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Abstract

Supervised learning models are challenged by the intrinsic complexities of training data
such as outliers and minority subpopulations and intentional attacks at inference time with
adversarial samples. While traditional robust learning methods and the recent adversarial
training approaches are designed to handle each of the two challenges, to date, no work
has been done to develop models that are robust with regard to the low-quality training
data and the potential adversarial attack at inference time simultaneously. It is for this
reason that we introduce Outlier Robust Adversarial Training (ORAT) in this work. ORAT is
based on a bi-level optimization formulation of adversarial training with a robust rank-
based loss function. Theoretically, we show that the learning objective of ORAT satisfies
the H-consistency (Awasthi et al., 2021) in binary classification, which establishes it as a
proper surrogate to adversarial 0/1 loss. Furthermore, we analyze its generalization ability
and provide uniform convergence rates in high probability. ORAT can be optimized with a
simple algorithm. Experimental evaluations on three benchmark datasets demonstrate the
effectiveness and robustness of ORAT in handling outliers and adversarial attacks. Our code
is available at https://github.com/discovershu/ORAT.

Keywords: Robustness; Adversarial Training

1. Introduction

In supervised learning, we obtain a parametric model fθ(x) to predict the label (discrete or
continuous) y from an input x. The optimal value of the parameter θ is obtained with a set
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Figure 1: Illustrative examples of standard training (ST), adversarial training (AT), and ORAT for
binary classification on a balanced but multi-modal synthetic dataset (left panel) with two outliers and
an imbalanced synthetic dataset (right panel) with one outlier. outliers in the blue and red classes are
shown in × and ◦, respectively. The yellow squares around data samples represent the samples are
perturbed within a l∞ ball. The dash lines are the decision boundaries. In the right figures, using
ST and AT without data transfer techniques, there are no decision boundaries since both strategies
cannot achieve a classifier that separates the two classes.

of labeled training data {(xi, yi)}ni=1, by minimizing a loss function. However, supervised
learning algorithms are challenged by two types of data degradation. First, the quality of
training data is affected by erroneous samples due to mistakes in data collection or labeling
(often known as the outliers) or isolated sub-populations of actual samples (Sukhbaatar
et al., 2015; Pu et al., 2022; Guo et al., 2022). In addition, at inference time, an input data
point x could be intentionally modified to create an adversarial sample that misleads fθ(x)
to make a wrong prediction (Goodfellow et al., 2015; Hu et al., 2021).

To date, the resilience of supervised learning models with regard to unintentional non-
ideal training data or intentional adversarial attacks has been studied separately in machine
learning. The former is the topic of robust learning methods (Wang et al., 2018; Hu et al.,
2020; Zhai et al., 2021; Hu et al., 2022), and the latter is addressed with adversarial training
(AT) (Madry et al., 2018; Wang et al., 2020; Zhang et al., 2021). However, in practice, the
two issues can occur in tandem. This has been noticed in Sanyal et al. (2021) and Zhu et al.
(2021). They have demonstrated that the outlier problem (i.e., label noise) exists in AT and
found the model performance degrades with the increase in noise level because outliers hurt
the quality of training data. Only Zhu et al. (2021) provide a heuristic algorithm based on a
label correction strategy to correct the noise label. However, their approach may introduce
more extra noisy labels due to the imperfect classifier and cannot handle outliers with true
labels that do not belong to the existing label list.

To reduce the influence of the outliers in AT, one may think of adapting the self-learning
(Han et al., 2019) approach (i.e., a robust learning algorithm) to remove examples that
are most likely outliers (e.g., examples with larger loss) from data before training and
then conducting AT on the cleaner set. However, there are two drawbacks to this simple
scheme. First, it is not an end-to-end approach, which will increase the training cost.
Second, it is hard to remove outliers precisely, and an imperfect strategy may drop examples
of clean data points. This may hurt the final model performance in the AT phase. An
alternative solution is that combine robust learning and AT by using robust losses (e.g.,
Huber loss (Hastie et al., 2009), symmetric cross entropy loss (Wang et al., 2019), etc.)
in AT. However, most existing robust losses cannot eliminate the influence of outliers. In
addition, constructing the theoretical guarantee is a challenge for using a robust loss in AT,
especially for H-calibration and H-consistency properties (Awasthi et al., 2021; Steinwart,
2007) of the designed adversarial loss with respect to the adversarial 0/1 loss in classification.

In this work, we introduce Outlier Robust Adversarial Training (ORAT) to combine robust
learning and adversarial training. Specifically, we develop an effective adversarial training
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algorithm for a rank-based learning objective that can exclude the influence of outliers
from the training procedure. Figure 1 shows several illustrative examples. The learning
objective in ORAT lends itself to an efficient numerical algorithm based on gradient descent
methods after reformulation that removes the explicit ranking operation. To verify whether
the optimal minimizers of the ORAT loss are close to or exactly the optimal minimizers of the
adversarial 0/1 loss, we show that the ORAT loss satisfies the H-calibration and consistency
properties for classification under some moderate conditions, which establishes it as a proper
surrogate to adversarial 0/1 loss. The notion of consistency has been studied in Awasthi
et al. (2021). However, the ORAT loss is the first adversarial surrogate loss proven to satisfy
H-consistency and evaluated on real-world datasets. It encourages the applicability of the
H-consistent adversarial surrogate loss in real tasks. We further provide a quantitative
error bound of the generalization gap between the training and testing performance of ORAT.
Experimental evaluations on three benchmark datasets demonstrate the effectiveness and
robustness of ORAT in handling outliers and adversarial attacks. Our contributions can be
summarized as follows:

• We present outlier robust adversarial training (ORAT), which can handle outliers in
adversarial training jointly.

• We show ORAT loss satisfies H-calibration and H-consistency. To the best of our
knowledge, the ORAT loss is the first H-consistent adversarial surrogate loss that is
evaluated on real-world datasets.

• We provide a detailed theoretical analysis on the generalization error of training with
ORAT loss.

2. Background

Robust Learning. Training accurate machine learning models in the presence of outliers is
of great practical importance. To combat outliers, the traditional methods are designed based
on label correction (Wang et al., 2018), loss correction (Han et al., 2020), and refined training
strategies (Yu et al., 2019). However, they require an extra clean dataset or potentially
expensive detection process to estimate the outliers. Recent works Hu et al. (2020, 2023)
proposed the average of ranked range (AoRR) loss, which can eliminate the influence of
the outliers if their proportion in training data is known. Let X denote the input feature
space, x ∈ X is a training sample, y ∈ Y = {1, · · · , C} is its associated label, and C ≥ 2.
fθ(·) : X → RC is the logits output of the predictor, and ℓ : RC × Y → R is a loss function.
ℓ[i](fθ(xj), yj)

n
j=1 represents the i-th largest loss among the training sample set. For two

integers k and m, 0 ≤ m < k ≤ n, the AoRR loss is defined as follows,

min
θ

1

k −m

k∑
i=m+1

ℓ[i](fθ(xj), yj)
n
j=1. (1)

The AoRR loss excludes training samples with the top m-largest loss value, as well as
samples with small losses. This is to reduce the influence of the outliers (larger losses) and
to enhance the effect of the minority subgroup of the data because the samples with small
loss values are most likely from the majority subgroup in the training set.

Adversarial Training. Recent studies have shown some surprising vulnerabilities of
advanced supervised learning models, especially those based on deep neural networks, to
specially designed adversarial samples (Goodfellow et al., 2015; Carlini and Wagner, 2017).
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To mitigate this issue, adversarial training (AT) (Madry et al., 2018) is proposed as a training
approach against adversarial attacks. Let Bϵ(x) = {x′ ∈ X |∥x− x′∥p ≤ ϵ} be the closed ball
of radius ϵ > 0 centered at x, where p is usually chosen as 1, 2, or ∞. Given a training
dataset S = {(xi, yi)}ni=1 independently drawn from a distribution D, where xi ∈ X and
yi ∈ Y. The objective function of AT is then

min
θ

1

n

n∑
i=1

[
max

x̃i∈Bϵ(x)
ℓ(fθ(x̃i), yi)

]
, (2)

where x̃ is the most extreme adversarial sample within the ϵ-ball centered at x. To
generate adversarial data, The original AT applies projected gradient descent (PGD) using
a fixed number of iterations P as a stopping criterion, namely the PGDP algorithm, to
approximately solve the inner maximization problem of the Eq.(2). Other methods can also
generate adversarial data, e.g., the fast gradient signed method (FGSM) (Goodfellow et al.,
2015) and the CW attack (Carlini and Wagner, 2017).

Robust Learning under Adversarial Attacks. Currently, several works have realized
the impact of label noise on adversarial training. For example, in Sanyal et al. (2021), the
authors identified label noise as one of the causes for adversarial vulnerability but no defense
methods are proposed to solve this problem. The work Zhu et al. (2021) empirically studies
the efficacy of AT for mitigating the effect of label noise in training data. However, their
proposed annotator algorithm (RAA) is based on the label correction strategy, which may
introduce more extra noisy labels due to the bottleneck of the selected classifier. Furthermore,
both of these methods are only considered label noise problems instead of outliers, especially
the error that comes from the sample itself. Therefore, an outlier robust adversarial training
method is urgently needed to fill this gap. Several works (Augustin et al., 2020; Bitterwolf
et al., 2020) connect adversarial robustness to out-of-distribution (OOD) problems. Note
that the notion of outliers is different from OOD points. One assumption for the OOD
problem is that the training and test data distributions are mismatched. However, we do
not have this assumption in this work. More related works are discussed in Appendix A.

3. Method

In ORAT, we combine the rank-based AoRR loss (Eq.(1)) and adversarial training (Eq.(2))

into the same framework. Let L
(
{(xj , yj)}nj=1

)
:= {ℓ(fθ(x1), y1), · · · , ℓ(fθ(xn), yn)} be

the set of all individual losses on the training samples. For notational brevity, we drop
the explicit dependence on the individual loss ℓ, the parametric model fθ, but it should
be clear that the set changes with the training dataset {(xj , yj)}nj=1. In addition, we

denote ℓ[i]

(
{(xj , yj)}nj=1

)
as the i-th largest individual loss after sorting the elements in set

L
(
{(xj , yj)}nj=1

)
(ties can be broken in any consistent way). With these definitions, we

define the learning objective of ORAT as a bi-level optimization problem:

min
θ

1

k −m

k∑
i=m+1

ℓ(fθ(x̃[i]), y[i]), s.t. (x̃[i], y[i]) = argmaxx̃j∈Bϵ(xj)ℓ[i]({x̃j , yj}nj=1), (3)

where k and m are two integers such that 0 ≤ m < k ≤ n. The notations here require some
further explanation. First, x̃j is the result of adversarial perturbation of an original data
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point xj with a perturbation strength ϵ, and y[i] is the corresponding label of the original
xj . So the maximization sub-problem of Eq.(3) reads as follows. For each original training
sample (xj , yj), we find the extreme adversarial input x̃j within the ϵ-ball centered at xj .
Then we calculate the individual loss of the perturbed samples ℓ(fθ(x̃j), yj) and sort the
losses to find the adversarial sample and label (x̃[i], y[i]) corresponding to the top-i individual
loss. The outer minimization problem of Eq.(3) is the average of ranked range of (m, k]
individual losses found with such a procedure. Note that ORAT contains the original AT as a
special case with k = n and m = 0.

The robustness to outliers and adversarial attacks of the ORAT (Eq.(3)) can be more
clearly understood as follows. The overall method can be viewed as a sample selection
method and can filter incorrect data samples according to the top-k and top-m individual
losses. Specifically, the perturbed samples with small losses are most likely come from the
clean data. Therefore, it ignores m samples with a large loss (i.e., top-1 to top-m losses)
during the training. On the other hand, the perturbed samples with an extremely low loss
value are most likely very easy to be learned in the training procedure. They usually come
from the majority group in a dataset. On the contrary, the perturbed samples from the
minority subgroup can be also viewed as hard samples, which are very hard to be learned.
In this case, ignoring the bottom n− k would reduce the influence of the majority subgroup
of data, which further prevents the effect of the imbalance data and enhance the impact of
the minority subgroup of the data. Figure 1 also demonstrates this influence.

Although ORAT is designed by combining AoRR and AT, this combination has not been
explored in the existing literature. More importantly, we will demonstrate and validate both
theoretically (Section 4) and experimentally (Section 5) that this combination makes sense.
To the best of our knowledge, no robust losses are combined with AT that can handle both
low-quality training data (with outliers) and adversarial attacks in inference. In addition,
the ρ-margin loss (Awasthi et al., 2021), a generalization of the ramp loss, is proved to
satisfy the calibration and consistency. Inspired by this loss, we naturally thought that the
truncated robust loss could be used to design a new adversarial surrogate loss that satisfies
H-calibration and consistency. Therefore, we choose AoRR loss to create ORAT because it is
a well-defined truncated loss. The ranking operation in ORAT is the main obstacle to using
Eq.(3) as a learning objective in an efficient way. However, we can substitute the ranking
operation by introducing two auxiliary variables λ and λ̂ and use the equivalent form of
ORAT in the following result.

Theorem 1 Denote [a]+ = max{0, a} as the hinge function. Eq.(3) is equivalent to

1

k −m
min
θ,λ

max
λ̂

n∑
i=1

L̂(fθ, λ, λ̂) :=
[k −m

n
λ+

n−m

n
λ̂− [λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

]
,

s.t. x̃i = arg max
x̃∈Bϵ(xi)

ℓ(fθ(x̃), yi).

(4)

Furthermore, λ̂ > λ, when the optimal solution is achieved.

The proof of Theorem 1 can be found in Appendix C.1. Using Theorem 1, we can develop
a learning algorithm based on stochastic (mini-batch) gradient descent to optimize Eq.(3).
Specifically, with initial choice for the values of θ(0), λ(0), and λ̂(0), at the t-th iteration,



Hu Yang Wang Ying Lyu

Algorithm 1 Outlier Robust Adversarial Training

Input: A training dataset S of size n
Output: A robust model with parameters θ∗

1 Initialization: θ(0), λ(0), λ̂(0), t=0, η, k, m, ϵ, α, and P
2 for e = 1 to num epoch do
3 for b = 1 to num batch do

4 Sample a mini-batch Sb = {(xi, yi)}|Sb|
i=1 from S

5 for i = 1 to batch size do
6 x̃i ← xi

7 while P > 0 do
8 x̃i=ΠBϵ(xi)(x̃i+αsign(∇x̃iℓ(fθ(t)(x̃i), yi)))

9 P ← P − 1

10 end

11 end

12 θ(t+1)←θ(t)− η
|Sb|
∑

i∈Sb
∂θL̂(fθ(t) , λ(t), λ̂(t))

13 λ(t+1)←λ(t)− η
|Sb|
∑

i∈Sb
∂λL̂(fθ(t) , λ(t), λ̂(t))

14 λ̂(t+1)← λ̂(t)+ η
|Sb|
∑

i∈Sb
∂λ̂L̂(fθ(t) , λ

(t), λ̂(t))

15 t← t+ 1

16 end

17 end

a mini-batch set Sb of training samples is chosen uniformly at random from the training
set and used to estimate the (sub)gradient of the objective. Since the optimal solution of
parameters of θ, λ, and λ̂ do not depend on the factor of 1

k−m , we can replace it to 1
|Sb|

for mini-batch optimization, where |Sb| is the size of Sb. Following the original AT (Madry
et al., 2018), we use the projected gradient descent approach to approximately solve the
constraint. ΠBϵ(xi)(·) is the projection function that projects the adversarial data back into

the ϵ-ball centered at xi if necessary. ∂θL̂, ∂λL̂, and ∂λ̂L̂ are the (sub)gradients of L̂ with

respect to θ, λ, and λ̂, respectively. Their explicit forms can be found in Appendix B. The
pseudo-code of optimizing ORAT is described in Algorithm 1. Note that our optimization
process is similar to the traditional adversarial training algorithms (Madry et al., 2018;
Zhang et al., 2021; Liu et al., 2021) with one additional minimization with respect to λ and
one additional maximization for λ̂. Therefore, our algorithm has the same time complexity
to original AT. We will show that our algorithm can converge in experiments.

4. Analysis

In this section, we prove that ORAT is a H-consistent adversarial surrogate loss and study its
generalization property. Subsequently, we focus on the case of binary classification (Y={±1})
with margin-based loss function, i.e., ℓ(yf(x))=ℓ(f(x), y)=ℓ(f,x, y), where we omit model
parameter θ for simplicity. We first introduce several notations. Let H be a Hypothesis
function set from Rd to R. We say H is symmetric, if for any f ∈ H, −f is also in H.
The 0/1 risk of a classifier f ∈ H is Rℓ0=E(x,y)∼D[ℓ0(f(x), y)], where ℓ0(f(x), y)=1yf(x)≤0
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is the 0/1 loss. Denote the adversarial 0/1 risk as R
ℓ̃0
(f)=E(x,y)∼D[ℓ̃0(f(x), y)], where

ℓ̃0(f(x), y)=supx̃∈Bϵ(x) 1yf(x̃)≤0 is the adversarial 0/1 loss. We also define the ℓs-risk of f for
a surrogate loss ℓs(f(x), y) as Rℓs(f)= E(x,y)∼D[ℓs(f(x), y)] and the minimal (ℓs, H)-risk,
which is defined by R∗

ℓs,H=inff∈HRℓs(f).

4.1. Classification Calibration and Consistency

Designing a robust algorithm entails using an appropriate surrogate loss to the standard 0/1
loss since 0/1 loss is very hard to optimize for most hypothesis sets (Awasthi et al., 2021;
Bao et al., 2020). We first provide a definition of H-consistency.

Definition 2 (H-Consistency). (Awasthi et al., 2021) Given a hypothesis set H, we say that
a loss function ℓ1 is H-consistent w.r.t. a loss function ℓ2, if, for all probability distributions
and sequences of {fn}n∈N ⊂ H, there holds Rℓ1(fn)−R∗

ℓ1,H
n→+∞−−−−−→ 0⇒ Rℓ2(fn)−R∗

ℓ2,H
n→+∞−−−−−→

0.

H-consistency guarantees that the optimal minimizers of the surrogate adversarial loss are
equal to or near the optimal minimizers of the 0/1 adversarial loss on a restricted hypothesis
set H.

For a distribution D over X × Y with random variables X and Y . Let η := Pr(Y =
1|X = x) ∈ [0, 1], for any x ∈ X . Using conditional expectation, we can rewrite Rℓs(f)
as Rℓs(f) = EX [Cℓs(f,x, η)], where Cℓs(f,x, η) := ηℓs(f,x, 1) + (1− η)ℓs(f,x,−1),∀x ∈ X .
Furthermore, the minimal inner ℓs-risk on H is denoted by C∗ℓs,H(x, η) := inff∈H Cℓs(f,x, η).
We now define H-calibration.

Definition 3 (H-Calibration). (Steinwart, 2007; Awasthi et al., 2021) Given a hypothesis
set H, we say that a loss function ℓ1 is H-calibrated with respect to a loss function ℓ2
if, for any τ > 0, η ∈ [0, 1], and x ∈ X , there exists δ > 0 such that, for all f ∈ H,
Cℓ1(f,x, η)<C∗ℓ1,H(x, η) + δ ⇒ Cℓ2(f,x, η)<C∗ℓ2,H(x, η) + τ .

As shown in (Steinwart, 2007), if ℓ1 is H-calibrated with respect to ℓ2, then H-consistency
holds for any probability distribution verifying the additional conditions, which will be
further reflected in the following Theorem 4.

Without considering the adversarial perturbations and omitting the parameter θ, the
population version of the objective function of Eq.(4) can be formulated as follows:

min
λ

max
λ̂

1

k −m

n∑
i=1

L̂(f, λ, λ̂)
k−m
n

→ν,m
n
→µ

−−−−−−−−−→
n→∞

1

ν
min
λ

max
λ̂

E
[
λ̂−[λ̂−[ℓ(Y f(X))−λ]+]+

]
+νλ−µλ̂.

Throughout the paper, we assume that µ > 0 since if µ = 0 then it will lead to λ̂ =∞. As

such, the population version of our ORAT loss is given by (f∗
0 , λ

∗, λ̂∗) = arg inff,λ supλ̂

{
E
[
λ̂−

[λ̂− [ℓ(Y f(X))−λ]+]+

]
+ νλ−µλ̂

}
. It is difficult to directly work with the optima f∗

0 since

the above problem is a non-convex minmax problem and the standard minmax theorem does
not apply here. Instead, we assume the existence of λ∗ and λ̂∗ and work with the minimizer

f∗ = arg inff L(f, λ∗, λ̂∗) where L(f, λ∗, λ̂∗) := E
[
λ̂∗− [λ̂∗− [ℓ(Y f(X))−λ∗]+]+

]
+νλ∗−µλ̂∗.

Since the term νλ∗−µλ̂∗ does not depend on f , we have f∗ = arg inff E
[
λ̂∗−[λ̂∗−[ℓ(Y f(X))−
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λ∗]+]+

]
. From the above observations, we denote by ϕORAT and ϕ̃ORAT for ORAT loss without

and with the adversarial perturbation, respectively, as follows:

ϕORAT(t) = λ̂∗ − [λ̂∗ − [ℓ(t)− λ∗]+]+, ϕ̃ORAT(f,x, y) = sup
x̃∈Bϵ(x)

ϕORAT(yf(x̃)). (5)

We can then obtain the following theorem. Its proof can be found in Appendix C.2.

Theorem 4 Let H be a symmetric hypothesis set consisting of the family of all measurable
functions Hall, suppose ν > min{λ̂∗,R∗

ℓ,H}, 0 ≤ λ∗ < λ̂∗, λ∗ and λ̂∗ are bounded, and ℓ is a
non-negative, continuous, and non-increasing margin-based loss.

(i) Then ϕ̃ORAT is H-calibrated with respect to ℓ̃0.
(ii) Furthermore, ϕ̃ORAT is H-consistent with respect to ℓ̃0 for all distributions D over X×Y

that satisfy: R∗
ℓ̃0,H

= 0 and there exists f∗ ∈ H such that RϕORAT(f
∗) = R∗

ϕORAT,Hall
< +∞.

H can be linear models or deep neural networks. The commonly used hinge loss, logistic
loss, and cross-entropy loss all satisfy the conditions of ℓ (See Appendix C.3 for details).
Furthermore, according to Theorem 1 and assuming ℓ ≥ 0, we have 0 ≤ λ∗ < λ̂∗. For ν, it
should be larger than the smaller value among λ̂∗ and minimal (ℓ, H)-risk, which means
k and m should be as far away from each other as possible. We call R∗

ℓ̃0,H
= 0 as the

realizability condition. Therefore, we can conclude that ORAT loss satisfies H-consistency.
Our proof is mainly inspired by Awasthi et al. (2021). However, our analysis for the ϕ̃ORAT
adversarial surrogate loss is more involved since it is a composition function based on ℓ for
which we need to consider the different conditions of λ∗ and λ̂∗.

4.2. Generalization Error

In this subsection, we present the generalization error bound for the proposed ORAT loss. De-
fine the adversarial surrogate loss ℓ̃(yf(x)) = maxx̃∈Bϵ(x) ℓ(yf(x̃)) and the composite function

class ℓ̃H := {ℓ̃(yf(x)) : f ∈ H}. The generalization error studies the discrepancy between the
empirical adversarial risk R

ℓ̃
(f ;S) defined on the training data and its population risk R

ℓ̃
(f)

measuring the performance on the test data, where R
ℓ̃
(f ;S) = infλ supλ̂

1
k−m

∑n
i=1 L̂(f, λ, λ̂).

First, we need the Rademacher complexity (Bartlett and Mendelson, 2002) which is defined
as follows.

Definition 5 (Rademacher complexity) For any function class H, given a dataset

{xi}ni=1, the empirical Rademacher complexity is defined as Rn(H) = 1
nEσ

[
supf∈H

∑n
i=1 σif(xi)

]
,

where σ1, · · · , σn are i.i.d. Rademacher random variables with P[σi = 1] = P[σi = −1] = 1/2.

With these preparations, we can get the following theorem.

Theorem 6 Suppose that the range of ℓ(f(x), y) is [0,M ] . Then, for any δ ∈ (0, 1), with
probability at least 1− δ over the draw of an i.i.d. training dataset of size n, the following
holds for all f ∈ H,

R
ℓ̃
(f)−R

ℓ̃
(f ;S) ≤ 2

ν

(
2Rn(ℓ̃H) +

M(2
√
2 + 3

√
log(2/δ))√

2n

)
.
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The proof of Theorem 6 is by rewriting the empirical risk and population risk with
optimal λ∗ and λ̂∗, and then analytically bound the Rademacher complexity of λ∗ and λ̂∗ by
utilizing the boundness condition. See Appendix C.4 for details. Theorem 6 characterizes
uniform convergence between the training and testing on ORAT given hypothesis set H. The
generalization error depends on the limit of ranked range k−m

n → ν as well as the Rademacher
complexity of the adversarial loss function class. It is worth noting the i.i.d. assumption
over the sample is restrictive but required for applying the symmetrization trick in the proof,
and how to relax this assumption to a more realistic assumption, for example, n−m i.i.d.
inliers with m outliers (Laforgue et al., 2021), is future work for us. Nevertheless, Theorem
6 still highlights the generalization ability of our ORAT objective with respect to the ranked
range and adversarial loss in this ideal setting. We provide hypothesis set examples of linear
classifiers and neural networks in Appendix C.5 for further characterizing the Rademacher
complexity Rn(ℓ̃H).

Remark 7 Theorem 6 together with Theorem 4 indicates that learning with ORAT asymp-
totically converges to zero on the adversarial 0/1 risk. Let f∗∗ = arg inff∈HRℓ̃

(f) and
f∗∗
S = arg inff∈HRℓ̃

(f ;S). By standard error decomposition, R
ℓ̃
(f∗∗

S )−R
ℓ̃
(f∗∗) =

(
R

ℓ̃
(f∗∗

S )−
R

ℓ̃
(f∗∗

S ;S)
)
+
(
R

ℓ̃
(f∗∗

S ;S)−R
ℓ̃
(f∗∗;S)

)
+
(
R

ℓ̃
(f∗∗;S)−R

ℓ̃
(f∗∗)

)
. The first term converges

to 0 as n goes to ∞ and Rn(ℓ̃H) is bounded. The second term is always non-positive as
f∗∗
S minimizes R

ℓ̃
(f ;S). The last term is bounded by O(1/

√
n) with high probability by

Hoeffding’s inequality (Hoeffding, 1994). Therefore, R
ℓ̃
(f∗∗

S ) − R
ℓ̃
(f∗∗) → 0 as n → ∞.

Combined with Theorem 4 (ii) and Definition 2, it shows that R
ℓ̃0
(f∗∗

S )−R
ℓ̃0
(f∗∗)→ 0 as

n→∞.

5. Experiments

We evaluate the performance of the proposed ORAT with numerical experiments. Due
to the limit of the space, we present the most significant information and results of our
experiments. More detailed information, additional results, and code are in Appendix D, E,
and supplementary files, respectively.

5.1. Experimental Settings

Datasets, Networks, and Baselines. Our experiments are based on three popular
datasets, namely MNIST, CIFAR-10, and CIFAR-100. We follow the same training/testing
splitting from the original datasets. The pixel values of all images are normalized into the
range of [0,1]. We adopt LeNet (LeCun et al., 1998), Small-CNN (Wang et al., 2020), and
ResNet-18 (He et al., 2016) for MNIST, CIFAR-10, and CIFAR-100, respectively. Settings of
networks are in Appendix D.2. We compare ORAT with standard training (ST), adversarial
training (AT). In addition, as there are no dedicated adversarial training methods for
handling outliers, we compare three instance-reweighted AT methods GAIRAT (Zhang et al.,
2021), MAIL (Liu et al., 2021), and WMMR (Zeng et al., 2021a), because they are the most
recent works with the best performance against adversarial attacks. We also compare RAA
(Zhu et al., 2021) since it considers label correction in training. To support our claims about
the drawbacks of using a self-learning strategy to remove outliers before adversarial training
in Section 1, we use the AoRR approach to remove examples with larger losses (potential
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outliers) from the original training set and obtain a cleaner set for adversarial training. We
call this baseline AT w/o and compare it with our method. Appendix E.5 shows more details
of this baseline. All methods are designed based on the cross-entropy loss.

Defense Settings and Robustness Evaluation. In training, following Zeng et al.
(2021a); Liu et al. (2021), we consider robustness by setting p =∞. For each dataset, we test
two different perturbation bounds ϵ, i.e., ϵ ∈ {0.1, 0.2} for MNIST and ϵ ∈ {2/255, 8/255} for
CIFAR-10 and CIFAR-100. The training attack is PGD10 with random start and step size
ϵ/4. We evaluate the robustness of our method and baselines using the standard accuracy on
natural test data (Natural), FGSM, PGD20, and the CW attack because they are frequently
used in the literature of our compared methods. We also evaluate all methods on a very
strong attack, AutoAttack (AA) (Croce and Hein, 2020), under specific settings. All of them
are constrained by the same perturbation limit ϵ.

Hyperparameters (k and m) and Outliers Generation. Following Hu et al. (2020),
we apply a grid search to select the values of k and m. To simulate the outliers in the
training dataset, as in the work of Wang et al. (2019), we add the symmetric (uniform) and
asymmetric (class-dependent) noises to the labels of the training data. For symmetric noise
creation, we randomly choose training samples with a given probability γ and change each
of their labels to another random label. For asymmetric noise creation, given γ, flipping
labels only within a specific set of classes. More details of the simulation can be found in
Appendix D.4. Note that we use 4 different γ ∈ {10%, 20%, 30%, 40%}.

5.2. Results

Overall Performance. We report the overall results (accuracy on the testing sets) in Table
1. First, when there is no noise in the datasets, ORAT outperforms the AT method in three
different attack settings on all datasets by a significant margin (0, 2.14%]. This is probably
because the original datasets may contain outliers, as verified in Sanyal et al. (2021).

Second, under the symmetric noise setting, ORAT outperforms all compared methods in
all attack scenarios in general. We observe the performance gap between noise and noise-free
settings is small on MNIST because it is a relatively smaller dataset and LeNet achieves
almost perfect performance. However, on a larger dataset such as CIFAR-10 and using a
more complex neural network, the outliers have a stronger impact. The instance-reweighted
AT methods such as GAIRAT, MAIL, and MAIL are inferior to AT and ORAT in 20%, 30%,
40% settings under ϵ = 2/255, because they allocate the loss of the most outliers with higher
weight during the training. For CIFAR-100, which is larger and more challenging than
CIFAR-10 and the training network ResNet is also larger than Small-CNN. In this case, we
find that outliers have a large influence on robust training. Compared to noise-free settings,
the performance of AT is reduced by half under the noise settings. However, ORAT still
outperforms all baselines in all settings. The performance gap between the baselines and
ORAT is more than 2% and even can be achieved near 10% (in 30% symmetric noise, MAIL,
FGSM, and ϵ=2/255 settings). Furthermore, we find RAA is more robust than other
compared methods but vulnerable to adversarial samples than ORAT. As we discussed before,
their label correction approach may correct the wrong labels but inevitably introduces more
extra noisy labels during training.
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Noise Defense
MNIST (LeNet) CIFAR-10 (Small-CNN) CIFAR-100 (ResNet-18)

ϵ=0.1 ϵ=0.2 ϵ=2/255 ϵ=8/255 ϵ=2/255 ϵ=8/255
Na FG PGD CW Na FG PGD CW Na FG PGD CW Na FG PGD CW Na FG PGD CW Na FG PGD CW

0
ST 99.51 92.43 85.68 86.05 99.41 50.19 16.76 18.65 92.48 44.27 24.87 25.06 92.63 15.03 6.82 7.15 73.67 19.64 10.66 11.13 73.86 3.58 1.61 1.66
AT 99.51 98.60 97.93 97.94 99.16 97.33 95.14 95.19 89.78 79.40 73.52 73.64 85.52 54.61 33.34 34.28 67.05 53.70 48.18 47.46 55.13 33.66 25.46 23.28

Ours 99.5398.7098.03 98.04 99.30 97.7996.43 96.38 89.54 79.5373.9673.86 85.91 54.8533.4634.56 68.00 55.6050.0649.50 57.82 35.5127.2225.26

S
y
m
m
et
ri
c

N
o
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e

10
%

ST 99.32 93.72 89.09 87.17 99.32 67.55 36.76 26.02 62.22 29.24 25.72 24.80 61.80 14.70 9.72 11.38 29.60 14.17 11.41 9.96 29.41 5.22 2.54 2.19
AT 99.12 97.98 97.36 97.28 98.39 96.62 95.25 95.11 63.03 51.36 46.02 44.95 59.53 34.17 23.33 22.28 31.02 22.04 20.25 18.97 28.96 15.08 12.42 10.49

GAIRAT 99.11 97.87 97.33 97.20 98.35 96.57 95.22 95.08 60.41 49.23 44.72 42.02 57.12 35.48 24.22 21.52 31.05 21.31 19.76 18.08 27.73 15.13 12.28 10.26
MAIL 99.09 98.06 97.50 97.40 98.48 96.69 95.47 95.20 55.14 47.44 44.75 39.64 53.54 33.61 26.18 20.23 29.06 18.90 16.62 14.79 27.65 13.21 10.03 7.26
WMMR 99.14 97.95 97.32 97.23 98.36 96.58 95.25 95.11 61.83 51.43 46.56 44.97 57.97 34.74 25.15 21.96 29.74 20.11 18.65 16.86 29.23 14.78 11.84 9.96
RAA 99.22 98.01 97.37 97.31 98.65 96.83 95.32 95.14 62.94 51.32 46.55 45.36 58.28 33.58 23.71 22.89 30.72 21.95 20.34 18.83 28.99 15.60 13.03 11.03
Ours 99.5298.4597.78 97.79 99.20 97.6196.07 96.11 63.8352.0448.7746.65 60.42 36.1326.8623.48 35.7625.7222.2721.28 35.3520.3715.5014.02

20
%

ST 99.12 93.35 89.05 86.87 99.14 70.18 41.67 29.30 58.89 31.23 25.97 24.13 57.28 15.88 12.8 13.26 26.16 14.74 11.98 10.29 26.22 5.09 2.45 1.92
AT 98.88 97.67 97.03 96.89 97.97 95.98 94.67 94.50 61.10 50.67 46.76 45.28 56.96 34.55 25.54 24.34 27.52 20.12 18.49 17.15 26.77 14.39 11.87 9.96

GAIRAT 98.82 97.59 96.96 96.79 97.86 95.81 94.57 94.30 58.58 49.26 45.44 40.62 53.55 34.40 25.52 22.15 26.77 19.93 18.30 16.78 24.80 14.28 12.03 10.32
MAIL 98.81 97.82 97.29 97.12 97.98 96.14 94.81 94.58 54.04 47.05 44.78 41.05 52.93 34.28 27.74 21.90 25.13 17.01 16.06 14.32 24.54 12.85 10.02 7.09
WMMR 98.88 97.59 97.00 96.89 97.85 95.89 94.50 94.36 59.01 49.64 45.96 43.71 56.04 34.65 26.22 23.70 26.72 19.43 18.04 16.53 26.61 13.81 11.94 9.82
RAA 99.07 97.70 97.07 97.05 98.25 96.28 94.41 94.20 59.53 49.56 45.73 45.60 56.71 33.24 24.51 24.12 28.16 20.73 19.15 17.74 25.34 14.79 12.46 10.25
Ours 99.5698.3797.65 97.64 99.06 97.3395.71 95.68 61.03 51.8548.4846.16 54.37 35.7127.7624.70 34.4525.0722.2120.92 32.8319.4515.4913.34

3
0%

ST 98.91 93.01 88.62 85.73 98.97 68.59 41.24 27.73 58.17 30.55 25.71 24.54 57.55 14.18 11.50 11.41 23.38 14.26 11.84 10.10 24.29 5.30 2.90 2.35
AT 98.58 97.21 96.67 96.53 97.26 94.94 93.48 93.17 57.78 49.56 46.22 44.80 54.35 34.21 26.07 24.33 23.79 18.96 17.49 16.26 25.66 13.84 11.78 9.87

GAIRAT 98.51 97.14 96.58 96.47 97.15 94.70 93.28 92.87 55.41 47.20 44.04 40.09 49.48 33.44 26.26 21.78 24.04 18.93 17.89 16.50 24.41 14.11 11.84 9.73
MAIL 98.50 97.39 96.88 96.71 97.31 95.35 94.11 93.66 52.94 45.13 42.47 39.01 47.31 32.18 25.78 21.99 21.93 14.55 13.67 12.14 22.61 12.47 9.62 7.09
WMMR 98.58 97.23 96.69 96.59 97.23 95.10 93.59 93.31 58.21 49.31 46.40 44.17 53.99 34.16 26.83 23.70 23.68 18.27 17.08 15.46 25.45 13.60 11.46 9.32
RAA 98.84 97.35 96.63 96.59 97.66 95.45 93.74 93.40 58.72 48.78 45.20 44.85 50.81 30.50 24.49 22.60 24.53 20.06 18.54 17.03 22.08 13.95 11.62 9.67
Ours 99.5598.3097.51 97.53 98.85 96.9995.31 95.35 58.9950.2947.1145.01 55.34 34.8927.6625.00 31.2723.8121.3519.59 31.1318.9615.4713.21

40
%

ST 98.87 92.37 88.36 84.85 98.91 68.43 41.60 29.62 57.60 21.03 19.46 18.03 56.67 15.22 12.02 11.53 21.25 13.95 12.15 10.21 21.55 6.03 3.77 2.96
AT 98.33 96.86 96.27 96.11 96.56 94.37 92.55 92.18 47.16 43.45 41.54 40.13 40.65 31.59 26.74 24.98 22.20 18.28 17.33 15.92 23.41 13.75 11.25 9.29

GAIRAT 98.10 96.70 96.15 95.88 96.17 93.93 92.08 91.59 47.24 40.24 38.08 36.51 40.05 30.33 25.93 23.45 21.87 18.06 17.17 15.67 21.99 12.97 11.26 9.42
MAIL 98.33 97.06 96.44 96.20 96.50 94.45 93.01 92.54 43.63 39.43 37.97 35.60 36.28 29.91 26.32 23.31 18.83 14.22 13.49 12.08 20.47 12.50 10.33 7.35
WMMR 98.15 96.79 96.10 95.91 96.50 94.24 92.46 92.04 45.99 41.95 39.64 37.87 30.30 27.14 24.47 22.27 21.04 17.33 16.22 14.76 23.39 12.79 11.13 9.10
RAA 98.67 96.90 96.07 96.00 97.05 94.47 92.37 92.22 53.37 37.13 35.16 33.82 40.01 28.94 25.16 23.73 22.44 18.59 17.54 16.01 20.74 13.30 11.56 9.56
Ours 99.3698.0097.22 97.20 98.63 96.4994.48 94.53 53.20 43.7541.9240.60 41.86 31.7027.1825.19 29.3822.9920.8519.20 26.8017.3014.3211.95

A
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%

ST 99.39 93.05 86.09 89.09 99.39 65.48 22.17 35.02 90.30 40.73 8.24 7.25 89.88 18.85 0.27 0.00 31.81 15.10 11.23 10.03 31.71 4.34 1.84 1.71
AT 99.46 98.14 97.36 97.61 99.08 97.29 95.21 95.64 88.49 78.30 72.22 71.43 75.38 52.31 30.99 30.43 33.21 22.38 20.53 19.09 30.83 15.80 12.49 10.55

GAIRAT 99.44 98.13 97.34 97.50 99.03 97.20 95.14 95.45 85.13 75.19 68.89 64.18 71.29 52.77 31.62 19.26 33.03 22.73 20.63 19.38 29.88 15.58 12.49 10.57
MAIL 99.50 98.20 97.38 97.73 99.08 97.52 95.79 96.35 77.93 69.74 65.63 54.36 67.39 49.66 31.62 18.65 31.45 21.36 17.92 16.43 29.66 13.99 10.18 7.64
WMMR 99.45 98.11 97.38 97.59 99.08 97.28 95.30 95.67 86.68 76.44 70.23 68.39 72.85 53.77 32.57 28.74 32.52 22.08 19.63 17.81 30.89 14.86 11.91 10.01
RAA 99.42 98.11 97.34 97.51 99.08 97.24 95.17 95.45 88.75 78.20 72.33 69.98 72.85 53.98 32.02 31.69 33.01 23.07 21.07 19.69 30.35 16.09 12.79 10.70
Ours 99.5098.5897.81 98.04 99.18 97.6896.11 96.36 88.77 78.7572.7271.97 75.42 54.6232.7032.17 37.0927.0723.6522.59 35.7220.5115.4613.83

20
%

ST 99.19 92.64 86.00 88.63 99.23 64.76 20.49 32.18 87.69 37.40 8.08 7.52 87.16 15.95 0.06 0.00 30.46 14.79 11.57 10.38 30.49 4.92 2.14 2.03
AT 99.44 98.12 97.29 97.59 99.07 97.11 95.20 95.84 87.51 77.08 71.56 71.38 73.38 52.04 30.84 30.80 31.67 21.15 19.44 18.19 29.96 15.47 12.46 10.51

GAIRAT 99.41 98.10 97.20 97.54 99.01 96.99 95.16 95.66 74.61 64.33 62.22 59.39 70.03 52.72 31.36 17.68 31.64 21.64 19.80 18.42 29.15 15.45 12.58 10.70
MAIL 99.46 98.19 97.38 97.78 99.17 97.38 95.67 96.26 74.72 66.63 62.76 50.04 66.52 51.00 30.50 29.09 30.94 20.38 16.98 15.60 28.48 13.32 9.89 7.18
WMMR 99.44 98.11 97.19 97.60 99.06 97.07 95.22 95.83 70.41 60.90 56.48 51.44 54.06 41.00 25.25 24.82 31.90 20.82 18.96 17.31 30.61 14.28 11.75 9.81
RAA 99.40 98.14 97.32 97.60 99.13 97.05 95.05 95.44 87.58 77.84 72.10 70.30 71.61 53.56 31.99 31.27 31.91 21.75 20.08 18.75 30.13 15.90 12.83 10.72
Ours 99.5198.6097.87 98.16 99.12 97.5696.11 96.55 88.00 77.9472.2673.03 73.90 54.4332.6432.71 36.0525.7622.8321.47 34.1119.5515.1213.70

30
%

ST 99.07 91.12 83.58 85.97 99.12 59.61 20.58 29.17 84.75 33.23 8.60 8.05 85.14 14.29 0.20 0.03 28.19 14.94 11.91 10.76 28.80 3.97 1.68 1.41
AT 99.41 98.07 97.14 97.55 98.95 96.90 95.12 95.80 86.53 76.10 70.56 71.59 71.53 51.01 30.78 30.86 30.19 20.77 18.72 17.58 28.42 14.57 11.93 10.15

GAIRAT 99.37 98.06 97.27 97.65 99.02 97.01 94.90 95.65 73.92 63.94 61.20 58.65 63.39 49.31 31.06 15.88 29.99 20.64 18.69 17.27 27.33 15.00 11.64 9.94
MAIL 99.44 98.12 97.41 97.56 99.13 97.33 95.48 96.11 68.58 60.40 56.75 44.55 63.48 46.45 29.04 17.50 29.28 19.12 16.09 14.71 27.23 12.99 9.43 6.89
WMMR 99.40 98.07 97.15 97.63 99.05 97.03 94.98 95.75 69.49 60.25 56.11 50.76 53.57 40.10 23.97 21.27 30.20 19.46 17.70 16.17 29.02 13.98 11.27 9.20
RAA 99.40 98.07 97.20 97.53 99.04 97.00 95.11 95.62 80.75 72.27 66.87 66.11 64.93 48.97 28.68 29.17 30.58 21.08 19.19 17.98 29.08 15.18 12.28 10.38
Ours 99.4798.5197.82 98.12 99.2497.4595.98 96.63 86.76 76.2971.1571.60 71.52 52.9032.3432.58 34.5824.1821.0520.11 33.8019.3514.8413.70

40
%

ST 97.43 81.71 73.74 75.11 97.58 50.69 16.99 22.82 79.83 28.98 6.84 6.34 78.37 12.44 0.02 0.00 26.99 12.97 10.29 9.56 27.11 4.32 1.91 1.67
AT 99.33 97.81 96.90 97.22 98.89 96.82 94.63 95.46 85.14 74.66 69.57 69.44 66.68 50.25 30.76 30.40 28.18 20.20 18.52 17.13 27.09 13.90 11.32 9.85

GAIRAT 99.26 97.70 96.78 97.03 98.85 96.65 94.36 95.24 70.19 60.32 55.63 49.99 62.43 48.98 30.85 15.61 28.42 19.67 17.88 16.75 25.70 14.49 11.55 9.85
MAIL 99.24 97.74 96.87 96.84 98.79 96.94 94.93 95.26 64.62 57.14 53.99 42.62 53.75 41.72 26.41 15.29 27.68 17.73 15.77 13.91 25.82 11.76 9.00 6.92
WMMR 99.35 97.84 96.89 97.22 98.91 96.70 94.58 95.30 67.12 57.91 54.26 49.42 47.34 36.84 21.89 20.17 28.65 19.15 17.54 15.94 27.70 13.69 11.33 9.67
RAA 99.40 98.02 97.14 97.23 98.96 96.91 95.02 95.29 72.65 65.66 61.10 59.58 53.59 43.28 26.02 25.86 28.25 19.97 18.58 17.36 27.68 14.42 11.70 10.21
Ours 99.4198.3897.6897.97 99.0997.2595.62 96.19 85.10 75.3569.8969.72 66.75 50.7031.5232.47 33.6523.2520.7619.46 31.6918.4714.1612.81

Table 1: Testing accuracy (%) of seven methods on MNIST, CIFAR-10, and CIFAR-100 with
different levels of symmetric and asymmetric noisy. The best results are shown in bold. We color
the performance of all adversarial training methods on three different attacks. The performance gap
between current method and ORAT are shown in green: ≤2%; yellow: (2%,5%]; orange: (5%,10%];
blue: >10%. According to results, ORAT outperforms all adversarial training methods on all attack
settings. ‘Na’ represents Natural. ‘FG’ represents FGSM.

Third, for asymmetric noise settings, we can get similar observations. Note that ORAT can
even outperform the baselines over 10% on the CIFAR-10 dataset. All adversarial methods
outperform ST in all attack settings since ST does not have a mechanism to handle adversarial
samples. In general, increasing the noise percentage, we can find there is a decreasing trend
in the performance among all methods. On the other hand, increasing the value of ϵ will
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Defense
Data MNIST CIFAR-10 CIFAR-100

ϵ=0.1 ϵ=0.2 ϵ=2/255 ϵ=8/255 ϵ=2/255 ϵ=8/255
ST 84.13 23.78 23.54 10.41 10.22 1.72
AT 96.73 93.23 44.56 23.06 17.11 9.89

GAIRAT 96.78 93.57 40.82 20.57 16.54 9.97
MAIL 97.01 93.80 40.39 18.95 13.67 7.29

WMMR 96.88 93.60 43.52 20.68 15.69 8.73
RAA 96.98 93.62 45.07 22.29 17.70 9.78
Ours 97.67 95.05 45.59 23.35 19.74 12.22

Table 2: Testing accuracy (%) on AutoAttack.
Noise Defense

MNIST (ϵ = 0.1) CIFAR-100 (ϵ = 2/255)
Na FG PGD CW Na FG PGD CW

10%
AT w/o 98.91 98.08 97.61 97.55 29.81 21.09 19.59 18.23
Ours 99.52 98.45 97.78 97.79 35.76 25.72 22.27 21.28

30%
AT w/o 97.82 96.97 96.47 96.35 24.18 19.17 17.31 16.71
Ours 99.55 98.30 97.51 97.53 31.27 23.81 21.35 19.59

Table 3: Testing accuracy (%) of AT w/o and
ORAT on symmetric noisy data.

Noise Defense
MNIST (ϵ = 0.1) CIFAR-100 (ϵ = 2/255)

Na FG PGD CW Na FG PGD CW

4
0
%

S
y
m
m
et
ri
c
N
o
is
e

ST
98.38
(0.18)

77.47
(5.79)

59.31
(11.13)

51.47
(12.79)

21.53
(0.71)

13.95
(0.16)

12.12
(0.28)

10.12
(0.28)

AT
96.60
(0.87)

95.11
(1.17)

94.36
(1.31)

94.16
(1.37)

21.82
(0.30)

18.14
(0.27)

17.02
(0.29)

15.62
(0.32)

GAIRAT
98.04
(0.11)

96.60
(0.08)

95.98
(0.13)

95.79
(0.12)

21.58
(0.30)

17.94
(0.36)

16.88
(0.36)

15.50
(0.33)

MAIL
98.06
(0.17)

96.88
(0.16)

96.31
(0.12)

96.11
(0.10)

17.52
(0.74)

14.31
(0.43)

13.46
(0.40)

12.09
(0.37)

WMMR
98.07
(0.14)

96.69
(0.10)

96.04
(0.08)

95.85
(0.08)

20.64
(0.29)

17.14
(0.33)

16.10
(0.30)

14.76
(0.27)

RAA
98.58
(0.11)

96.82
(0.08)

95.99
(0.10)

95.91
(0.09)

22.21
(0.32)

18.27
(0.32)

17.22
(0.30)

15.85
(0.33)

Ours
99.34
(0.03)

98.02
(0.07)

97.19
(0.08)

97.18
(0.07)

30.12
(0.47)

23.62
(0.42)

21.48
(0.49)

20.02
(0.41)

Table 4: Mean and standard deviation (in paren-
theses) of testing accuracy (%) across 10 random
runs.

Figure 2: The tendency curves of training adver-
sarial loss and test accuracy on three datasets.

Figure 3: Effect of k and m on the test accuracy
of ORAT on three datasets.

also decrease all model performance. Even a small amount of label noise causes classifiers to
have significant adversarial errors.

We also report testing accuracy for AA on all datasets with 20% symmetric noise in
Table 2. We can find our method outperforms all compared methods even if using a strong
attack strategy. In addition, we compare AT w/o with our method and report performance
in Table 3. Comparing Table 1 and Table 3 under the same setting, it is evident that simply
removing outliers from training data cannot significantly improve AT performance, and
our method still achieves the best performance. The stability evaluation results of each
method with 10 random runs are shown in Table 4, where we use 40% symmetric noisy
data as an example. Comparing Table 1 and Table 4 under the same setting, it is clear that
the performance gap becomes larger when we report scores by using mean and standard
deviation, and our method shows a stable and stronger ability in handling outliers and
adversarial attacks.
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Convergence and Robustness Tendency. We show the tendency curves of the
training loss on all datasets with different noise when using Algorithm 1 in the left panel of
Figure 2. The sharp drops in the curves correspond to decreases in training learning rate.
We can observe a steady decrease in the training loss on all datasets with the increase of
training epochs when training against adversarial samples, which supports that Algorithm 1
can effectively optimize and solve Eq. (4) even if it is a non-smooth loss. We also compare
the robust accuracy of AT and ORAT by using four attack strategies on all datasets with 20%
symmetric noise in Figure 2 right panel. It is clear that our method outperforms the original
AT method in all settings. In general, these plots illustrate that we can consistently reduce
the value of the objective function of ORAT, thus producing an increasingly robust classifier.

Effect of k and m. We study how the choices of k and m affect the performance of
ORAT with two types of experiments on all datasets under 20% symmetric noise setting,
together with those from other defense methods. In the first set of experiments, we fix k to
the total number of training samples and run the algorithm with different values of m. The
results are plotted in Figure 3 (left panel). We can see that there is a clear range of m with
better performance than all compared methods. In the second set of experiments, we fix
m with the best performance from the first set of experiments and run ORAT with different
values of k. The results are shown in Figure 3 (right panel). Note that there is also a range
of k with better performance, in particular, the optimal value of k is less than the number
of total training samples. Similar trends are observed on all datasets.

6. Conclusion

In this work, we introduce the outlier robust adversarial training (ORAT), which considers
both outliers in training data and adversarial attacks in the model training. We provide an
optimizing algorithm and analyze the theoretical aspects of ORAT. Empirical results showed
the effectiveness and robustness of ORAT on three benchmark datasets. In the future, we will
study the optimization error or convergence rate of our proposed learning algorithm. We
will also evaluate our method on large datasets and large deep neural networks. Although
achieving fairness (Ju et al., 2023; Hu and Chen, 2022) is not a goal of this work, we have
found that our method can benefit the minority subgroup of data (see Figure 1 right panel).
Studying fairness with ORAT is an interesting direction in the future. Furthermore, we plan
to design an efficient method to automatically determine the hyperparameters k and m.
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