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Abstract

Traffic forecasting plays an extremely important role in many applications such as intelli-
gent transportation and smart cities. However, due to the hidden and complex dynamic
spatio-temporal correlations and heterogeneity, achieving high-precision traffic prediction
is a challenging task. This paper proposes a new spatio-temporal aware learning graph
neural network (STALGNN) for traffic prediction. First, a temporal-aware graph genera-
tion module is designed to exploit the spatial-temporal features that the spatial graph may
not be able to present. Then, a spatio-temporal joint module is designed to more effec-
tively capture local spatio-temporal correlations. Next, a multi-scale gated convolutions
module is proposed to capture gloable dynamic spatio-temporal correlations. Furthermore,
STALGNN further learns explicit spatio-temporal correlations through integrated atten-
tion mechanisms and stacked graph convolutional networks to handle long-term prediction.
Extensive experiments on several real traffic datasets show that the proposed method can
achieve the superior performance compared with other baselines.

Keywords: Traffic forecasting, Spatio-temporal correlation, Graph convolution network,
Attention mechanism

1. Introduction

Traffic forecasting plays an important part in intelligent transportation management and
planning, i.e. route planning, intelligent traffic light control, etc. With the well devel-
opment of data acquisition technology, the amount of traffic data is increasing rapidly.
Meanwhile, The rise in traffic flow within the road network results in a heavier burden
for traffic management. Therefore, accurately predicting traffic flow based on the collected
historical observations is of great significance.

In recent years, deep learning methods have become popular for high-dimensional spatio-
temporal traffic flow prediction. Classic models are to use convolutional neural networks
(CNN) and recurrent neural networks (RNN) to handle spatio-temporal correlations in
traffic networks. Although convolutional neural network methods are suitable for capturing
local spatial correlations in regular spatial grids, they have some deficiencies in predicting
traffic conditions in non-grid road networks with long-range spatial correlations.

STGCN (Yu et al., 2017) uses a road network to describe the spatial correlations be-
tween sensors and uses graph convolution methods to extract spatio-temporal features.
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STSGCN Song et al. (2020) establishes the temporal correlations between sensors in con-
tinuous traffic flow and then performs flow prediction using graph embedding techniques.
Although existing methods have achieved better prediction performance, there exists prob-
lems that may not be well addressed.

For short and long-term prediction, traffic patterns exhibits dynamic and complex cor-
relations. On one hand, we observe similar patterns of congestion on specific roads during
peak hours in the morning and evening, as well as consistent congestion patterns during
different times on workdays versus holidays. On the other hand, the traffic flow is fluctu-
ating due to various uncertain factors like waiting times at traffic lights, driver behaviors,
and vehicles speed. Moreover, existing methods such as RNN/LSTM-based models Zhang
et al. (2018), take a long time to process the data and may encounter gradient explosion
or disappearance when processing long-term prediction. CNN-based methods need to stack
convolutional layers to capture long-term correlations in long sequences. In the STGCN Yu
et al. (2017) and GraphWaveNet Wu et al. (2019) models, if long-term dependencies are
extracted, the expansion rate of convolution needs to be increased, which is at the price of
some short-term information losing. Existing methods can not obtain satisfactory solutions
for both short and long-term time prediction.

To address the above problems, we propose a new spatio-temporal aware learning graph
attention neural network named STALGNN for traffic forecasting. The model can simulta-
neously extract local and global correlations in the traffic road network. Instead of simply
using traffic data to train the model, we supplementary traffic trends to jointly train the
model. Traffic flow and trends reflect different features of traffic data. The trend is the time
transform of traffic flow related to the previous time step. The traffic flow distribution is
irregular, but the trend distribution is more concentrated. In short, although there may be
some differences in some events, things generally follow some rules. Therefore, this paper
believes that trends can play an important role in traffic flow. The main contributions of
this paper can be summarized as follows:

• We design a spatio-temporal attention convolution module to better model the com-
plex spatio-temporal correlations of traffic flow data. In particular, a graph convo-
lution is used to process the input data to better extract spatial correlations. An
improved attention mechanism adaptively adjusts the weights of the graph convolu-
tions.

• We construct the graph structure using random walk method that retains implicit
spatio-temporal correlations of the traffic network.

• Instead of simply utilizing traffic flow data to train the model, we add traffic trends to
jointly train the model. Trends are considered to play a certain importance in traffic
flow prediction and are regarded as auxiliary information.

• We design an improved gated convolution module. Through multi-scale gated convo-
lutions, the model’s capture of long-term time dependencies in the traffic road network
is further enhanced.

• Extensive experiments on real-world traffic datasets show that the model we propose
efficiently improves performance compared to other baselines.
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2. Related work

2.1. Graph neural network

Graph neural networks are a class of methods that use graph theory frameworks for neu-
ral network modeling. It represents the relationships or dependencies between data in the
form of graphs, and learns graph data using operations such as convolution, pooling, and
attention mechanisms. Graph neural networks provide a unified framework for process-
ing graph-structured data and modeling processes evolving on graphs. It draws on the
ideas of traditional CNNs, defines convolutions, pooling, and attention mechanisms on non-
Euclidean graph data, can learn the topological structure and node features of the graph,
obtain network embeddings, and achieve downstream tasks such as node classification, link
prediction, and graph classification. In addition, graph neural networks also have the ad-
vantage of end-to-end learning, which automates the modeling process.

Spatio-temporal graph neural networks (STGNN) aim to learn hidden spatio-temporal
patterns from spatio-temporal graph data, which is becoming increasingly important for ap-
plications such as traffic speed prediction, driver behavior expectation, and human behavior
recognition. The key idea of STGNN is to consider both spatial dependencies and tempo-
ral dependencies at the same time. Currently, many spatio-temporal modeling methods
use graph convolutional networks to capture spatial dependencies and use recurrent neu-
ral networks or convolutional neural networks to learn temporal dependencies. However,
these methods usually model spatial dependencies and temporal dependencies separately
and then simply fuse them, which cannot well express the complex nonlinear interactions
between the two. STGNN proposes to directly define graph convolution operations on the
spatio-temporal graph, learning node features, spatial dependencies, and temporal depen-
dencies at the same time to better model the complexity of spatio-temporal relationships.
Its spatio-temporal graph convolution aggregates information from neighboring nodes at
multiple time steps to learn the local spatio-temporal patterns of spatio-temporal graph
data, and predicts the entire spatio-temporal graph based on this. STGNN uses a uni-
fied mechanism to learn spatial dependencies and temporal dependencies at the same time,
which can better establish a complex mapping between them and achieve end-to-end spatio-
temporal modeling and prediction. This has stronger expressive power and advantages than
first learning spatial structure and time series separately, then simply fusing them.

2.2. Traffic data prediction

Traffic prediction is a fundamental and critical technology in intelligent transportation sys-
tems Zhang et al. (2011). It has received extensive attention and research in recent decades.
Early research mainly used linear time series analysis methods, such as the general time
series analysis method VAR Lu et al. (2016) model. As an extension of the autoregressive
model, the VAR model can consider the linear correlation between multiple time series.
However, these linear models perform poorly in modeling and predicting traffic data be-
cause traffic data changes are complex, and correlations are often nonlinear. To weaken
the limitations of the linear assumptions, machine learning-based methods such as support
vector regression Wu et al. (2004) and k-nearest neighbor methods Van Lint and Van Hins-
bergen (2012) were later proposed. When provided with manually extracted high-level
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features, these methods can learn more complex dependencies and provide better predic-
tion results than linear models. However, manual feature extraction is a labor-intensive and
time-consuming process.

STGCN and GraphWaveNet are works that apply graph convolutional networks to
spatio-temporal data modeling. They respectively use graph convolution processing net-
work structure information in the spatial dimension and one-dimensional convolution net-
work learning time series in the time dimension, and then simply add the outputs of the
two to obtain the state of each node at the current time step. Such methods can learn
the spatial dependence and temporal dependence of spatio-temporal data respectively, but
do not consider the complex mapping between them. Therefore, their ability to model the
overall spatio-temporal relationship of spatio-temporal data is relatively limited.

3. Problem Definition

In this section, we provide necessary definitions in the paper, and formalize the problem of
traffic prediction.

Definition 1.(Transportation road network.) The transportation road network is rep-
resented as an undirected graph P = (V,Er), where V and Er represent the sets of sensors
and connected road sections between sensors, respectively. The transportation road network
P represents the spatial relationship between sensors.

Definition 2.(Graph signal matrix.) Given the transportation road network P =
(V,Er) and a continuous sequence of time intervals, the observed graph signal on P is

denoted as xP ∈ R|V |, where the i-th element of x
(t)
P represents the traffic flow observed by

the i-th sensor at the t-th time step.
Definition 3.(Traffic prediction problem.) At time step t, given the transportation

road network P and graph signal {x(t−T+1)
P , · · · ,x(t)

P } for the past T time steps, the traffic
prediction problem can be described as finding a mapping function f to predict the traffic
flow of the future time steps T ′.(

X
(t−T+1)
P , . . . , X

(t)
P

)
f−→

(
X

(t+1)
P , . . . , X

(t+T ′)
P

)
. (1)

4. Methodologies

In this section, we focus on introducing the technical details of the proposed framework.
Figure. 1 shows the overall architecture. In the model, we design a spatial and temporal
module to jointly model the temporal characteristics of traffic data at different time steps
and the spatial dependencies between multiple spatial regions. To this end, we combine
a pair of temporal convolutional networks and graph convolutional networks as the basic
framework. To model the temporal feature of traffic data, we use two one-dimensional
causal convolutions with two gate units. To model the spatial dependencies between mul-
tiple spatial regions, we integrate attention mechanisms and stacked graph convolutional
networks.
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Figure 1: The overall structure of STAMGNN, consisting of four modules: multi-graph
processing modules, STAC modules and temporal-gated convolutions.

4.1. Learning-Graph Processing

4.1.1. Temporal Graph

The temporal graph can be represented as GT = (V,Et), where V represents the set of
nodes in the transportation road network, and Et indicates connection of nodes at time
step t. Let us take the period of a week as an example, which is divided into a set of
consecutive time intervals with equal length. Assuming there are T such time intervals
within a week, then for each sensor, a T -dimensional feature vector is constructed. The i-th
element in the feature vector represents the average traffic flow recorded by the node in the
i-th time interval of this week. In the time feature vector, the neighbors of adjacent nodes
are determined according to the Euclidean distance metric.

4.1.2. Spatial-temporal Graph Embedding

Given the transportation road network P and the temporal graph GT , we need to determine
an embedding function to represent correlations between nodes. The embedding function
is expressed as: h : V → Pn, mapping each sensor in the road network to an n-dimensional
feature vector. In this sense, we obtain an embedding function h(·) and a spatio-temporal
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learning graph GTS = (V,E), the spatio-temporal dependence between each sensor is well
mapped in E, and well preserved in the embedding function.

Inspired by the efficiency of random walks Grover and Leskovec (2016) and negative
sampling Han et al. (2021), we optimize the representation procedure. Starting from the
first node v0 ∈ V in GTS , we generate a random walk path p = ⟨v0, v1, · · · , vL⟩ of length
L. Through a predetermined threshold ∆(∆ ≪ L), we can obtain a set of neighbors from
path p to vi:

Np (vi) = {vk ∈ p∥k − i |≤ ∆, k ̸= i} , (2)

where i = {0, 1, 2, . . . , L}, Np (vi) is a sample of neighbors of node vi.Traditional graph
embedding methods generate random walks based on topological structure to search neigh-
borhood sets, without considering temporal correlations. In this paper, we use a new
sampling strategy, which considers the temporal correlation in random walks.

Given the transportation road network P, the temporal graph GT and a random walk
path pi = ⟨v0, v1, · · · , vL⟩ staying at node vi. According to the probability, the sampling
strategy determines the next node vi+1 to visit:

Pr (vi+1 | pi) ∝

{
π (τi, vi+1) , if (vi, vi+1) ∈ P
0, otherwise

(3)

where π (τi, vi+1) represents the weight assigned to edge (vi, vi+1).

π (pi, vi+1) =


a, if dP (vi+1) = 0 and (v0, vi+1) ∈ GT

1, if dP (vi+1) = 1 and (v0, vi+1) ∈ GT

b, if dP (vi+1) = 2 and (v0, vi+1) ∈ GT

0, otherwise

(4)

where dP (vi+1) represents the shortest path distance between nodes vi+1 and vi−1 in the
road network. According to the above formula, we ensure that the traffic flow patterns of
all nodes are similar to the first node in the random walk. Moreover, this sampling strategy
can preserve the topological structure of the road network.

4.1.3. Spatial-temporal Correlation Modeling

According to the previous section, we have obtained an embedding function that represent
spatio-temporal correlations. Next, we model the spatio-temporal correlations of the graph.
Specifically, the correlation between node vi and vj is expressed as:

M(i, j) = (h (vi) ,h (vj)) (5)

According to the spatio-temporal correlation definition, we calculate a k-nearest neigh-
bor set for each node using Euclidean distance.Finally, normalize it to obtain the learned
spatio-temporal association graph GT S .Next, the hidden spatio-temporal correlations are
extracted by the following graph matrix multiplication, modules. In the graph multipli-
cation module, the gating mechanism with LSTM is used. The gated linear unit uses its
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nonlinear activation for generalization in graph multiplication. The graph multiplication
module is represented as:

hl+1 =
(
GT Sh

lW1 + b1

)
⊙ σ

(
GT Sh

lW2 + b2

)
(6)

In the above formula, hl represents the i-th hidden state, W1,W2, b1andb2 are the model
parameters in GLU, ⊙ is the Hadamard product, σ is the sigmoid activation function.

4.2. STAC Module

The purpose of the spatio-temporal attention convolution(STAC) module to capture the
dynamic spatial and temporal dependencies, which consists of temporal attention, spatial
attention and graph convolution modules.

4.2.1. Temporal attention mechanism

On the time axis, traffic conditions are correlated between different time windows over time,
and the degree of correlations also varies in different situations. The attention mechanism
can automatically learn the relationship and importance between different time slices, dy-
namically assign attention weights to different time slices, and achieve adaptive information
selection and filtering. This allows the model to select time slices that are more relevant
and important to obtain more accurate information. Temporal attention is expressed as
follows:

E = Ve · σ
((

(XP)
T U1

)
U2 (U3XP) + be

)
, E′

i,j =
exp (Ei,j)∑Tr−1

j=1 exp (Ei,j)
(7)

In the above formula, Ve,be ∈ RT×T ,U1 ∈ RN ,U2 ∈ RF×N ,U2 ∈ RF are learnable
parameters, where T represents the time step and F represents the number of channels of
the data. The temporal association matrix Etime is determined by the changing input. The
value of element E(i,j) in this matrix represents the strength of dependence between time i
and time j. Finally, the temporal association matrix is normalized by the softmax function.
We directly use the normalized temporal attention matrix as input and dynamically adjust
the input by merging relevant information.

4.2.2. Spatial attention mechanism

In space, the influence of different traffic factors leads to a high degree of dynamics in the
spatial dependence of traffic data. Therefore, this paper uses an attention mechanism Feng
et al. (2017) to adaptively calculate the dynamic spatial dependence between nodes.The
spatial attention is represented as follows:

S = Vs · σ
(
(XPW1)W2 (W3XP)

T + bs

)
, S′

i,j =
exp (Si,j)∑N
j=1 exp (Si,j)

(8)

In the above formula, Vs,bs ∈ RN×N , W1 ∈ RT , W2 ∈ RF×T , W2 ∈ RF are learnable
parameters. According to the current input, dynamically calculate the spatial attention
matrix S. The value of element S(i,j) represents the strength of association between node i
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and node j. Then use the softmax function to ensure that the sum of the attention weights
of the nodes is 1. When performing graph convolution, dynamically adjust the weights
between nodes together with the adjacency matrix and the spatial attention matrix.

4.2.3. GCN for Spatial-temporal Features

After the spatio-temporal attention module, more weight is given to valuable information in
the traffic data, and the information adjusted by the attention module is used as input to the
spatio-temporal graph convolution module. The spatio-temporal convolution module de-
signed in this paper includes a spatial graph convolution and a temporal graph convolution.
The spatial graph convolution extracts spatial dependence from the node neighborhood.
The temporal graph convolution extracts temporal dependence from adjacent time nodes.

Spatial graph convolution: In the research problem of traffic flow prediction, the traffic
road network is essentially a graph structure, and the features of each node can be regarded
as signals on the graph Shuman et al. (2013). Because spectral graph theory generalizes
convolutional operations from grid-based data to graph-structured data, in order to make
full use of the topological characteristics of the traffic road network, this paper uses graph
convolution based on spectral graph theory to directly process the data on each time slice,
utilizing the spatial correlation between nodes on the traffic road network. The spectral
graph method transforms the graph into algebraic form and analyzes the topological struc-
ture of the graph.

In spectral graph theory, a graph can be represented by its corresponding Laplacian
matrix. By analyzing the Laplacian matrix and its eigenvalues, the properties of the graph
structure can be obtained. The Laplacian matrix of a graph is defined as L = D−A, and

its normalized form is L = IN− D− 1
2AD− 1

2 ∈ RN×N , where A is the adjacency matrix, IN
is the identity matrix, and the degree matrix D ∈ RN×N is a diagonal matrix composed
of node degrees, Dii =

∑
j Aij . The eigenvalue decomposition of the Laplacian matrix

is L = UΛUT , where Λ = diag ([λ0, . . . , λN−1]) ∈ RN×N is a diagonal matrix and U
is the Fourier basis. Taking the traffic flow at time t as an example, the signal on the
entire graph is x = xt

P ∈ RN , and the graph Fourier transform of this signal is defined as
x̂ = UTx. According to the properties of the Laplacian matrix, U is an orthogonal matrix,
and the corresponding Fourier inverse transform is x = Ux̂. Graph convolution is a kind of
convolution operation that replaces the classical convolution operator with a linear operator
diagonalized in the Fourier domain. On this basis, the signal x on the graph G is filtered
using the kernel function gθ:

gθ ∗G x = gθ(L)x = gθ
(
UΛUT

)
x = Ugθ(Λ)UTx (9)

Where ∗G represents a graph convolution operation. Since the convolution operation of
graph signals is equal to the product of these signals transformed to the spectral domain
through the graph Fourier transform Simonovsky and Komodakis (2017), the above formula
can be understood as respectively transforming gθ and x to the spectral domain, then
multiplying their transform results, and then performing Fourier The final result of the
convolution operation is obtained by inverse transformation.
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Temporal graph convolution: After obtaining the neighborhood information of each
spatial node through the spatial graph convolution operation, further stack the temporal
convolution layer to update the node signal by combining the information on adjacent time
slices.

XP = ReLU
(
Φ ∗

(
ReLU

(
gθ ∗G X̂P

)))
∈ RF×N×T (10)

In the above formula, ∗ is the operation of standard convolution, Φ is the parameter of
the temporal convolution kernel, and the ReLU is selected as the activation function. The
spatio-temporal convolution module can capture the spatio-temporal dependencies of traffic
flow data well. The spatio-temporal attention module and the spatio-temporal convolution
module constitute the STAC module. Finally, multiple spatio-temporal blocks are stacked
to further extract dynamic spatio-temporal dependencies over a larger range.

4.3. Temporal Gated Convolution Module

This paper designs a new Dual gated unit (D-GTU) convolution module to capture long-
term time dependency information in traffic flow data. The specific structure of this module
is shown in Figure 1(c). It mainly consists of two gated convolution unit (GTU) Dauphin
et al. (2017) modules.

The input of the temporal gated convolution module is XP . The general GTU uses a
convolution kernel with doubled channel number, where the size of the convolution kernel
is 1× S. The GTU in time can be defined in the following form:

Γ ∗τ XP = ϕ(A)⊙ σ(B) (11)

In the above formula, ∗τ is the gated convolution operator, ϕ is the tan activation
function, σ is the sigmoid activation function, A and B are the first half and second half of
the channel size of XP respectively. By stacking gated convolution to expand the temporal
receptive field, the model’s ability to extract long-term dependencies in the data is improved.
Therefore, we designed D-GTU, D-GTU as follows:

Xout =M-GTU(XP) = ((Pooling (Γ1 ∗τ XP)×
Pooling (Γ2 ∗τ XP)))

(12)

In the above formula, Γ1 and Γ2 represent convolution kernels of 1×S1 and 1×S2 respec-
tively. The D-GTU designed in this paper has advantages in using multi-scale convolution
to extract long-term temporal features of traffic data.

4.4. Trend Assistance

Existing traffic flow prediction methods generally use traffic volume to train the model, but
there are many random external factors affecting the traffic flow data collected by sensors in
the traffic road network, such as the geographical location of the city, the degree of damage
to surrounding roads, etc. The distribution of traffic flow data shows an irregular state,
and the amount of traffic data used for training is limited, so it is difficult to fit accurately.
However, we found that the trend of traffic flow data is concentrated.
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Based on the above findings, we designed a new auxiliary training method that focuses
on the trend of the data rather than the real data. Essentially, traffic flow prediction is
to find a mapping function f to predict the next T ′ graph signals based on the previous T
graph signals. Therefore, for traffic flow data, there are X → Y training samples.

X = [x1,x2,x3, · · · ,xT ] ∈ R|V |×T (13)

X is a matrix of T consecutive graph signals.

Y = [y1,y2,y3, · · · ,yT ] ∈ R|V |×T ′
(14)

Y is the predicted matrix of the next T ′ graph signals. The traffic flow trend of the i-th
sensor vi ∈ V in the road network at time T + t is represented as Trit:

Trit =
yit − xiT

xiT
. (t = 1, 2, 3, · · · , T ′) (15)

The trend Trit is the relative change of yit relative to the last observed flow of the sensor
vi. Finally, given a training sample X → Y , a trend matrix Tr with the same shape as Y
is obtained.

5. Experiments

In order to evaluate the performance of our model, extensive experiments are conducted on
real-world traffic datasets. The statistical information of three datasets is summarized in
Table 1.

5.1. Datasets

We conducted experiments on three real traffic datasets, namely PEMS03, PEMS04, and
PEMS08. The data were extracted from the California Caltrans Performance Measurement
System (PeMS) Chen et al. (2001) in three different areas of California. The Caltrans
Performance Measurement System collects real-time data every 30 seconds. The original
traffic flow data is aggregated at 5-minute intervals. There are 12 time steps per hour in the
traffic data. Each sensor in PEMS04 and PEMS08 contains three types of traffic-related
data: flow, occupancy, and speed. In this paper, we use traffic flow data.

DataSets Days Sensors Edges Data
PEMS03 91 358 547 26208
PEMS04 59 307 340 16992
PEMS08 62 170 295 17856

Table 1: Datasets
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5.2. Baseline methods

We use the following 11 advanced methods as baselines for comparion experiments. (1)FC-
LSTM Sutskever et al. (2014) has fully connected LSTM hidden units, which is a spe-
cial type of RNN mmodel. (2)TCN Bai et al. (2018) is effective in learning local and
global time correlations. (3) DCRNN Li et al. (2017) integrates graph convolutions into
an encoder-decoder gated recurrent unit. (4)STGCN Yu et al. (2017) integrates graph
convolutions into one-dimensional convolutional units. (5)ASTGCN Guo et al. (2019)
is an attention-based spatial-temporal graph convolutional network. (6) STSGCN Song
et al. (2020) directly extracts local spatio-temporal associations and uses multiple mod-
ules to capture spatio-temporal heterogeneity of the network. (7)STFGNN Li and Zhu
(2021) proposes a new spatio-temporal fusion graph to model spatio-temporal correlations.
(8)STGODE Fang et al. (2021) connects continuous differential equations with node rep-
resentations of the transportation road network, enabling the construction of deeper net-
works. (9)Z-GCNET Chen et al. (2021) introduces time-aware zigzag patterns into the
graph structure and designs zigzag topological layers for graph convolutional networks.
(10)AGCRN Bai et al. (2020) incorporates learnable embeddings of nodes into graph con-
volutions.(11) DMSTAGNN Lan et al. (2022) utilizes spatio-temporal perceptions from
historical traffic data instead of relying on predefined static adjacency matrices.

5.3. Experimental Settings

To compare our model with the baseline methods, we divide the three datasets into training
sets, validation sets and test sets in a 7:1:2 ratio. This paper uses the historical traffic flow
of one hour to predict the future one hour of traffic flow. Therefore, T = T ′ = 12 is set
in the experiments. In the random walk strategy, the parameters a and b are both set to
1. When constructing the spatio-temporal correlation graph, this paper considers the 10
nearest neighbors of each sensor. In addition, the sensor embedding size is set to 128, the
random walk length L is 25, and the window threshold ∆ is 10.

5.4. Experiment results and analysis

5.4.1. Comparison Results

Dataset Metric FC-LSTM TCN DCRNN STGCN ASTGCN STSGCN AGCRN STFGNN STGODE Z-GCNET DMSTAGNN STALGNN

PEMS03 MAE 21.33 19.31 18.18 17.49 18.05 17.48 *15.98 16.77 16.5 16.64 15.57 14.81
MAPE(%) 22.33 19.86 18.91 17.15 17.02 16.78 *15.23 16.3 16.69 16.39 14.68 14.29
RMSE 25.11 33.24 30.31 30.12 30.13 29.21 *28.25 28.34 27.84 28.15 27.21 23.81

PEMS04 MAE 26.24 23.11 24.07 22.7 21.85 21.19 19.83 19.83 20.84 19.5 19.3 19.27
MAPE(%) 19.3 15.48 17.12 14.59 14.11 13.9 12.97 13.02 13.77 12.78 12.7 12.65
RMSE 40.49 37.25 38.12 35.55 34.54 33.65 32.26 31.88 32.82 31.61 31.46 31.4

PEMS08 MAE 22.2 22.69 17.86 18.02 18.7 17.13 15.95 16.64 16.81 15.76 15.67 15.15
MAPE(%) 15.02 14.04 11.45 11.4 11.64 10.96 10.09 10.6 10.62 10.01 9.94 9.61
RMSE 33.06 35.79 27.83 27.83 28.66 26.8 25.22 26.22 25.97 25.11 24.77 24.37

Table 2: Performance comparison of different approaches on three datasets.

Table 2 shows the experimental results of STALGNN and baseline methods. It can
be seen that our STALGNN achieves the best results on all metrics of the three datasets.
The prediction results of traditional time series analysis methods are usually not ideal,
indicating that these methods have limited ability to model nonlinear and complex traffic
data. By comparison, deep learning based methods usually obtain better prediction results
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than traditional time series analysis methods. Since our spatio-temporal correlation graph is
a learnable graph structure, it can help the model capture the spatio-temporal dependencies
between nodes. In addition, the spatio-temporal attention mechanism and stacked graph
convolutions we use can better capture the dynamic changes in the data and significantly
improve the prediction performance.

Comparing the evaluation metrics of the PEMS04 dataset, it can be seen that STALGNN
performs better on the PEMS03 and PEMS08 datasets. This may be because the road
network is sparse in the PEMS04 dataset, resulting in an inaccurate learning spatio-temporal
correlation graph. The high traffic missing rate can also lead to poor model performance.

5.4.2. Ablation Study

To verify the effectiveness of individual modules in STALGNN, we performed ablation
experiments on the Pems08 dataset, the experimental data are shown in Table 3, and we
make the following variants of STALGNN: (1) Rem-STAC: Completely remove the spatio-
temporal attention mechanism and graph convolution module; (2) Rem-Trend: Remove
traffic trend auxiliary information; (3) Rem-DGTU: Remove the dual gated units. Based
on the above three model variants, we conducted ablation experiments on the PEMS03,
PEMS04 and PEMS08 datasets respectively. Figures. 2, Figures. 3 and Figures. 4 show the
MAE, MAPE and RMSE measurement results. It can be seen that the performance of our
STALGNN is superior to other variants, which also verifies the effectiveness of each module
in our model.

Model MAE MAPE RMSE
Rem-STAC 15.24 10.53 25.89
Rem-TREND 15.42 9.89 24.68
Rem-GTU 25.13 15.38 38.44
Rem-Graph 16.43 10.24 25.94
STALGNN 15.15 9.61 24.37

Table 3: Ablation Study on PEMS08 dataset

Figure 2: Ablation experiment of STAC
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Rem-STAC: The spatio-temporal attention mechanism combined with spatio-temporal
convolution captures the dynamic spatio-temporal characteristics of traffic data, thereby
improving model performance. The measurement results of the STAC module ablation
experiment are shown in Figure 2.

Figure 3: Ablation experiment of Trend

Rem-TREND: Adding trend auxiliary information to train the STALGNN model can
improve the performance of the model on all datasets. Due to the consistent trend, training
model with the trend feature an improve the perforamnce of the model. The measurement
results of the ablation experiment of trend auxiliary information are shown in Figure 3.

Figure 4: Ablation experiment of GTU

Rem-GTU: For the temporal-gated convolution module, it can compensate for the
STALGNN model’s ability to extract long-term time dependencies, thereby improving the
performance of STSGNN. The measurement results of the time-gated convolution module
ablation experiment are shown in Figure 4.

6. Conclusion

In this paper, we propose a new spatio-temporal aware learning attention graph neural
network and successfully apply it to traffic forecasting. The model uses a new method for
generating spatio-temporal correlation graphs that can effectively capture hidden spatial
dependencies. It combines spatio-temporal attention mechanisms and spatio-temporal con-
volutions to capture the spatio and temporal features of traffic flow data simultaneously.
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Trend auxiliary information is supplemented when calculating the final loss. In addition, a
dual temporal-gated convolution module is designed to extract long-term temporal depen-
dencies of traffic data. Experiments on three real datasets show that the performance of
the proposed model is superior to other baseline models.
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