in training data is
known. Furthermore, Some smoothing methods are proposed in Chaudhari et al. (2019) and
have been proven to be effective in solving the problems of label and data noise. However,
none of these methods are related to adversarial robust learning.

Adversarial Robust Learning. The omnipotent DNN models are surprisingly vulnera-
ble to adversarial examples (Goodfellow et al., 2015), which can easily mislead a DNN model
to make erroneous predictions. To mitigate this issue, the adversarial training (AT) (Madry
et al., 2018) is first proposed as one of the most effective robust learning methodologies
against adversarial attacks. To improve adversarial robustness, instance-reweighted AT
methods are studied by considering the unequal importance of the adversarial data in several
recent works. Intuitively, the samples assigned a low weight to correspond to samples
on which the classifier is already sufficiently robust. Specifically, the reweight mechanism
in WMMR (Zeng et al., 2021a) and MAIL (Liu et al., 2021) is based on the multi-class
probabilistic margin of the model outputs (Zhang and Liang, 2019). The reweighting method
in work GAIRAT (Zhang et al., 2021) identifies non-robust (easily be-attacked) data by
estimating how many steps the PGD method needs to attack natural data successfully.
The most recent work BiLAW (Holtz et al., 2021) uses a validation set to learn weights
based on bi-level optimization and meta-learning. The most significant assumption in these
works is that the natural dataset is clean. However, the performance of the model based
on these methods will be degraded if the training dataset contains outliers. In Sanyal et al.
(2021), the authors identified label noise as one of the causes of adversarial vulnerability.
However, no defense methods are proposed to solve this problem. The work Zhu et al. (2021)
empirically studies the efficacy of AT for mitigating the effect of label noise in training
data. However, their proposed annotator algorithm is based on the label correction strategy,
which inevitably introduces more extra noisy labels due to the bottleneck of the classifier.
In Dong et al. (2020), the authors proposed an adversarial distributional training. They
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focus on the distribution shift of adversarial samples but they do not consider the outliers
problem. Several works (Augustin et al., 2020; Bitterwolf et al., 2020) connect adversarial
robustness to out-of-distribution (OOD) problems. However, they are in different settings
from ours because the notion of outliers is different from OOD points. Dong et al. (Dong
et al.) also discuss the effect of the label noise. However, they focus on the memorization
effect in AT. We focus on outlier problems in AT. Huang et al. (Huang et al., 2020) created
a self-adaptive method for robust learning with noisy labels or adversarial examples, but did
not consider both present simultaneously. This is also mentioned in Zhu et al. (2021).

Appendix B. Explicit Forms of (sub)gradients

From Eq.(4), we have L̂(fθ, λ, λ̂) := k−m
n λ+ n−m

n λ̂− [λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+. Denote I[a]
as an indicator function with I[a] = 1 if a is true and 0 otherwise. Then we can get

∂θL̂(fθ(t) , λ
(t), λ̂(t)) = ∂ℓ(fθ(t)(x̃i), yi) · I[λ̂(t)>[ℓ(f

θ(t)
(x̃i),yi)−λ(t)]+] · I[ℓ(f

θ(t)
(x̃i),yi)>λ(t)],

∂λL̂(fθ(t) , λ
(t), λ̂(t)) =

k −m

n
− I[λ̂(t)>[ℓ(f

θ(t)
(x̃i),yi)−λ(t)]+] · I[ℓ(f

θ(t)
(x̃i),yi)>λ(t)],

∂λ̂L̂(fθ(t) , λ
(t), λ̂(t)) =

n−m

n
− I[λ̂(t)>[ℓ(f

θ(t)
(x̃i),yi)−λ(t)]+].

Appendix C. Proofs

C.1. Proof of Theorem 1

Denote [a]+ = max{0, a} as the hinge function. First, we introduce two Lemmas as follows,

Lemma C.1 (Hu et al., 2020) For a set of real numbers S = {s1, · · · , sn}, si ∈ R, and s[i]
represents the i-th largest value after sorting the elements in S, we have

k∑
i=1

s[i] = min
λ∈R

{
kλ+

n∑
i=1

[si − λ]+

}
.

Furthermore, s[k] ∈ argminλ∈R{kλ+
∑n

i=1[si − λ]+}.

Proof We know
∑k

i=1 s[i] is the solution of

max
p

p⊤S, s.t. p⊤1 = k,0 ≤ p ≤ 1.

We apply Lagrangian to this equation and get

L = −p⊤S − v⊤p+ u⊤(p− 1) + λ(p⊤1− k)

where u ≥ 0, v ≥ 0 and λ ∈ R are Lagrangian multipliers. Taking its derivative w.r.t. p
and set it to 0, we have v = u− S + λ1. Substituting it back into the Lagrangian, we get

min
u,λ

u⊤1+ kλ, s.t. u ≥ 0,u+ λ1− S ≥ 0.
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This means
k∑

i=1

s[i] = min
λ

{
kλ+

n∑
i=1

[si − λ]+

}
. (C.1)

Furthermore, we can see that λ = s[k] is always one optimal solution for Eq.(C.1). So

s[k] ∈ argmin
λ

{
kλ+

n∑
i=1

[si − λ]+

}
.

Lemma C.2 For a set of real numbers S = {s1, · · · , sn}, si ∈ R, we have

n∑
i=m+1

s[i] = max
λ∈R

{
(n−m)λ−

n∑
i=1

[λ− si]+

}
.

Furthermore, s[m] ∈ argmaxλ∈R{(n−m)λ−
∑n

i=1[λ− si]+}.

Proof
n∑

i=m+1

s[i] =
n∑

i=1

si −
m∑
i=1

s[i]

=

n∑
i=1

si −min
λ

{
mλ+

n∑
i=1

[si − λ]+

}

= −min
λ

{
−

n∑
i=1

(si − λ)− (n−m)λ+

n∑
i=1

[si − λ]+

}

= −min
λ

{
− (n−m)λ+

n∑
i=1

[λ− si]+

}

= max
λ

{
(n−m)λ−

n∑
i=1

[λ− si]+

}

.

The second equation holds because of Lemma C.1. The fourth equation holds because the
fact of [a]+ − a = [−a]+. Furthermore, we can see that λ = s[m] is always one optimal
solution. So

s[m] ∈ argmax
λ∈R

{
(n−m)λ−

n∑
i=1

[λ− si]+

}
.

Theorem C.3 (Theorem 1 restated) Suppose λ ∈ R, λ̂ ∈ R, then Eq.(3) is equivalent to

min
θ,λ

max
λ̂

1

k −m

n∑
i=1

[k −m

n
λ+

n−m

n
λ̂− [λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

]
s.t. x̃i = arg max

x̃∈Bϵ(xi)
ℓ(fθ(x̃), yi)

(C.2)

Furthermore, λ̂ > λ, when the optimal solution is achieved.
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Proof To extract the sum of (m, k)-ranked range individual losses, we can first select a

subset, which contains the bottom n−m losses from the ranked list of L
(
{(xj , yj)}nj=1

)
.

Then we select top-(k −m) individual losses from this subset as the finalized (m, k)-ranked
range. Therefore, We sum the bottom n−m individual losses as follows,

n∑
i=m+1

ℓ(fθ(x̃[i]), y[i]) = min
q

n∑
i=1

qiℓ(fθ(x̃[i]), y[i]) s.t. qi ∈ {0, 1}, ||q||0 = n−m,

where q = {q1, · · · , qn} ∈ {0, 1}n, and qi is an indicator. When qi = 0, it indicates that
the i-th individual loss is not included in the objective function. Otherwise, the objective
function should include this individual loss. Next, we sum the top-(k −m) individual losses
from the bottom n−m individual losses as follows,

min
q

k−m∑
i=1

(qℓ(fθ(x̃), y))[i] s.t. qi ∈ {0, 1}, ||q||0 = n−m

=min
λ,q

(k −m)λ+

n∑
i=1

[qiℓ(fθ(x̃i), yi)− λ]+ s.t. qi ∈ {0, 1}, ||q||0 = n−m

=min
λ,q

(k −m)λ+

n∑
i=1

qi[ℓ(fθ(x̃i), yi)− λ]+ s.t. qi ∈ [0, 1], ||q||0 = n−m

=min
λ

(k −m)λ+

n∑
i=m+1

[[ℓ(fθ(x̃), y)− λ]+][i]

=min
λ

(k −m)λ+max
λ̂

{
(n−m)λ̂−

n∑
i=1

[λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

}
,

(C.3)

where qℓ(fθ(x̃), y) = {q1ℓ(fθ(x̃1), y1), · · · , qnℓ(fθ(x̃n), yn)}. The first equation holds because
of Lemma C.1. Since qiℓ(fθ(x̃i), yi) ≥ 0, we know the optimal λ∗ ≥ 0 from Lemma C.1. If
qi = 0, [qiℓ(fθ(x̃i), yi)− λ∗]+ = 0 = qi[ℓ(fθ(x̃i), yi)− λ∗]+. If qi = 1, [qiℓ(fθ(x̃i), yi)− λ∗]+ =
[ℓ(fθ(x̃i), yi)− λ∗]+ = qi[ℓ(fθ(x̃i), yi)− λ∗]+. Thus the second equation holds. It should be
mentioned that the discrete indicator qi can be replaced by a continue one, which means
qi ∈ [0, 1]. The third equation holds because we take the optimal q∗ into the objective
function and remove the constraints. The fourth equation can be obtained by applying
Lemma C.2.

Therefore,

min
θ

1

k −m

k∑
i=m+1

ℓ(fθ(x̃[i]), y[i])

= min
θ

1

k −m

{
min
λ

(k −m)λ+max
λ̂

{
(n−m)λ̂−

n∑
i=1

[λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

}}

= min
θ,λ

max
λ̂

1

k −m

n∑
i=1

[k −m

n
λ+

n−m

n
λ̂− [λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

]
.

(C.4)
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Furthermore, according to Lemma C.1 and C.2, we know the optimal λ∗ and λ̂∗ can be
obtained at the top-k and top-m values of loss ℓ, respectively. Since m < k, we have λ∗ < λ̂∗.
Therefore, λ̂ > λ, when the optimal solution is achieved.

C.2. Proof of Theorem 4

To prove Theorem 4, we first introduce the calibration function as follows,

Definition C.4 (Calibration function). (Awasthi et al., 2021) Given a hypothesis set H,
we define the calibration function δmax for a pair of losses (ℓ1, ℓ2) as follows: for all x ∈ X ,
η ∈ [0, 1] and τ > 0,

δmax(τ,x, η) = inff∈H{Cℓ1(f,x, η)− C∗ℓ1,H(x, η)|Cℓ2(f,x, η)− C
∗
ℓ2,H(x, η) ≥ τ}. (C.5)

The calibration function gives the maximal δ satisfying the calibration condition (Definition
3). The following proposition is an important result from Steinwart (2007).

Proposition C.5 (Steinwart, 2007). Given a hypothesis set H, loss ℓ1 is H-calibrated with
respect to ℓ2 if and only if its calibration function δmax satisfies δmax(τ,x, η) > 0 for all
x ∈ X , η ∈ [0, 1], and τ > 0.

Next, we define the adversarial loss of f ∈ H at (x, y) as

ℓ̃s(f,x, y) = sup
x̃∈Bϵ(x)

ℓs(yf(x̃)). (C.6)

The above naturally motivates supremum-based surrogate losses that are commonly used to
optimize the adversarial 0/1 loss (Goodfellow et al., 2015; Madry et al., 2018; Zhang et al.,
2019). When ℓs is non-increasing, the following equality holds (Yin et al., 2019):

sup
x̃∈Bϵ(x)

ℓs(yf(x̃)) = ℓs

(
inf

x̃∈Bϵ(x)
yf(x̃)

)
. (C.7)

Therefore, the adversarial 0/1 loss ℓ̃0 has the equivalent form

ℓ̃0(f,x, y) := sup
x̃∈Bϵ(x)

1yf(x̃)≤0 = 1 inf
x̃∈Bϵ(x)

yf(x̃)≤0. (C.8)

In this paper, we aim to characterize surrogate losses ℓ1 satisfying H-calibration (Definition
3) with ℓ2 = ℓ̃0 and for the hypothesis sets H which are regular for adversarial calibration.

For convenience, let M(f,x, ϵ) := inf x̃∈Bϵ(x) f(x̃) and M(f,x, ϵ) := − inf x̃∈Bϵ(x)−f(x̃) =
supx̃∈Bϵ(x) f(x̃). Then we provide three useful Lemmas as follows,

Lemma C.6 (Awasthi et al. (2021), Lemma 28). Let H be a symmetric hypothesis set, ℓ
be a surrogate loss function, and X2 ={x ∈ X : there exists f ′ ∈ H such that M(f ′,x, ϵ) > 0
}. If X2 = ∅, any loss ℓ is H-calibrated with respect to ℓ̃0. If X2 ≠ ∅, then ℓ is H-calibrated
with respect to ℓ̃0 if and only if for any x ∈ X2,

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cℓ(f,x,
1

2
) > inf

f∈H
Cℓ(f,x,

1

2
), and

inf
f∈H:M(f,x,ϵ)≤0

Cℓ(f,x, η) > inf
f∈H
Cℓ(f,x, η), ∀η ∈ (

1

2
, 1], and

inf
f∈H:0≤M(f,x,ϵ)

Cℓ(f,x, η) > inf
f∈H
Cℓ(f,x, η), ∀η ∈ [0,

1

2
).

(C.9)
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Lemma C.7 (Awasthi et al. (2021), Theorem 23 and Theorem 24). Let H be a symmetric
hypothesis set consisting of the family of all measurable functions Hall, ϕ be a non-increasing
margin-based loss, and ϕ̃(f,x, y) = supx̃∈Bϵ(x) ϕ(yf(x̃)). If ϕ̃ is H-calibrated with respect to

ℓ̃0, then ϕ̃ is H-consistent with respect to ℓ̃0 for all distributions D over X × Y that satisfy:
R∗

ℓ̃0,H
= 0 and there exists f∗ ∈ H such that Rϕ(f

∗) = R∗
ϕ,Hall

< +∞.

The proofs of the above two Lemmas can be found in Awasthi et al. (2021).

Lemma C.8 Let H be a symmetric hypothesis set and f ∈ H. Suppose 0 ≤ λ∗ < λ̂∗,
ν > min{λ̂∗,R∗

ℓ,H}, ℓ(yf(x)) ≥ 0 ∀x, and λ∗ is bounded, then λ∗ < ℓ(0).

Proof Based on the definition of (f∗
0 , λ

∗, λ̂∗) = arg inff,λ supλ̂

{
E
[
λ̂ − [λ̂ − [ℓ(Y f(X)) −

λ]+]+

]
+ νλ− µλ̂

}
. We choose f = 0, λ = ℓ(0) and λ̂ = λ̂∗ there holds

νλ∗ − µλ̂∗ ≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f∗

0 (X))− λ∗]+]+

]
+ νλ∗ − µλ̂∗

≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(0)− ℓ(0)]+]+

]
+ νℓ(0)− µλ̂∗

= νℓ(0)− µλ̂∗

Thus νλ∗ ≤ νℓ(0) which shows that λ∗ ≤ ℓ(0). Let β = ℓ(0)− λ which implies

(f∗
0 , β

∗, λ̂∗) = arg inf
f,λ

sup
λ̂

{
E
[
λ̂− [λ̂− [ℓ(Y f(X)) + β − ℓ(0)]+]+

]
− νβ − µλ̂

}
.

Let (f∗
0 , β

∗, λ̂∗) be the minimizer. we have, for any f and choosing β = ℓ(0), that

−νβ∗ − µλ̂∗ ≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f(X)) + β∗ − ℓ(0)]+]+

]
− νβ∗ − µλ̂∗

≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f(X)) + ℓ(0)− ℓ(0)]+]+

]
− νℓ(0)− µλ̂∗.

Therefore, we have

−νβ∗ ≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f(X))]+]+

]
− νℓ(0).

Since f is arbitrary, β∗ ≥
ν−E
[
λ̂∗−[λ̂∗−[ℓ(Y f∗(X))]+]+

]
ν . Since ℓ(Y f∗(X)) ≥ 0, we have

0 ≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f∗(X))]+]+

]
= E

[
λ̂∗ − [λ̂∗ − ℓ(Y f∗(X))]+

]
≤ min

{
λ̂∗, inf

f
E[ℓ(yf(x))]

}
.

By using the assumption ν > min{λ̂∗,R∗
ℓ,H}=min

{
λ̂∗, inff E[ℓ(yf(x))]

}
, we get β∗ ≥

ν−E
[
λ̂∗−[λ̂∗−[ℓ(Y f∗(X))]+]+

]
ν > 0. Consequently, the above arguments show that 0 ≤ λ∗ =

ℓ(0)− β∗ < ℓ(0) if ν > min
{
λ̂∗, inff E[ℓ(yf(x))]

}
.
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Theorem C.9 (Theorem 4 restated) Let H be a symmetric hypothesis set consisting of the
family of all measurable functions Hall, suppose ν > min{λ̂∗,R∗

ℓ,H}, 0 ≤ λ∗ < λ̂∗, λ∗ and λ̂∗

are bounded, and ℓ is a non-negative, continuous, and non-increasing margin-based loss.
(i) Then ϕ̃ORAT is H-calibrated with respect to ℓ̃0.
(ii) Furthermore, ϕ̃ORAT is H-consistent with respect to ℓ̃0 for all distributions D over X×Y

that satisfy: R∗
ℓ̃0,H

= 0 and there exists f∗ ∈ H such that RϕORAT(f
∗) = R∗

ϕORAT,Hall
< +∞.

Proof Below we will prove the theorem using Lemma C.6 which is from Awasthi et al.
(2021). Recall that, from the definition of ϕORAT(t) in Eq.(5), ℓ(t) is a continuous and
non-increasing function, and λ∗ and λ̂∗ are bounded, we can conclude ϕORAT(t) is bounded,
continuous, non-increasing.

By Lemma C.6, if X2 = ∅, ϕ̃ORAT is H-calibrated with respect to ℓ̃0 . Consequently, it
suffices to consider the case where X2 ̸= ∅. In this case, in order to show ϕ̃ORAT is H-calibrated
with respect to ℓ̃0, from Lemma C.6 we only need to show, ∀x ∈ X2, that

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x,

1

2
) > inf

f∈H
Cϕ̃ORAT

(f,x,
1

2
), and

inf
f∈H:M(f,x,ϵ)≤0

Cϕ̃ORAT
(f,x, η) > inf

f∈H
Cϕ̃ORAT

(f,x, η), ∀η ∈ (
1

2
, 1], and

inf
f∈H:0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x, η) > inf

f∈H
Cϕ̃ORAT

(f,x, η), ∀η ∈ [0,
1

2
).

To this end, recall that, by the definition of inner ℓs-risk, the inner ϕ̃ORAT-risk is given by

Cϕ̃ORAT
(f, x, η) = ηϕ̃ORAT(f,x,+1) + (1− η)ϕ̃ORAT(f,x,−1)

= ηϕORAT

(
inf

x̃∈Bϵ(x)
f(x̃)

)
+ (1− η)ϕORAT

(
inf

x̃∈Bϵ(x)
−f(x̃)

)
= ηϕORAT

(
M(f,x, ϵ)

)
+ (1− η)ϕORAT

(
−M(f,x, ϵ)

)
.

For any x ∈ X2, let Mx = supf∈HM(f,x, ϵ) > 0. Since H is symmetric consisting of all

measurable functions, we have −Mx = inff∈HM(f,x, ϵ) < 0. Since ϕORAT(·) is continuous,
for any x ∈ X2 and τ > 0, there exists f τ

x ∈ H such that ϕORAT(M(f τ
x ,x, ϵ)) < ϕORAT(Mx) +

τ , ϕORAT(−M(f τ
x ,x, ϵ)) < ϕORAT(0) + τ , M(f τ

x ,x, ϵ) ≥ M(f τ
x ,x, ϵ) > 0, M(−f τ

x ,x, ϵ) ≤
M(−f τ

x ,x, ϵ) = −M(f τ
x ,x, ϵ) < 0, and ϕORAT(M(−f τ

x ,x, ϵ)) < ϕORAT(0) + τ . Next we analyze
three cases:

1. When η = 1
2 , since ϕORAT is non-increasing,

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x,

1

2
)

= inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

1

2
ϕORAT

(
M(f,x, ϵ)

)
+

1

2
ϕORAT

(
−M(f,x, ϵ)

)
≥ 1

2
ϕORAT(0) +

1

2
ϕORAT(0)

= ϕORAT(0)

= λ̂∗ − [λ̂∗ − [ℓ(0)− λ∗]+]+.
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For any x ∈ X2, there exists f ′ ∈ H such that M(f ′,x, ϵ) > 0 and −M(f ′,x, ϵ) ≤
−M(f ′,x, ϵ) < 0, we obtain

Cϕ̃ORAT
(f ′,x,

1

2
) =

1

2
ϕORAT

(
M(f ′,x, ϵ)

)
+

1

2
ϕORAT

(
−M(f ′,x, ϵ)

)
According to Lemma C.8, we have 0 ≤ λ∗ < λ̂∗ and λ∗ < ℓ(0). Therefore, we also analyze
two cases:

(a) If 0 < λ∗ + λ̂∗ ≤ ℓ(0), then we have

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x,

1

2
) ≥ λ̂∗ − [λ̂∗ − [ℓ(0)− λ∗]+]+ = λ̂∗.

On the other hand, since ϕORAT is continuous, there exists f ′ ∈ H and t = M(f ′,x, ϵ),

then 0 ≤ ϕORAT

(
M(f ′,x, ϵ)

)
< λ̂∗. Thus,

Cϕ̃ORAT
(f ′,x,

1

2
) =

1

2
ϕORAT

(
M(f ′,x, ϵ)

)
+

1

2
ϕORAT

(
−M(f ′,x, ϵ)

)
≤ 1

2
ϕORAT

(
M(f ′,x, ϵ)

)
+

1

2
λ̂∗

<
1

2
λ̂∗ +

1

2
λ̂∗ = λ̂∗.

Therefore, for any x ∈ X2,

inf
f∈H
Cϕ̃ORAT

(f,x,
1

2
) ≤ Cϕ̃ORAT

(f ′,x,
1

2
) < λ̂∗ ≤ inf

f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)
Cϕ̃ORAT

(f,x,
1

2
).

(C.10)

(b) If λ∗ + λ̂∗ > ℓ(0),

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x,

1

2
) ≥ λ̂∗ − [λ̂∗ − [ℓ(0)− λ∗]+]+ = ℓ(0)− λ∗.

On the other hand, recall both ϕORAT(·) and ℓ(·) are continuous and non-increasing
and ℓ(0) > λ∗ from Lemma 5. Therefore, we can find f ′ ∈ H such that ℓ(0) >
ℓ(M(f ′,x, ϵ)) > λ∗, λ∗ + λ̂∗ > ℓ(−M(f ′,x, ϵ)) > ℓ(0) > λ∗, and ℓ(M(f ′,x, ϵ)) +
ℓ(−M(f ′,x, ϵ)) < 2ℓ(0). Consequently, there holds

Cϕ̃ORAT
(f ′,x,

1

2
)

=
1

2
ϕORAT

(
M(f ′,x, ϵ)

)
+

1

2
ϕORAT

(
−M(f ′,x, ϵ)

)
=

1

2

[
λ̂∗ − [λ̂∗ − [ℓ(M(f ′,x, ϵ))− λ∗]+]+

]
+

1

2

[
λ̂∗ − [λ̂∗ − [ℓ(−M(f ′,x, ϵ))− λ∗]+]+

]
=

1

2
[ℓ(M(f ′,x, ϵ))− λ∗] +

1

2
[ℓ(−M(f ′,x, ϵ))− λ∗]

=
1

2
[ℓ(M(f ′,x, ϵ)) + ℓ(−M(f ′,x, ϵ))]− λ∗

<
1

2
× 2ℓ(0)− λ∗ = ℓ(0)− λ∗.
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Therefore, for any x ∈ X2,

inf
f∈H
Cϕ̃ORAT

(f,x,
1

2
) ≤ Cϕ̃ORAT

(f ′,x,
1

2
) < ℓ(0)− λ∗ ≤ inf

f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)
Cϕ̃ORAT

(f,x,
1

2
).

(C.11)

2. When η ∈ (12 , 1], since ϕORAT is non-increasing, for any x ∈ X2,

inf
f∈H:M(f,x,ϵ)≤0

Cϕ̃ORAT
(f,x, η) = inf

f∈H:M(f,x,ϵ)≤0
ηϕORAT

(
M(f,x, ϵ)

)
+ (1− η)ϕORAT

(
−M(f,x, ϵ)

)
≥ ηϕORAT(0) + (1− η)ϕORAT(Mx).

On the other hand, for any x ∈ X2 and τ > 0,

Cϕ̃ORAT
(f τ

x ,x, η) = ηϕORAT

(
M(f τ

x ,x, ϵ)
)
+ (1− η)ϕORAT

(
−M(f τ

x ,x, ϵ)
)

< η[ϕORAT(Mx) + τ ] + (1− η)[ϕORAT(0) + τ ]

= ηϕORAT(Mx) + (1− η)ϕORAT(0) + τ.

Since η > 1
2 and Mx > 0, we have

inf
f∈H:M(f,x,ϵ)≤0

Cϕ̃ORAT
(f,x, η)− Cϕ̃ORAT

(f τ
x ,x, η)

> [ηϕORAT(0) + (1− η)ϕORAT(Mx)]− [ηϕORAT(Mx) + (1− η)ϕORAT(0) + τ ]

= [2η − 1][ϕORAT(0)− ϕORAT(Mx)]− τ

> 0,

where we take 0 < τ < [2η − 1][ϕORAT(0) − ϕORAT(Mx)]. Therefore, for any η ∈ (12 , 1] and
x ∈ X2, there exists 0 < τ < [2η − 1][ϕORAT(0)− ϕORAT(Mx)] such that

inf
f∈H
Cϕ̃ORAT

(f,x, η) ≤ Cϕ̃ORAT
(f τ

x ,x, η) < inf
f∈H:M(f,x,ϵ)≤0

Cϕ̃ORAT
(f,x, η). (C.12)

3. When η ∈ [0, 12), since ϕORAT is non-increasing, for any x ∈ X2,

inf
f∈H:M(f,x,ϵ)≥0

Cϕ̃ORAT
(f,x, η) = inf

f∈H:M(f,x,ϵ)≥0
ηϕORAT

(
M(f,x, ϵ)

)
+ (1− η)ϕORAT

(
−M(f,x, ϵ)

)
≥ (1− η)ϕORAT(0) + inf

f∈H:M(f,x,ϵ)≥0
ηϕORAT

(
M(f,x, ϵ)

)
≥ (1− η)ϕORAT(0) + ηϕORAT

(
Mx

)
.

On the other hand, for any x ∈ X2 and τ > 0,

Cϕ̃ORAT
(−f τ

x ,x, η) = ηϕORAT

(
M(−f τ

x ,x, ϵ)
)
+ (1− η)ϕORAT

(
−M(−f τ

x ,x, ϵ)
)

= ηϕORAT

(
M(−f τ

x ,x, ϵ)
)
+ (1− η)ϕORAT

(
M(f τ

x ,x, ϵ)
)

< η[ϕORAT(0) + τ ] + (1− η)ϕORAT

(
M(f τ

x ,x, ϵ)
)

< η[ϕORAT(0) + τ ] + (1− η)[ϕORAT(Mx) + τ ]

= ηϕORAT(0) + (1− η)ϕORAT(Mx) + τ.
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Since η < 1
2 and Mx > 0, we have

inf
f∈H:M(f,x,ϵ)≥0

Cϕ̃ORAT
(f,x, η)− Cϕ̃ORAT

(−f τ
x ,x, η)

> [(1− η)ϕORAT(0) + ηϕORAT(Mx)]− [ηϕORAT(0) + (1− η)ϕORAT(Mx) + τ ]

= (1− 2η)[ϕORAT(0)− ϕORAT(Mx)]− τ,

where we take 0 < τ < (1 − 2η)[ϕORAT(0) − ϕORAT(Mx)]. Therefore for any η ∈ [0, 12) and
x ∈ X2, there exists 0 < τ < (1− 2η)[ϕORAT(0)− ϕORAT(Mx)] such that

inf
f∈H
Cϕ̃ORAT

(f,x, η) ≤ Cϕ̃ORAT
(−f τ

x ,x, η) < inf
f∈H:M(f,x,ϵ)≥0

Cϕ̃ORAT
(f,x, η) (C.13)

From (C.10), (C.11), (C.12), (C.13), we conclude that ϕ̃ORAT is H-calibrated with respect
to ℓ̃0. Thus, (i) holds.

According to Lemma C.7, we can conclude that the ϕ̃ORAT is H-consistent with respect to
ℓ̃0 for all distributions D over X × Y that satisfy: R∗

ℓ̃0,H
= 0 and there exists f∗ ∈ H such

that RϕORAT(f
∗) = R∗

ϕORAT,Hall
< +∞. Therefore, (ii) holds.

C.3. Cross-entropy as A Margin-based Loss

The cross-entropy loss can be rewritten as a margin-based loss. For example, in bi-
nary classification, the conventional binary cross-entropy (bce) loss is given by bce =
−(ylog(σ(f(x))) + (1− y)log(1− σ(f(x)))) when y = {0, 1}. Here σ is the sigmoid function.
It is clear that this conventional bce loss is not a margin-based loss. However, we can
transfer the negative label 0 to -1. In this case, by the property of the sigmoid function
1 − σ(x) = σ(−x), the original bce loss can be rewritten as bce = −log(σ(yf(x))) when
y = {−1, 1}. This is in fact a non-negative, continuous, and non-increasing margin-based
loss.

C.4. Proof of Theorem 6

To get the generalization error bound, we need an equivalent formulation of (4) which is
stated in the following lemma.

Lemma C.10 Suppose λ ∈ R, λ̂ ∈ R, then the empirical risk R
ℓ̃
(f ;S) defined by Eq. (4) is

equivalent to

R
ℓ̃
(f ;S) = 1

k −m

(
min
λ∈R

{
kλ+

n∑
i=1

[ℓ(f(x̃i), yi)−λ]+

}
−min

λ̂∈R

{
mλ̂+

n∑
i=1

[ℓ(f(x̃i), yi)− λ̂]+

})
(C.14)
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Proof According to Eq.(C.3), we have

min
λ

(k −m)λ+max
λ̂

{
(n−m)λ̂−

n∑
i=1

[λ̂− [ℓ(f(x̃i), yi)− λ]+]+

}
=min

λ
(k −m)λ+

n∑
i=m+1

[[ℓ(f(x̃), y)− λ]+][i]

=min
λ,q

(k −m)λ+
n∑

i=1

qi[ℓ(f(x̃i), yi)− λ]+ s.t. qi ∈ [0, 1], ||q||0 = n−m.

Under the constraints, we can rewrite the last formula as

(k −m)λ+

n∑
i=1

qi[ℓ(f(x̃i), yi)− λ]+

=(k −m)λ+

n∑
i=1

[ℓ(f(x̃i), yi)− λ]+ −
n∑

i=1

(1− qi)[ℓ(f(x̃i), yi)− λ]+

=kλ+

n∑
i=1

[ℓ(f(x̃i), yi)− λ]+ −
n∑

i=1

(1− qi){[ℓ(f(x̃i), yi)− λ]+ + λ}.

The last equality holds because
∑n

i=1(1− qi) = n− (n−m) = m.
For the term

∑n
i=1(1 − qi){[ℓ(f(x̃i), yi) − λ]+ + λ}, we assume ℓ(f∗(x̃i), yi), ∀i, are

sorted in descending order when getting the optimal model f∗. For example, ℓ(f∗(x̃1), y1) ≥
ℓ(f∗(x̃2), y2) ≥ · · · ≥ ℓ(f∗(x̃n), yn). Since λ

∗ ≥ 0, the optimal q∗ should be q∗1 = · · · = q∗m = 0,
q∗m+1 = · · · = q∗n = 1. Note that λ∗ must be an optimal solution of the problem

min
λ

(k −m)λ+

n∑
i=m+1

q∗i [ℓ(f
∗(x̃i), yi)− λ]+.

From Lemma C.1, we know ℓ(f∗(x̃m+1), ym+1) ≥ λ∗, which implies that ℓ(f∗(x̃i), yi)−λ∗ ≥ 0
holds for qi < 1. Therefore,

∑n
i=1(1− qi){[ℓ(f(x̃i), yi)− λ]+ + λ} =

∑n
i=1(1− qi)ℓ(f(x̃i), yi).

Furthermore, we know

min
λ̂

{
mλ̂+

n∑
i=1

[ℓ(f(x̃i), yi)− λ̂]+

}
= max

q

{ n∑
i=1

(1− qi)ℓ(f(x̃i), yi)
∣∣∣ qi ∈ [0, 1], ||q||0 = n−m

}
.

Then we get

1

k −m

(
min
λ

(k −m)λ+max
λ̂

{
(n−m)λ̂−

n∑
i=1

[λ̂− [ℓ(f(x̃i), yi)− λ]+]+

})

=
1

k −m

(
min
λ

{
kλ+

n∑
i=1

[ℓ(f(x̃[i]), y[i])− λ]+

}
−min

λ̂

{
mλ̂+

n∑
i=1

[ℓ(f(x̃[i]), y[i])− λ̂]+

})
.

The proof is complete.
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Considering the limit case of (C.14), the population risk R
ℓ̃
(f) can be written as

1

k −m

(
min
λ∈R

{
kλ+

n∑
i=1

[ℓ(f(x̃[i]), y[i])− λ]+

}
−min

λ̂∈R

{
mλ̂+

n∑
i=1

[ℓ(f(x̃[i]), y[i])− λ̂]+

})
k−m
n

→ν,m
n
→µ

−−−−−−−−−→
n→∞

1

ν

(
min
λ∈R

{
(ν+µ)λ+E[ℓ̃(f(x), y)−λ]+

}
−min

λ̂∈R

{
µλ̂+E[ℓ̃(f(x), y)−λ̂]+

})
= R

ℓ̃
(f).

The next Lemma tells us if the loss function is bounded, we can constrain the problem of
R

ℓ̃
(f) and R

ℓ̃
(f ;S) in the bounded range as well.

Lemma C.11 Suppose that the range of ℓ is [0,M ]. Then we have

R
ℓ̃
(f) =

1

ν

(
min

λ∈[0,M ]

{
(ν + µ)λ+ E[ℓ̃(f(x), y)− λ]+

}
− min

λ̂∈[0,M ]

{
µλ̂+ E[ℓ̃(f(x), y)− λ̂]+

})
,

(C.15)
and so does the empirical risk

R
ℓ̃
(f ;S) = 1

k −m

(
min

λ∈[0,M ]

{
kλ+

n∑
i=1

[ℓ̃(f(xi), y)−λ]+
}
− min

λ̂∈[0,M ]

{
mλ̂+

n∑
i=1

[ℓ̃(f(xi), y)−λ̂]+
})

.

(C.16)

Proof The proof of (C.16) is straight forward. By Lemma C.1 and Lemma C.2, we
know λ∗

S = ℓ̃(f(x[k]), y[k]) and λ̂∗
S = ℓ̃(f(x[m]), y[m]) are a pair of solution of (C.16). Since

ℓ̃(f(x), y) = maxx̃∈Bϵ(x) ℓ(f(x̃), y) ∈ [0,M ] for any x, y, we have λ∗
S , λ̂

∗
S ∈ [0,M ].

Next we move on to (C.15). Let λ∗ and λ̂∗ be a pair of solution of (C.15). Let λ = M ,
then we have

(ν + µ)λ∗ ≤ (ν + µ)λ∗ + E[ℓ̃(f(x), y)− λ∗]+

≤ (ν + µ)M + E[ℓ̃(f(x), y)−M ]+

≤ (ν + µ)M + E[M −M ]+ = (ν + µ)M,

which implies λ∗ ≤M . On the other hand, assume λ∗ = −ε for some ε > 0. Let λ = 0, then
we have

−(ν + µ)ε+ E[ℓ̃(f(x), y) + ε]+ = (1− (ν + µ))ε+ E[ℓ̃(f(x), y)]+ ≤ E[ℓ̃(f(x), y)]+,

which contradicts with (1− (ν +µ))ε > 0. Therefore we have λ∗ ≥ 0. Similarly, we can show
that λ̂∗ ∈ [0,M ]. The proof is complete.

The next lemma shows the uniform convergence of learning with ORAT without using
perturbation.

Lemma C.12 Suppose that the range of ℓ(f(x), y) is [0,M ]. Then, for any δ ∈ (0, 1), with
probability at least 1− δ over the draw of an i.i.d. training dataset of size n, the following
holds for all ℓf ∈ ℓH,

Rℓ(f)−Rℓ(f ;S) ≤
2

ν

(
2Rn(ℓH) +

M(2
√
2 + 3

√
log(2/δ))√

2n

)
.
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Proof By the subadditivity of max operator, for any ℓf ∈ ℓH, we have

Rℓ(f)−Rℓ(f ;S)

=
1

ν
min

λ∈[0,M ]

{
(ν + µ)λ+ E[ℓ(f(x), y)− λ]+

}
− 1

ν
min

λ∈[0,M ]

{
(ν + µ)λ+

1

n

n∑
i=1

(ℓ(f(x), y)− λ)+

}
+

1

ν
min

λ̂∈[0,M ]

{
µλ̂+

1

n

n∑
i=1

(ℓ(f(x), y)− λ̂)+

}
− 1

ν
min

λ̂∈[0,M ]

{
µλ̂+ E[ℓ(f(x), y)− λ̂]+

}
≤ max

λ∈[0,M ]

{1
ν
E[ℓ(f(x), y)− λ]+ −

1

nν

n∑
i=1

(ℓ(f(x), y)− λ)+

}
:= L1(f, ℓ) (C.17)

+ max
λ̂∈[0,M ]

{ 1

nν

n∑
i=1

(ℓ(f(x), y)− λ̂)+ −
1

ν
E[ℓ(f(x), y)− λ̂]+

}
:= L2(f, ℓ). (C.18)

Without loss of generality, we consider (C.17), the bound for (C.18) can be derived in a
similar manner. Taking supremum on both sides, we have

sup
ℓf∈ℓH

L1(f, ℓ) ≤ sup
ℓf∈ℓH,λ∈[0,M ]

{1
ν
E[ℓ(f(x), y)− λ]+ −

1

nν

n∑
i=1

(ℓ(f(x), y)− λ)+

}
:= Φ(S).

It is standard to verify that Φ(S) satisfies the bounded differences condition with parameter
M
ν and one can apply McDiarmid’s inequality (McDiarmid et al., 1989) so that with
probability at least 1− δ/4, there holds

Φ(S) ≤ E[Φ(S)] + M

ν

√
log(4/δ)

2n
.

By further standard reduction from the expectation to Rademacher complexity (Theorem
3.3 Mohri et al. (2018)), with probability at least 1− δ/2, there holds

Φ(S) ≤ 2Rn

(1
ν
(G)+

)
+

3M

ν

√
log(4/δ)

2n
, (C.19)

where G = {ℓf − λ|ℓf ∈ ℓH, λ ∈ [0,M ]} and (·)+ = max(·, 0). Since the ramp function
(·)+ is 1-Lipschitz and (0)+ = 0, by Ledoux-Talagrand contraction inequality (Ledoux and
Talagrand, 1991) we have

Rn

(1
ν
(G)+

)
≤1

ν
Rn(G) =

1

ν
Eσ

[
sup

ℓf∈ℓH,λ∈[0,M ]

( 1
n

n∑
i=1

σiℓ(f(xi), yi)−
1

n

n∑
i=1

σiλ
)]

≤1

ν

(
Eσ

[
sup
ℓf∈ℓH

1

n

n∑
i=1

σiℓ(f(xi), yi)
]
+ Eσ

[
sup

λ∈[0,M ]

1

n

n∑
i=1

σiλ
])

≤1

ν

(
Rn(ℓH) +

M

n
Eσ

∣∣∣ n∑
i=1

σi

∣∣∣)
≤1

ν

(
Rn(ℓH) +

M√
n

)
, (C.20)



Hu Yang Wang Ying Lyu

where the last inequality follows by
(
Eσ

[∑n
i=1 σi

])2
≤ Eσ

(∑n
i=1 σi

)2
= n. By putting

(C.20) into (C.19), we have

sup
ℓf∈ℓH

L1(f, ℓ) ≤
1

ν

(
2Rn(ℓH) +

M(2
√
2 + 3

√
log(4/δ))√

2n

)
with probability at least 1− δ/2. The lemma holds by noting supℓf∈ℓH{R(f, ℓ)−Rn(f, ℓ)} ≤
supℓf∈ℓH L1(f, ℓ) + supℓf∈ℓH L2(f, ℓ).

The next corollary is straight-forward from Lemma C.12 by replacing ℓ with ℓ̃.

Corollary C.13 (Theorem 6 restated) Suppose that the range of ℓ(f(x), y) is [0,M ].
Then, for any δ ∈ (0, 1), with probability at least 1− δ over the draw of an i.i.d. training
dataset of size n, the following holds for all ℓf ∈ ℓH,

R
ℓ̃
(f)−R

ℓ̃
(f ;S) ≤ 2

ν

(
2Rn(ℓ̃H) +

M(2
√
2 + 3

√
log(2/δ))√

2n

)
.

C.5. Examples of Hypothesis Sets

We give two examples of hypothesis sets: linear classifiers and nonlinear neural networks,
that satisfy the condition in Theorem 4 and 6. Suppose ℓ : R → [0,M ] is monotonically
non-increasing and L-Lipschitz continuous. In this case, the adversarial loss can be written
(Yin et al., 2019) as ℓ̃(fθ(x), y) := maxx̃∈Bϵ(x) ℓ(fθ(x̃), y) = ℓ

(
minx̃∈Bϵ(x) yfθ(x)

)
. Therefore,

given any function class H, we can define the function class H̃ ⊆ RX×{±1}, such that
H̃ = {minx̃∈Bϵ(x) yfθ(x) : fθ ∈ H}. By the Ledoux-Talagrand contraction inequality (Ledoux

and Talagrand, 1991), we have Rn(ℓ̃H) ≤ LRn(H̃). Hence we only need to characterize the
Rademacher complexity of H̃ given H.

Linear Classifiers. Let the hypothesis set Hlin ⊆ RX be a set of linear functions of
x ∈ X . More specifically, we consider prediction vector θ with lp (p ≥ 1) norm constraint,
i.e. Hlin = {fθ(x) = θ⊤x : ∥θ∥p ≤ r}. Then it is straight-forward to check Hlin is a
symmetric hypothesis set. Furthermore, let d̃ = d1−1/p. Awasthi et al. (2020) showed that

max
{
Rn(Hlin), ϵr

max{d̃,1}
2
√
2n

}
≤ Rn(H̃lin) ≤ Rn(Hlin) + ϵrmax{d̃,1}

2
√
n

. Combined with Theorem

6 with probability at least 1− δ, we have R
ℓ̃
(f)−R

ℓ̃
(f ;S) ≤ 2

ν

(
2LRn(Hlin)+Lϵrmax{d̃,1}

2
√
n

+

M(2
√
2+3
√

log(2/δ))√
2n

)
, where Rn(Hlin) is given by classical result in Kakade et al. (2008).

Neural Networks. We consider feedforward neural networks with ReLU activation
function ρ, i.e. ρ(t) = max{0, t}. In particular, if the hypothesis set is one-layer neu-
ral networks defined as Hone = {fθ(x) = θ⊤0 ρ(Θx) : ∥θ0∥1 ≤ r0, ∥Θi∥p ≤ r} where
Θi ∈ Rd is the i-th row of Θ ∈ Rd′×d. This is a symmetric hypothesis set. Fur-
thermore, the Rademacher complexity can be upper bounded (Awasthi et al., 2020) as

Rn(H̃one) ≤ rr0 max{1,d̃(∥X∥∞+ϵ)}√
n

(1 +
√
d(d′ + 1) log(36)), where X = (x1, · · · ,xn)

⊤. Com-

bined with Theorem 6 with probability at least 1 − δ, we have R
ℓ̃
(f) − R

ℓ̃
(f ;S) ≤

2
ν

(
2Lrr0 max{1,d̃(∥X∥∞+ϵ)}√

n
×(1+

√
d(d′ + 1) log(36))+

M(2
√
2+3
√

log(2/δ))√
2n

)
. Such bound implies

the generalization error depends on the perturbation size ϵ, which demonstrates the intrinsic
complexity of adversarial training.
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Appendix D. Additional Experimental Details

D.1. Source Code

For the purpose of review, the source code is accessible in the supplementary file.

D.2. Settings of Networks and Computing Infrastructure Description

For all networks, we training them by using (mini-batch) stochastic gradient descent with
momentum 0.9, weight decay 2e-4, batch size 128, epochs 50 (for LeNet) / 100 (for Small-
CNN) / 100 (for ResNet-18), and initial learning rate 0.03 (for LeNet) / 0.1 (for Small-CNN)
/ 0.1 (for ResNet-18) which is divided by the 10 at 20-th and 40-th epoch for LeNet / 30-th
and 60-th epoch for Small-CNN and ResNet-18.

All algorithms are implemented in Python 3.6 and trained and tested on an Intel(R)
Xeon(R) CPU W5590 @3.33GHz with 48GB of RAM and an NVIDIA Quadro RTX 6000
GPU with 24GB memory.

D.3. Training Settings on Toy Examples

In this section, we provide more details about how to generate synthetic datasets in Figure
1.

We generate two sets of 2D synthetic data (Figure 1). Each dataset contains 200 samples
from Gaussian distributions with different means and variances. We consider both the case
of the balanced (Figure 1 left) and the imbalanced (Figure 1 right) data distributions, in
the former, the training data for the two classes are approximately equal while in the latter
one class has a dominating number of samples in comparison to the other. In the balanced
dataset (Figure 1 left), we create two outliers. One is in the blue class (shown as red ×),
the other is in the red class (shown as blue ◦). In the imbalanced dataset, we create one
outlier in the blue class (shown as red ×). For both datasets, the yellow squares around
data samples represent the samples are perturbed within a ℓ∞ ball.

For the balanced dataset (Figure 1 left), we build a simple network contains two linear
layers and one ReLU layer (Nair and Hinton, 2010). The number of hidden units is three.
For the imbalanced dataset (Figure 1 right), the network contains four linear layers and
three ReLU layers. The number of hidden units is 20. We train these networks using SGD
with 0.9 momentum for 3000 (balanced dataset) / 100,000 (imbalanced dataset) iterations
with the learning rate of 0.02. We set k = 20 and m = 2 for balanced dataset, and k = 20
and m = 1 for imbalanced dataset when run our ORAT algorithm. In AT and ORAT , the
training attack is PGD10 and we set the perturbation bound ϵ = 0.01 and the PGD step
size ϵ/4.

D.4. Details of Outliers Generation by Using Asymmetric Noise

In asymmetric noise generation procedure, for MNIST, flipping 2→7, 3→8, 5↔6 and 7→1;
for CIFAR-10, flipping TRUCK→AUTOMOBILE, BIRD→AIRPLANE, DEER→HORSE,
CAT↔DOG; for CIFAR-100, the 100 classes are grouped into 20 super-classes with each
having 5 sub-classes, then flipping between two randomly selected sub-classes within each
super-class.



Hu Yang Wang Ying Lyu

Noise
MNIST CIFAR-10 CIFAR-100

ϵ=0.1 ϵ=0.2 ϵ=2/255 ϵ=8/255 ϵ=2/255 ϵ=8/255
k m k m k m k m k m k m

0 60000 1 60000 1 45000 1 45000 1 49950 1 49950 1

S
y
m
m
et
ri
c

N
o
is
e

10% 59950 2000 60000 2000 50000 300 50000 500 50000 300 50000 500
20% 59950 6000 60000 3000 50000 300 50000 300 50000 500 49800 500
30% 59950 5000 60000 5000 50000 10 50000 200 49800 100 50000 500
40% 59950 11000 60000 11000 50000 100 50000 50 49950 100 49950 500

A
sy
m
m
et
ri
c

N
oi
se

10% 60000 100 60000 10 49950 300 50000 500 49900 100 49950 500
20% 59950 100 59950 100 49950 500 50000 300 50000 100 50000 500
30% 59950 10 60000 100 49950 200 50000 300 50000 100 50000 500
40% 59950 10 60000 10 50000 450 50000 500 50000 100 49800 500

Table D.1: The k and m settings of ORAT on real datasets in different noise.

(a) Standard Training (ST) (b) Adversarial Training (AT) (c) ORAT

Figure E.1: An additional illustrative example of standard training (ST), adversarial training (AT),
and ATRR for binary classification on an imbalanced synthetic dataset with one outlier (shown as
red ×) in the blue class. The yellow squares around data samples represent the samples are perturbed
within a ℓ∞ ball. The dashed line is the decision boundary. The figure is better viewed in color.

D.5. k and m Settings on Real Datasets

We provide a reference for setting k and m to reproduce our ORAT experimental results
(Table 1) on real datasets in Table D.1.

Appendix E. Additional Experimental Results

E.1. More Experiments on Toy Example

We generate additional 2D synthetic data as shown in Figure E.1 to demonstrate the
performance of our ORAT method. This imbalanced dataset contains 200 samples from
Gaussian distribution with different means and variances. For this dataset, we create one
outlier in the blue class (shown as red ×). In order to train this dataset, we build a network,
which contains two linear layers and one ReLU layer. The number of hidden units is 64. We
train this network using SGD with 0.9 momentum for 100,000 iterations with a learning rate
of 0.1. We set k = 5 and m = 1 for ORAT . Similarly, in AT and ORAT , the training attack is
PGD10, the perturbation bound ϵ = 0.01, and the PGD step size is ϵ/4.
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Figure E.2: The tendency curves of training adversarial loss and test accuracy on three
datasets. The sharp drops in the curves correspond to decreases in training learning rate.

From Figure E.1, we can find the classifiers are trained from ST (a) and AT (b) cannot
separate two classes in the training data. However, we find the classifier is training by
using our proposed ORAT can separate these two classes. The results demonstrate that our
ORAT can eliminate the influence of the outliers when doing the adversarial training.

E.2. More Experiments on Real Datasets

In the main paper, we only show the tendency curves for MNIST when ϵ=0.1 and CIFAR-10
and CIFAR-100 when ϵ=2/255. In this section, we show more results on three datasets with
20% symmetric noise by setting a big value of ϵ in Figure E.2. Similar to the observations in
Figure 2, we can find the losses are dramatically decreased in the first row of Figure E.2,
which means Algorithm 1 can be successfully applied to solve ORAT optimization problem.
From the second row of Figure E.2, it is obvious that the performance of our method is
higher than the original AT approach on all attacks.

E.3. More Experiments on the Effect of k and m

We conduct more experiments to study the effect of hyperparameters k and m with using
20% symmetric noise on all datasets by setting a big value of ϵ. The results are shown in
Figure E.3. Similar to the results that we get in Figure 3, we can see that there is a clear
range of m with better performance than all compared methods. Fix m and test various k,
we can find the performance can be improved by using some specific k values.

E.4. Connection with Adversarial Training on Out-of-Distribution Problems

Out-of-Distribution (OOD) problem exists due to the training and test data distributions
mismatching (Hendrycks et al., 2021). Although the OOD problem setting is different from
our outliers problem setting, some similarities exist between OOD data and outliers. For
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Figure E.3: Effect of k and m on the test accuracy of ORAT on three datasets.
example, both of them are not from the data generating distribution. Therefore, whether
the OOD methods can directly apply to solving our outlier problem in adversarial training is
a question. Some works such as Zeng et al. (2021b); Varshney et al. (2022); Yi et al. (2021)
connect adversarial robustness to out-of-distribution (OOD) problems.

Specifically, Zeng et al. (2021b) focuses on OOD detection. The problem in Zeng
et al. (2021b) is that not enough labeled OOD samples can be used for training the OOD
detection model. To improve the diversity of the unlabeled data augmentation, they apply
an adversarial attack technique on unlabeled data to generate pseudo-positive samples.
Then use these pseudo-positive samples with labeled data to improve the performance of
the OOD detection model. However, their approach cannot directly apply to our setting
since we only focus on supervised learning. All training data points are labeled in our
setting, and the adversarial training works on labeled data. The authors in Varshney et al.
(2022) test different selective prediction approaches for Natural Language Processing systems
in in-domain, OOD, and adversarial settings. They regard several existing datasets as
adversarial datasets for testing. However, no adversarial training approach is proposed
and involved in Varshney et al. (2022). For Yi et al. (2021), the authors theoretically and
experimentally show that a model (original AT (Madry et al., 2018) or pre-trained AT
(Salman et al., 2020)) robust to input perturbation generalizes well on OOD data.

Therefore, we test whether the pre-trained AT method (Salman et al., 2020) can solve
outlier problems in adversarial training. Following the experimental setting from Yi et al.
(2021), we download the ImageNet-based adversarially pre-trained robust ResNet-18 model
in the setting of L∞ and ϵ = 2/255 from the public repository 1. Then fine-tune it on our
noisy training datasets. We report pre-trained AT testing accuracy (%) on CIFAR-100 in
Table E.1. To make the comparison explicit, we also attach our method performance. From
Table E.1, we can find our method outperforms pre-trained AT under all settings. Most of
the performance gaps between pre-trained AT and our method in Table E.1 are more than

1. https://github.com/microsoft/robust-models-transfer

https://github.com/microsoft/robust-models-transfer
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Noise Defense
CIFAR-100(ϵ = 2/255)

Na FG PGD CW

S
y
m
m
et
ri
c
N
o
is
e 10%

pre-trained AT 24.20 17.09 14.83 14.17
Ours 35.76 25.72 22.27 21.28

20%
pre-trained AT 19.53 16.64 14.01 13.26

Ours 34.45 25.07 22.21 20.92

30%
pre-trained AT 19.41 16.22 13.06 13.04

Ours 31.27 23.81 21.35 19.59

40%
pre-trained AT 18.86 15.63 12.78 11.91

Ours 29.38 22.99 20.85 19.20

A
sy
m
m
et
ri
c
N
o
is
e 10%

pre-trained AT 20.15 19.66 17.78 16.9
Ours 37.09 27.07 23.65 22.59

20%
pre-trained AT 24.60 17.43 16.67 15.15

Ours 36.05 25.76 22.83 21.47

30%
pre-trained AT 22.86 16.92 15.94 14.89

Ours 34.58 24.18 21.05 20.11

40%
pre-trained AT 21.58 16.18 15.32 14.48

Ours 33.65 23.35 20.76 19.46

Table E.1: Testing accuracy (%) of pre-trained AT and our method (ORAT) on CIFAR-100
(ϵ = 2/255) with different levels of symmetric and asymmetric noise. The best results are
shown in bold.
5%. One reason is that the pre-trained AT is not designed to handle outliers. According to
these results, it is clear that pre-trained AT cannot directly apply to solving our problem
even if it has a good performance on OOD data.

E.5. Extension of Table 3

Self-learning (Han et al., 2019) is a useful strategy for learning model on noise data. For
example, we can use AoRR to filter examples with larger loss (potential outliers), then
conducting adversarial training on the cleaner set. We call this method AT w/o. However,
it is not an end-to-end training approach. In contrast, our method is an end-to-end method,
which means it is very easy to be conducted. To compare the effectiveness of ORAT and this
AT w/o approach, we conduct experiments on MNIST with symmetric noise and CIFAR-100
with symmetric noise as follows.

In the first stage, for each dataset, we apply a grid search to select the values of k
and m for training the model using the AoRR approach that can return a good testing
accuracy. Then we use the trained model to test the loss for each sample from the training
set. Therefore, we can obtain a training sample loss list. Next, we delete data points for the
m largest losses in the training set to construct a clean set. This is because the AoRR uses
m to determine how many examples (potential outliers) with the largest losses are ignored
during each training epoch.

In the second stage, after we get a clean set, we use the conventional AT approach to
train the model on the clean set and test the trained model on the testing set.

We report the testing accuracy (%) of the AT w/o approach on MNIST (symmetric noise,
ϵ = 0.1) and CIFAR-100 (symmetric noise, ϵ = 2/255) in Table E.2. To make the comparison
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Noise Defense
MNIST (ϵ = 0.1) CIFAR-100 (ϵ = 2/255)

Na FG PGD CW Na FG PGD CW

S
y
m
m
et
ri
c
N
oi
se

10%
AT w/o 98.91 98.08 97.61 97.55 29.81 21.09 19.59 18.23
Ours 99.52 98.45 97.78 97.79 35.76 25.72 22.27 21.28

20%
AT w/o 98.77 97.76 97.20 97.12 27.81 20.92 19.15 17.95
Ours 99.56 98.37 97.65 97.64 34.45 25.07 22.21 20.92

30%
AT w/o 97.82 96.97 96.47 96.35 24.18 19.17 17.31 16.71
Ours 99.55 98.30 97.51 97.53 31.27 23.81 21.35 19.59

40%
AT w/o 97.03 95.85 95.22 95.05 21.17 17.81 16.85 15.48
Ours 99.36 98.00 97.22 97.20 29.38 22.99 20.85 19.20

Table E.2: Testing accuracy (%) of self-learning based method (Self-learning) and our method
(ORAT) on MNIST (ϵ = 0.1) and CIFAR-100 (ϵ = 2/255) with different levels of symmetric
noise. The best results are shown in bold.

explicit, we also attach our method performance. From Table E.2, we can find our method
outperforms the AT w/o approach under all settings. For example, the performance gap
between the AT w/o approach and our method (ORAT) on MNIST can achieve more than
2% under the 40% symmetric noise setting. Most of the performance gaps on CIFAR-100
can achieve more than 4%.

One reason for low performance from the self-learning approach is that the training
data points ignored by AoRR may contain clean data points. In this case, the constructed
clean set is smaller than the original dataset. This may hurt the final model performance.
Moreover, removing the examples with the largest losses before the adversarial training
may lose the important feature information from the original training dataset. In other
words, this compromises the richness and representational power of the data. In contrast,
our ORAT method considers all examples during adversarial training. According to these
results, it is clear that our approach (ORAT) gives a better solution than the self-learning
approach for solving outlier problems in adversarial training either in the algorithm efficiency
or effectiveness.

E.6. More Analysis on Stability of ORAT

To evaluate the stability of each method, we report the the mean and standard deviation
of testing accuracy (%) of all methods on MNIST (40% symmetric noise, ϵ = 0.1) and
CIFAR-100 (40% symmetric noise, ϵ = 2/255) in Table 4. For each method, the reported
performance is obtained by averaging the testing accuracy according to 10 random seeds.
From Table 4, we can find our method still outperforms the compared methods in both
datasets. For MNIST, our method can even outperform AT by more than 2%. Most
importantly, we can find that the standard deviation in our method is less than or equal
to that of other compared methods. For CIFAR-100, we can find the mean value of our
method ORAT even higher than the reported performance in our submission. The standard
deviation of the performance of our method differs from the comparison methods by at most
0.26% (compared to ST on FGSM attack). Comparing Table 4 and Table 1, it is clear that
the performance gap becomes larger when we report scores by using mean and standard
deviation, and our method shows a stable and stronger ability in handling outliers and
adversarial attacks.
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Noise Defense
CIFAR-10 (ϵ = 2/255) CIFAR-10 (ϵ = 8/255)

Na FG PGD CW Na FG PGD CW

2
0
%

S
y
m

N
o
is
e

ST 91.31 53.25 27.66 26.47 91.09 35.36 7.11 7.34
AT 90.74 82.86 78.97 78.96 81.80 62.43 50.84 50.92

GAIRAT 88.17 84.00 81.72 76.05 78.55 67.95 61.94 47.81
MAIL 73.31 65.94 62.85 58.05 69.01 52.09 44.33 38.85
WMMR 87.75 79.83 76.21 75.48 80.97 61.70 51.17 49.82
RAA 90.55 82.44 78.38 78.56 77.62 60.05 48.87 48.99
Ours 90.72 85.47 82.30 80.34 81.99 69.08 63.87 53.53

Table E.3: Testing accuracy (%) using Wide ResNet.

E.7. Evaluation on Wide ResNet

We evaluate all methods using Wide ResNet on CIFAR-10 dataset with 20% symmetric
noise. The Wide ResNet framework is WRN-32-10, which is the same as Madry et al. (2018).
Results in Table E.3 show our approach outperforms others when using a large model.

E.8. Experiments on Clothing1M

Figure E.4: The tendency curves of testing accu-
racy on the Clothing1M dataset.

To demonstrate the effectiveness of our
method ORAT on a more real scenario, we con-
duct experiments on the Clothing1M dataset
Xiao et al. (2015). This dataset contains
roughly one million clothing images crawled
from the Internet. Most of them have noisy
labels extracted from their surrounding texts.
A few of them have clean labels, which are
manually annotated by Xiao et al. Xiao
et al. (2015). Specifically, we extract 30000
clean labeled images as the clean training
set and 10000 clean labeled images as the
test set. To create a noise training set, we
select 80% images from the clean training set
and extract 30000×20%=6000 images from
the original noise labeled images. Therefore,
we can obtain a noise training set with the
same sample size as the clean training set.
Then we use AT to train the Small-CNN model on the clean training set (named AT (No
noise)) and noise training set (named AT (20% noise)), respectively. For our method ORAT,
we use it to train the same model on the noise training set, named ORAT (20% noise). We
show the tendency curves of the test accuracy in Figure E.4. From the table, comparing
AT (No noise) and AT (20% noise), we can see that AT performance is decreased if the
data contains noise, which means outliers affect the performance of AT. In addition, our
ORAT method outperforms AT on the noise data, which means our method can reduce the
influence of outliers on adversarial training.
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