
Proceedings of Machine Learning Research 222, 2023 ACML 2023

Deep Kernel Regression with Finite Learnable Kernels

Chunlin Ji� chunlin.ji@kuang-chi.org
Kuang-Chi Institute of Advanced Technology
Shenzhen, China

Yuhao Fu yuhao.fu@kuang-chi.com

Kuang-Chi Institute of Advanced Technology

Shenzhen, China

Origin Artificial Intelligence Technology Co.

Shenzhen, China

Editors: Berrin Yanıkoğlu and Wray Buntine

Abstract

In this work, we study kernel regression that integrates with a modern deep neural network
(DNN). The DNN projects the input into an embedding space, meanwhile a set of repre-
sentative points is constructed in this embedding space. We build the regression using a
finite set of kernels defined on the embedding space, where the DNN weights, the regres-
sion coefficients, and kernel hyperparameters are all learnable. We extend the model by
introducing a location attention strategy and the multiple kernel technique. We provide
effective ways to obtain representative points. The proposed model can be trained with an
end-to-end learning algorithm with simple implementation. Simulation studies show that
the proposed deep kernel regression is well scalable to large datasets and comparable to or
superior to recent deep kernel models in various regression problems.

Keywords: Deep neural network; Kernel method; Kernel ridge regression; Deep kernel
regression; Representative points; Multiple kernels; Location attention

1. Introduction

Deep neural networks have gained tremendous success in various difficult tasks such as
image classification (Krizhevsky et al., 2012). However, directly using DNN on regression
problems may cause overfitting, therefore requires extra regularization techniques, for ex-
ample, introducing prior on network weights in Bayesian neural networks (MacKay, 1992;
Hernández-Lobato and Adams, 2015). Kernel regression is an alternative approach to build
a non-linear relation between the covariates and the response. Kernel models have a solid
theoretical background and easy-to-handle regularization techniques, therefore, have been
extensively applied in machine learning for classification and regression problems (Scholkopf
and Smola, 2001). With the success of both approaches, there is growing interest in com-
bining kernel regression models with flexible deep neural network structures.

There exist several ways to incorporate neural networks or network structures with
kernel methods. A straightforward way is to utilize the DNN to extract feature-based
representation from input, the kernel function is built on the extracted features, and then

© 2023 C. Ji & Y. Fu.

Ji Fu

apply the kernel method such as Gaussian processes (GP) or Support Vector Machine (SVM)
for the following regression/classification task (Cho and Saul, 2009; Damianou et al., 2011;
Wilson and Adams, 2013; Rebai et al., 2015; Wilson et al., 2016). The main idea behind
this approach is to combine the flexibility of DNNs, in which the representative feature
of the data is extracted completely automatically, with the approximation power of kernel
methods, in which a feature map is determined by the chosen kernel. The DNN is helpful
in discovering rich structures in data and building more expressive kernel functions for the
kernel models. However, in most of the proposed methods, the DNN is trained separately
from the kernel models. Therefore, it is difficult to guarantee that the extracted features
will help the kernel models in the final regression/classification task.

An alternative approach extends kernel methods with a network structure. For example,
the deep Gaussian processes (DGPs) (Damianou and Lawrence, 2013) is a hierarchical
composition of GPs that can overcome the limitations of kernel expression in a single-
layer GPs. In contrast to highly parameterized DNN models, DGPs learn a representation
hierarchy nonparametrically with few hyperparameters to optimize. DGPs and its variants
(Mattos et al., 2016; Dai et al., 2016) have been proven to gain superior performance in
various regression/classification tasks. However, DGPs have complex posteriors (Salimbeni
and Deisenroth, 2017; Aitchison et al., 2021) and require sophisticated variational methods
for posterior approximation (Salimbeni and Deisenroth, 2017; Salimbeni et al., 2019).

In this work, we propose deep kernel regression (DKR) to sufficiently utilize the advan-
tage of DNNs to extract the feature from the input data and then build a kernel regression
on the extracted features. We allow DNN weights, regression coefficients, and kernel hy-
perparameters to be learnable. To be scalable for large datasets, we only require a small
set of representative points in constructing the kernel functions, rather than involving all
the training data in the regression formula. We provide an adaptive sampling strategy to
select representative points and further propose a novel strategy to generate representa-
tive points using a generative neural network. We introduce a DNN for the coefficients
with a location attention strategy to capture data localities and allow the multiple kernel
technique to further enrich the expression of the model. Moreover, posterior prediction is
preferred instead of only the conditional expectation; thus, we address the variance esti-
mation approach, which enables the proposed model to be fully comparable with GPs or
DGPs. The proposed DKR can be trained by the stochastic gradient descent (SGD) algo-
rithm in an end-to-end style. We provide a detailed study to show the effectiveness of the
proposed model improvements. We find that the proposed DKR is highly scalable to large
datasets without increasing the complexity of the model. Our experiments demonstrate
that the DKR achieves comparable or superior model performance compared with recent
deep kernel models on various regression problems.

2. Related Works

In order to combine DNN with kernel methods, the most efficient approach is to employ
a DNN to map the original space to an embedding space and then apply kernel methods
on this embedding space. This is an effective way to take advantage of the capabilities
of both techniques to gain a more flexible model. Previous work, such as (Cho and Saul,
2009; Damianou et al., 2011; Rebai et al., 2015; Wilson and Adams, 2013; Wilson et al.,

Deep Kernel Regression

2016), explored this area thoroughly. Most of them choose GPs as the kernel method, as
the tuning parameter in GPs is limited, and GPs provide a posterior estimation rather than
a point estimation. However, training the hyperparameters in GPs and weights in the DNN
requires additional derivation and is not in a simple end-to-end style.

As an alternative, deep kernel learning (or named multilayer kernel learning) uses ker-
nel functions as an element of a multilayer network structure and concatenates one or more
layers of such kernel functions to achieve a highly flexible new kernel function (Zhuang
et al., 2011; Dinuzzo, 2011). This deep kernel learning method has a more solid theoretical
background (Dinuzzo, 2011). However, training such deep kernel learning models is non-
trivial and requires sophistical approximation methods (Salimbeni and Deisenroth, 2017;
Salimbeni et al., 2019; Aitchison et al., 2021).

The proposed deep kernel regression follows the first kind of deep kernel methods, in
which we utilize a DNN to explore the structure of input data and construct a kernel method
on the extracted features. However, we choose kernel ridge regression (KRR) (Murphy,
2012) as the kernel model instead of GPs. One benefit of the kernel ridge regression is that
it does not require the deriving of the marginal likelihood as in GPs, thus we can provide
a SGD based end-to-end training for both the regression coefficients and the weights of
networks, which is more favorable in the era of deep learning.

As is known, GPs require computation of matrix inversion, and the cost becomes cubic
in the number of training data. Therefore, a low-rank matrix approximation, such as the
Nyström method (Williams and Seeger, 2000), is always required to deal with large-scale
problems. In addition, traditional KRR also involves all training data in the regression
formula. However, in this work, we select or learn a subset of the given train data as
representative points in building the regression model instead of involving the entire dataset.
We provide an effective adaptive sampling strategy to select representative points, inspired
by the sampling scheme in Ma et al. (2015). Moreover, we propose a novel method to learn
representative points using a generative neural network. To our knowledge, this generative
strategy has not been explored before.

Furthermore, unlike traditional kernel ridge regression, the coefficient in our deep kernel
regression can be implemented by a DNN, which is related to the self-attention strategy
(Shaw et al., 2018), that allows the weights of the kernel to capture data localities, and
therefore provide more flexibility in building the nonlinear relation between the covariates
and response. Previous studies (Lanckriet et al., 2004; Gönen and Alpaydın, 2011) show that
using multiple different kernels instead of a single kernel improves the model performance.
Previous work on the multiple kernel method (Gönen and Alpaydin, 2008; Moeller et al.,
2016) utilizes localized kernels and gating functions to choose different kernels. In this
study, we apply the localized multiple kernel technique, allowing multiple kernels in the
regression and extending the DNN output to weight them.

3. Background

Let Ω ∈ Rd be an open domain and let the input data (covariates) X := x1, ..., xN ∈ Ω
and the corresponding response Y := {y1, ..., yN} ∈ R be given. Let H := H(Ω,R) be a
reproducing kernel Hilbert space of real-valued functions on Ω. In real-world applications,
the values yi, i = 1, ..., N are usually not exactly given, but are observed with some noise

Ji Fu

term. In this case, we formulate the problem by the regularized least-squares regression,

fλX,Y := argmin
f∈H

N∑
j=1

|f(xi)− yi|2 + λ ∥f∥2H (1)

where the side condition in Eq.(1) is substituted by a penalty term, where the Lagrange
multiplier λ weights the importance of the norm minimization against the function eval-
uation error. The representer theorem (Schölkopf et al., 2001; Micchelli and Pontil, 2005;
Steinwart and Christmann, 2008) provides that fλX,Y is of the form,

fλX,Y (x) =
N∑
i=1

αλiK(xi, x) (2)

where K : Ω×Ω→ R denotes the reproducing kernel of H and α ∈ R, i = 1, ..., N , are the
corresponding coefficients. The coefficients αλi , i = 1, ..., N , can be determined by the linear
system (MX,X + λI)αλ = y, where MX,X := [K(xi;xj)]i=1:N,j=1:N , α := [α1, ..., αN]

T

and y := [y1, ..., yN], I denotes the N ×N identity matrix.
Any Mercer kernel (continuous, symmetric, positive definite) K may be used as the

reproducing kernel of H. Here we list the common choices: the radial basis function (RBF)
kernel KRBF(x, x

∗) = exp
(
−1

2(x− x
∗)TΘ−2(x− x∗)

)
with lengthscale parameter Θ ∈ Rd;

the linear kernel KLinear(x, x
∗) = ΘxTx∗ with variance parameter Θ ∈ Rd; the Polynomial

kernel KPoly(x, x
∗) = (xTx∗ + c)r, with offset parameter c ≥ 0 and power r ≥ 1; the ratio-

nal quadratic (RQ) kernel KRQ(x,
∗) =

(
1 + 1

2α(x− x
∗)TΘ−2(x− x∗)

)−α
; and the Matern

kernel KMatern(x, x
∗) = 21−ν

Γ(ν)

(√
2νd

)ν
Kν

(√
2νd

)
, where d = (x − x∗)TΘ−2(x − x∗), ν is a

smoothness parameter, Kv(·) is a modified Bessel function and Γ(·) is the gamma function.
These kernels measure the similarity between two data points x, x∗ ∈ Rd, accounting for
possible differences in significance of the various dimensions.

4. Deep Kernel Regression

The propose deep kernel regression, we use a DNN ϕ(·) to project the input data x into a
low-dimensional embedding space that ϕ(x) : Rd → Rp, where p < d. We expect that the
DNN ϕ(·) can extract ‘meaningful’ feature which could benefit the kernel regression. To
reduce computation efforts, here we use only a representative subset of the entire dataset,
{x∗j}Jj=1, to build the regression model. We name these subset samples as representative
points and will provide the selection or learning strategy for this subset in a later section.
Given the representative data points and the embedding network ϕ(·), we can evaluate the
kernel K(ϕ(x), ϕ(x∗j)) (j = 1, ...J) with respect to all the representative points. The deep
kernel regression is defined as

µf (x) =
J∑
j=1

ajK(ϕ(x), ϕ(x∗j)) (3)

where aj is the weight of each kernel K(·, ·), and K(·, ·) is a Mercer kernel.

Deep Kernel Regression

4.0.1. Location Attention

Inspired by the spatial attention strategy in DNNs (Shaw et al., 2018), we let the weight
aj depend on the input xi to count the localization effort. We introduce a DNN for the
coefficients to realize the localization attention strategy. To be specified, the regression
coefficient network α(·) : Rd → RJ projects the input data x into the ’weight’ for each
K(ϕ(x), ϕ(x∗j)) (j = 1, ...J), then we define the kernel regression as,

µf (x) =
J∑
j=1

α(j)(x)K(ϕ(x), ϕ(x∗j)) (4)

where α(j)(x) represents the j-dimension of the network output. As shown in Fig. 1, the
output of the coefficient network α(·) provides the attention scheme: the contribution of
each term K(ϕ(x), ϕ(x∗j)) (for j = 1, ...J) now depends on the ‘location’ of x.

4.0.2. Multiple kernel technique

The performance of kernel regression always depends on the choice of kernel functions, as
some kernels may better match the data structure than others. Using the multiple kernel
technique is an easy way to avoid choosing a kernel for each individual problem. Assuming
that the data have underlying localities, we should give higher weights to appropriate kernel
functions (i.e., kernels that match the complexity of data distribution) for each local region.
The weights for difference kernels are generally designed to be localized, which means that
the weights depend on the input variable. Therefore, we introduce another coefficient
network η(·) to project the representative point x∗j into a coefficient vector for each type of

kernel function M , η(·) : Rd → RM . To guarantee the weight
∑

m η
(m)(·) = 1, we use the

softmax function for the output of η(·), that η(m)(·) ← eη̃
(m)(·)∑

m′ eη̃
(m′)(·)

, where η̃(m) represents

the output of the last layer in the network η. Then the deep kernel regression becomes

µf (x) =
J∑
j=1

α(j)(x)
M∑
m=1

η(m)(x∗j)Km(ϕ(x), ϕ(x
∗
j)) (5)

Figure 1: Illustration of the deep kernel regression model.

Ji Fu

4.1. Selecting or Learning of Representative Points

Traditionally, to build the regression model, the kernel methods, such as KRR and GPs,
use all the data from the training set. As a consequence, it may take heavy computation
effort, particularly when the dataset becomes large. To reduce computation efforts and
model complexity, we propose to use a small set of representative points to build the DKR.
Here, we provide two simple but effective approaches to obtain representative points: 1) an
effective adaptive sampling strategy for selecting the representative point from the given
training data; 2) a generative approach that leverages a generative DNN to generate the
set of representative points from unscented noise.

4.1.1. Adaptive Sampling

Following the adaptive sampling scheme in Ma et al. (2015), we first divide the range
of responses {yi}N1 into Γ disjoint intervals, S1,..., SΓ and let |Sγ | denote the number of
observations in Sγ ; then for each Sγ form the collection of all pairs (xi, yi) where yi ∈ Sγ
and draw a subsample of size nγ (J/Γ) from this collection through uniform sampling of

the sample index, denote the samples by x∗(γ) = {x∗(γ)1 , ..., x
∗(γ)
nγ }; Combine {x∗(1), ..., x∗(Γ)}

to form the representative points set. The size of this set is
∑Γ

γ=1 = J .

4.1.2. Generative Method

Following the idea of GAN (Goodfellow et al., 2014), we generate a set of data that is
distributed the same as the given dataset. We propose to learn representative points using
a generative neural network from inputs of white noise. Unlike a GAN model, here we drop
the discriminative network, and only keep the generative network, and let the regression loss
functions guide the learning of the generative network. We define the generative network,
ψ(·) : Rd → Rp, which transfers non-informative data, such as a uniformly distributed
random variable, into a set of representative data points. With this generative method, the
DKR defined in Eq.(5) is reformated as,

µf (x) =
J∑
j=1

α(j)(x)
M∑
m=1

η(m)(ψ(nj))Km(ϕ(x), ψ(nj)) (6)

where nj is an uninformative random sample in which each dimension of nj is sampled from

a uniform distribution, n
(di)
j ∼ U(0, 1).

The DKR with the generative representative points defined by Eq.(6) is illustrated in
Fig. 1. Without bothering with the selection of representative points, this generative
method makes the model more concrete; simulation study will show that it always gains
superior performance than the adaptive sampling strategy.

4.2. Covariance Estimation

Given the training pair (xi, yi) (i = 1, ..., N), we can train the parameters in the DKR
model with MSE loss, that

LMSE =
N∑
i=1

|yi − µf (xi)|2. (7)

Deep Kernel Regression

However, when the test point x′ is given, the model can only predict the conditional expec-
tation µf (x

′), which is only a point estimation. In comparison, GPs and DGPs models can
output both the mean and the covariance of the prediction to calibrate a posterior.

To obtain the variance estimation, here we introduce another branch of the model to
estimate the covariance explicitly as follows,

σf (x) =

J∑
j=1

β(j)(x)

M∑
m=1

η(m)(x∗j)Km(ϕ(x), ϕ(x
∗
j)) (8)

where we introduce another coefficient network β(·) : Rd → RJ+ , note that we need an
activation function, such as Softplus(), to enable the output of β(·) be positive. Moreover,
we share the network ϕ(·), η(·) and ψ(·) between the expression of µf (x) and σf (x). If
representative points are obtained by the generative method, we only need to change ϕ(x∗j)
in Eq.(8) to ψ(nj). With the variance σf (x), we define the loss function as the negative
log-likelihood instead of the MSE loss, that is,

LNLL = −
N∑
i=1

logN (yi|µf (xi), σ2f (xi)) (9)

As shown in previous work (Detlefsen et al., 2019), estimation of a variance network
is non-trivial: the maximum likelihood estimate (MLE) of σ2f does not exist when only a
single observation is available and µf is unknown, as the mean is not a free parameter.
Therefore, if we optimize µf and σ2f jointly (even with a warm-up of µf), Detlefsen et al.

(2019) suggests that the joint update of mean and covariance is substandard as σ2f is never
sufficiently optimized when µf is unknown. Fortunately, Detlefsen et al. (2019) addresses a
mean-variance split training strategy: sequentially optimizing µf by assuming σ2f is known,

and optimizing σ2f by assuming µf is known. Moreover, an adjusted stochastic gradient for
unbiased estimation is also suggested (Detlefsen et al., 2019); however, it requires heavy
upfront computation and thus is not suitable for the DKR model to handle large datasets.

4.3. Learning and Inference

4.3.1. Regularization

To prevent model overfitting, traditional kernel models introduce regularization terms on
the norm of the regression function with a Lagrange parameter to control this regulariza-
tion. For the DKR with vector coefficients Eq.(3), we can estimation of norm by ∥µf∥2H =

⟨
∑J

i=1 α
(i)K(·, ϕ(x∗i)),

∑J
j=1 α

(j)K(·, ϕ(x∗j))⟩ =
∑J

i=1

∑J
j=1 α

(i)α(j)⟨K(·, ϕ(x∗i)),K(·, ϕ(x∗j))⟩
=

∑J
i=1

∑J
j=1 α

(i)α(j)K(ϕ(x∗i), ϕ(x
∗
j)), where ⟨·, ·⟩ denotes the inner product. Furthermore,

in case the multiple kernel technique is applied, the norm becomes ∥µf∥2H =
∑J

i=1

∑J
j=1 α

(i)α(j)

K̃(ϕ(x∗i), ϕ(x
∗
j)) where K̃(ϕ(x∗i), ϕ(x

∗
j)) =

∑
m η

(m)(x∗i)Km(ϕ(x
∗
i), ϕ(x

∗
j))η

(m)(x∗j). If repre-
sentative points are obtained by the generative method, we need to change ϕ(x∗j) to ψ(nj)

to estimate the norm. Similarly, we obtain ∥σf∥2H for the variance function. Accordingly,
the entire loss function can be expressed as follows,

L = −
N∑
i=1

logN (yi|µf (xi), σ2f (xi)) + λ ∥µf∥2H + λ ∥σf∥2H (10)

Ji Fu

However, the DKR with location attention does not have a closed-form solution for the
norm. Given the model expression in Eqn (4), we have ∥µf∥2H = ⟨

∑J
i=1 α

(i)(x)K(·, ϕ(x∗i)),∑J
j=1 α

(j)(x)K(·, ϕ(x∗j))⟩ =
∑J

i,j=1 α
(i)(x)α(j)(x)K(ϕ(x∗i), ϕ(x

∗
j)). Thus, the norm ||µf ||2 is

still a function of input x rather than a conventional scaler value, which can not be served
as the term for norm regularization; Therefore, the norm regularization does not apply to
this case.

In practice, we find that with the help of norm regularization, the DKR without location
attention is preferred for small-scale data, while the DKR with location attention is preferred
for large-scale data. Simulation studies support this assumption.

4.3.2. Training and Inference

The learnable parameters in the proposed model are ϕ(·), ψ(·), η(·), α(·), β(·), (or α, β), and
hyperparameters in kernel functions (denoted as ΘK). Note that we can leverage the auto
differential package for kernel function, such as GPyTorch library (Gardner et al., 2018),
to obtain the gradient of kernel hyperparameters. Given the NLL loss function (Eq.(9) or
Eq.(10)), we can train the DNNs and kernel hyperparameters using a SGD algorithm in an
end-to-end style. Remember that to apply the mean-variance split training, we group the
parameters as {ϕ(·), ψ(·), η(·), α(·),ΘK} and {β(·)}, and train them separately assuming
that the other group of parameters is fixed. In the inference stage, given the new data x′,
we can predict the conditional mean and variance using the trained DKR model.

5. Simulation Study

To test our methodologies, we conduct multiple experiments in various settings. All datasets
studied in this work are real public data from the UCI Machine Learning Repository (Asun-
cion, 2007). We first provide a thorough study to show the effectiveness of the proposed
improvements, including location attention strategy, kernel choice, learning of representa-
tive point and mean-variance split training. Then, we investigate the model performance
on a batch of small to medium-scale UCI datasets. Various regression methods (Titsias,
2009; Bui et al., 2016; Salimbeni and Deisenroth, 2017) have been studied on these datasets,
thus we can compare the performance with the state-of-the-art ones. To show that the pro-
posed method is scalable to large datasets, we evaluate the model performance on a set of
large-scale UCI datasets, compared with several advanced kernel models.

The neural network ϕ(·), ψ(·), α(·), β(·) and η(·) in the proposed models are chosen as
Multi-Layer Perception (MLP). All network structures are detailed in the Appendix. We
implement five kernels for the regression model: linear kernel, polynomial kernel(q = 2),
RBF kernel, RQ kernel and Matern kernel. The kernels are implemented by the GPyTorch
library (Gardner et al., 2018). The end-to-end training algorithm is implemented in Py-
torch(Paszke et al., 2017). The network weights and kernel hyperparameters are jointly
optimized by the Adam algorithm (Kingma and Ba, 2015). We choose a batch size of 512
for small-scale dataset (N <2,000) and a batch size of 1,024 for other larger dataset. We
set the learning rate to lr =2e-3 for networks, ϕ(·), ψ(·), η(·), α(·), and lr =0.5e-3 for
the network β(·). We run 500 epochs for small-scale dataset (N <2,000), 200 epochs for
medium-scale dataset and 20 epochs for large-scale dataset (N > 1e5). Following common
practice, each dataset is randomly split into 80% training, 10% validating, and 10% held out

Deep Kernel Regression

(a) DKR without location attention(Case 1). (b) DKR with location attention(Case 2).

Figure 2: RMSE of DKR with different kernels.

(a) DKR with different approaches to obtain

the representative points (Case 3).

(b) DKR with mean-variance joint training
vs split training (Case 4).

Figure 3: RMSE of DKR with different representative points and training methods.

test set. We scale the inputs and outputs to zero mean and unit standard deviation within
the training set (we restore the output scaling for evaluation). There remain two important
hyperparameters: the number of representative points and the weight λ for regularization
terms in Eq.(10), of which the default values are J = 64 and λ =1e-4. We discuss the choice
of J and λ in the ablation study. In all experiments, we report both the root mean square
error (RMSE) and logarithmic likelihood (LL) as the metric of model performance.

5.1. Ablation Study

We investigate the following cases to verify the proposed improvements: Case 1), since
the choice of kernel always plays an important role in kernel regression, we compare the
performance of the DKR model with five different kernels, including linear, polynomial,
RBF, RQ and Matern. Additionally, for the multiple kernel model, we use polynomial, RQ
and Matern. Notice that in this case study, we do not use the location attention strategy;
Case 2), one important contribution of the proposed work is the introduction of the location
attention strategy; To demonstrate the effects of this improvement, we use the DKR model
with location attention to carry out the same experiment as in Case 1; Case 3), we compare

Ji Fu

(a) DKR with a different number of repre-
sentative points (Case 5).

(b) DKR training with different weights for
the norm regularization (Case 6).

Figure 4: RMSE of DKR with important hyperparameters.

three ways to obtain representative points: random sampling (randomly select 64 training
data as representative points), adaptive sampling and the generative method introduced
before. In this case study, we use the DKR with location attention and multiple kernels
(polynomial, RQ and Matern); Case 4), we compare the two variance estimation methods,
that mean-variance joint training vs. split training. Here, we also use the DKR with
location attention and multiple kernels; Case 5), we compare the model performance with
different J = [8, 16, 32, 48, 64, 128, 256]. Here, we also use the DKR with location attention
and multiple kernels; Case 6), we compare the model performance when learning the DKR
(without location attention) with different λ = [1e-6,1e-5,1e-4,1e-3,1e-2,1e-1]. Here, we also
use the DKR with multiple kernels.

For all case studies, we evaluated the model performance on five datasets: Energy,
Concrete, Power, Protein, Kin40K. For each dataset, we run five trials, and in each trial
randomly select the validation/test datasets, and train the model from random initiation.

5.1.1. Results

Plots of RMSEs are shown in Fig.2-4. As shown in Fig.2(a)subfigure and Fig.2(b)subfigure,
the DKR with a single kernel can obtain better performance on some datasets, as the kernel
may fit the inner structure of the data distribution; however, the DKR with multiple kernels
always has a more robust and favorable performance over all datasets. According to Fig.
3(a)subfigure, the DKR with the generative method obtains the best performance and the
adaptive sampling method is slightly better than the random sampling method. According
to Fig. 3(b)subfigure, the DKR with mean-variance split training obtains slightly better
performance than mean-variance joint training. As shown in Fig. 4(a)subfigure, the DKR
with medium-size representative points, for example J = 64, performs well and is scalable
to large datasets. Fig. 4(b)subfigure shows that our model is robust against the weight of
norm regularization, λ =1e-3 is applicable for practical problems.

Deep Kernel Regression

5.2. Regression Benchmarks

We compare our DKR model with other regression methods on 8 standard small/medium-
sized UCI benchmark datasets, as their state-of-the-art results of RMSE and LL are broadly
known. The model for comparison includes, a Bayesian neural network with inference by
probabilistic backpropagation (Hernández-Lobato and Adams, 2015) (PBP), GP models:
Sparse Gaussian process regression (SGP) (Titsias, 2009) with 500 inducing points, here
denoted as SGP1, and deep GP models: DGP with 1 hidden layer using approximate
expectation propagation (Bui et al., 2016) (AEP-DGP), and DGP with 2 layers and 5
layers (100 inducing points) using doubly stochastic variational inference (Salimbeni and
Deisenroth, 2017), here denoted as DSVI-DGP1 and DSVI-DGP2. Here, we directly cite
their results on the benchmark datasets (Salimbeni and Deisenroth, 2017).

According to the ablation study, here we set two models as follows: DKR1–DKR with
multiple kernels (polynomial, RQ and Matern) but without location attention, DKR2–
DKR with multiple kernels (the same as DKR1) and location attention. For both models,
use the generative method to gain representative points and the mean-variance split training
strategy. We set J = 64 and choose λ =1e-3 for training DKR1. All trials are averaged
over 10 trials with different splits.

5.2.1. Results

The test log-likelihood and RMSE are shown in Table 1 and 2 respectively. For both
log-likelihood and RMSE, our performance is comparable to or even superior to these state-
of-the-art methods, such as SGPs and DSVI-DGPs. Moreover, we observe that with the
help of norm regularization, DKR1 performs better on small-scale datasets, while DKR2
is favorable for larger datasets.

Table 1: Regression test log-likelihood for small/medium scale datasets. Reported is the
mean over 10 splits (with standard errors)

Dataset PBP SGP2 AEP-DGP DSVI-DGP1 DSVI-DGP2 DKR1 DKR2

Boston -2.57(0.09) -2.40(0.07) -2.46(0.09) -2.47(0.05) -2.49(0.05) -2.40(0.05) -2.47(0.06)
Energy -2.04(0.02) -0.63(0.03) -1.65(0.15) -0.73(0.02) -0.74(0.02) -0.46(0.04) -0.68(0.06)
Concrete -3.16(0.02) -3.09(0.02) -3.30(0.12) -3.12(0.01) -3.13(0.01) -2.98(0.12) -3.03(0.05)
Kin8nm 0.90(0.01) 1.15(0.00) 1.15(0.03) 1.34(0.01) 1.38(0.01) 1.24(0.01) 1.23(0.01)
Power -2.84(0.01) -2.75(0.01) -2.78(0.01) -2.75(0.01) -2.73(0.01) -2.83(0.04) -2.75(0.02)
Naval 3.73(0.01) 7.01(0.05) 4.37(0.23) 6.76(0.19) 6.41(0.28) 5.40(0.05) 4.84(0.02)
Protein -2.97(0.00) -2.83(0.00) -2.81(0.01) -2.81(0.00) -2.71(0.00) -2.71(0.02) -2.64(0.01)
Wine red -0.97(0.01) -0.93(0.01) -1.51(0.09) -0.95(0.01) -0.95(0.01) -0.94(0.01) -0.93(0.01)

Table 2: Regression test RMSE for small/medium scale datasets. Reported is the mean
over 10 splits (with standard errors).

Dataset PBP SGP2 AEP-DGP DSVI-DGP1 DSVI-DGP2 DKR1 DKR2

Boston 3.01(0.18) 2.73(0.12) 3.42(0.37) 2.90(0.17) 2.92(0.17) 2.72(0.15) 3.13(0.19)
Energy 1.80(0.05) 0.47(0.02) 1.70(0.42) 0.47(0.01) 0.47(0.01) 0.43 (0.03) 0.57(0.03)
Concrete 5.67(0.09) 5.53(0.12) 7.68(0.90) 5.61(0.10) 5.61(0.10) 5.11(0.42) 5.13(0.40)
Kin8nm 0.10(0.00) 0.08(0.00) 0.08(0.00) 0.06(0.00) 0.06(0.00) 0.075(0.00) 0.074(0.00)
Power 4.12(0.03) 3.79(0.03) 3.99(0.03) 3.79(0.03) 3.79(0.03) 3.90(0.06) 3.82(0.10)
Naval 0.01(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Protein 4.37(0.01) 4.10(0.03) 4.54(0.02) 4.00(0.03) 4.00(0.03) 4.22(0.06) 3.99(0.03)
Wine red 0.64(0.01) 0.62(0.01) 0.64(0.01) 0.63(0.01) 0.63(0.01) 0.61(0.01) 0.62(0.01)

Ji Fu

5.3. Large-Scale Regression

We compare against four scalable GPs: A GP model using the Black-Box Matrix-Matrix
Multiplication (BBMM) inference procedure (Exact GP) (Gardner et al., 2018), Sparse
Gaussian process regression (SGP) (Titsias, 2009), Stochastic Variational Gaussian Pro-
cesses (SVGP) (Hensman et al., 2013), and Latent Variables based three layers Gaussian
Process (LV-3GP) (Salimbeni et al., 2019). We choose these methods because of their
popularity and general applicability. Notice that SGPR and SVGP are two scalable GP
approximations, we quote their results with a typical value for the inducing point (m = 512
for SGPR and m = 1024 for SVGP) (Wang et al., 2019). LV-3GP is an advanced DGPs,
which has obtained state-of-the-art results on a wide range of UCI datasets (Salimbeni
et al., 2019). We use DKR1 and DKR2 addressed in last section. All trials are averaged
over five trials with different splits.

Results. The test log-likelihood and RMSE are shown in Table 3 and 4 respectively.
Our experiments demonstrate that both DKR1 and DKR2 are well scalable for large-scale
problems. The DKR2 outperforms popular GPs methods in most benchmarking datasets
and achieves several state-of-the-art results. For the RMSE, our proposed models also gain
favorable performance. Moreover, we see that the DKR2 always performs better than
DKR1 on these large-scale datasets.

Table 3: Regression test log-likelihood results for large dataset. Reported is the mean over
5 splits (with standard errors)

Dataset Exact GP SGPR SVGP LV-3GP DKR1 DKR2

Bike -0.119(0.044) -0.291(0.032) -0.272(0.018) 3.95 (0.01) 3.049(0.052) 3.510(0.031)
Kin40K 0.258(0.084) -0.087(0.067) -0.236(0.077) 1.27 (0.00) 1.222(0.033) 1.480(0.014)

KeggDirected 0.199(0.381) 1.123(0.016) 0.940(0.020) 2.26 (0.01) 1.635(0.082) 1.675(0.032)
CTslice 0.894(0.188) 0.073(0.097) -1.422(0.005) 2.02 (0.00) 1.830(0.046) 2.074(0.034)
3DRoad -0.909(0.001) -0.943(0.002) -0.697(0.002) -0.48 (0.00) -0.325(0.027) -0.265(0.022)
Song -1.206(0.024) -1.213(0.003) -1.417(0.000) -1.07 (0.00) -1.109(0.002) -1.105(0.002)
Buzz -0.267(0.028) -0.106(0.008) -0.224(0.050) 0.04 (0.00) 0.081(0.010) 0.098(0.005)

HouseElectric 0.152(0.001) — 1.010(0.039) 2.03 (0.00) 1.938(0.048) 2.047(0.016)

Table 4: Regression test RMSE for large scale dataset. Reported is the mean over 5 splits
(with standard errors).

Dataset Exact GP SGPR SVGP LV-3GP DKR1 DKR2

Bike 0.220(0.002) 0.362(0.004) 0.303(0.004) — 0.210(0.072) 0.149(0.001)
Kin40K 0.099(0.001) 0.273(0.025) 0.268(0.022) — 0.141(0.012) 0.085(0.002)

KeggDirected 0.086(0.005) 0.104(0.003) 0.096(0.001) — 0.101(0.006) 0.083(0.002)
CTslice 0.262(0.448) 0.218(0.011) 1.003(0.005) — 0.118(0.023) 0.045(0.003)
3DRoad 0.110(0.007) 0.661(0.010) 0.481(0.002) — 0.500(0.008) 0.465(0.008)
Song 0.807(0.024) 0.803(0.002) 0.998(0.000) — 0.776(0.001) 0.773(0.001)
Buzz 0.288(0.018) 0.300(0.004) 0.304(0.012) — 0.245(0.002) 0.240(0.000)

HouseElectric 0.055(0.000) — 0.084(0.005) — 0.048(0.000) 0.045(0.000)

6. Discussion

Our experiments show that on a wide range of tasks, the proposed model is effective and
scalable. We observe that on small to medium scale dataset the models do not overfit, the
DKR1 is preferred for this case and obtain superior results. Meanwhile, on large datasets

Deep Kernel Regression

both DKR1 and DKR2 perform well and DKR2 gains superior performance than other
kernel methods. Crucially, we do not need to increase the model complexity to fit large-scale
problems. Unlike the DGPs require sophisticated approximate inference, such as doubly
stochastic variational inference and importance-weighted variational inference, our models
work like a black-box and can be trained easily by a SGD algorithm in an end-to-end style
and enable a simple implementation.

We consider the algorithm complexity at the beginning of the algorithm design, and that
is why we introduce the representative points instead of involving all training instances/data
in the model. The major computation comes from the kernel function evaluation: for
single kernel DKR, the computation complexity is O(N ∗ J), where N is the number of
training instances and J is the number of representative points; for multiple kernel DKR,
computation complexity is O(N ∗ J ∗ M), where M is the number of Kernel types. In
our recommended model setting, J = 64, and M = 3, the computation complexity is
smaller than that of conventional kernel methods, which is known as between O(N2) and
O(N3). Moreover, according to the simulation studies, we have found that the proposed
DKR models are highly computation-friendly.

7. Conclusion

In this study, we present a simple but effective way to incorporate the kernel regression
with a deep neural network. We propose effective strategies to construct a small finite set
of representative points. As a consequence, the proposed DKR models only require a small
number of kernels, and thus possess a low model complexity. The proposed improvements,
such as location attention strategy, multiple kernel technique, and norm regularization,
enable the DKR model to perform more robustly and favorably on a wide range of problems.
Furthermore, the proposed DKR models can be implemented and trained in a simple way
using the SGD-type algorithm in an end-to-end style. Compared to recent advanced deep
kernel models, the proposed DKR models gain superior performance on both log-likelihood
and RMSE, particularly for large-scale datasets.

Acknowledgments

This work was supported by National Key R&D Program of China No. 2021YFB3802103.

References

Laurence Aitchison, Adam Yang, and Sebastian W Ober. Deep kernel processes. In ICML,
pages 130–140. PMLR, 2021.

A. Asuncion. Uci machine learning repository, university of california, irvine.
http://www.ics.uci.edu/ mlearn/MLRepository.html, 2007.

Thang D. Bui, Daniel Hernández-Lobato, José Miguel Hernández-Lobato, Yingzhen Li, and
Richard E. Turner. Deep gaussian processes for regression using approximate expectation
propagation. In ICML, 2016.

Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In NeurIPS, 2009.

Ji Fu

Zhenwen Dai, Andreas C Damianou, Javier González, and Neil D Lawrence. Variational
auto-encoded deep gaussian processes. In ICLR, 2016.

Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In AISTATS, pages
207–215. PMLR, 2013.

Andreas C. Damianou, Michalis K. Titsias, and Neil Lawrence. Variational gaussian process
dynamical systems. In NeurIPS, 2011.

Nicki Skafte Detlefsen, Martin Jørgensen, and Søren Hauberg. Reliable training and esti-
mation of variance networks. In NeurIPS, 2019.

Francesco Dinuzzo. Learning functions with kernel methods. PhD thesis, University of Pisa
Pisa, Italy, 2011.

Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G Wil-
son. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration.
NeurIPS, 31, 2018.

Mehmet Gönen and Ethem Alpaydin. Localized multiple kernel learning. In ICML, 2008.

Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. The Journal of
Machine Learning Research, 12:2211–2268, 2011.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS,
2014.

James Hensman, Nicoló Fusi, and Neil Lawrence. Gaussian processes for big data. ArXiv,
abs/1309.6835, 2013.

José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for
scalable learning of Bayesian neural networks. In ICML, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. NeurIPS, 2012.

Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I
Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine
learning research, 5(Jan):27–72, 2004.

Ping Ma, Jianhua Z Huang, and Nan Zhang. Efficient computation of smoothing splines
via adaptive basis sampling. Biometrika, 102(3):631–645, 2015.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472, 1992.

Deep Kernel Regression

César Lincoln C. Mattos, Zhenwen Dai, Andreas Damianou, Jeremy Forth, Guilherme A.
Barreto, and Neil D. Lawrence. Recurrent Gaussian processes. In ICLR, 2016.

Charles A. Micchelli and Massimiliano Pontil. On learning vector-valued functions. Neural
Computation, 17:177–204, 2005.

John Moeller, Sarathkrishna Swaminathan, and Suresh Venkatasubramanian. A unified
view of localized kernel learning. In SDM, pages 252–260. SIAM, 2016.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT press, 2012.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation
in pytorch. 2017.

Ilyes Rebai, Yassine Ben Ayed, and Walid Mahdi. Deep multilayer multiple kernel learning.
Neural Computing and Applications, 27:2305–2314, 2015.

Hugh Salimbeni and Marc Deisenroth. Doubly stochastic variational inference for deep
gaussian processes. NeurIPS, 30, 2017.

Hugh Salimbeni, Vincent Dutordoir, James Hensman, and Marc Deisenroth. Deep gaussian
processes with importance-weighted variational inference. In ICML, pages 5589–5598.
PMLR, 2019.

B. Scholkopf and A. J. Smola. Learning with Kernels: Support vector machines, regulariza-
tion, optimization, and beyond. Cambridge: The MIT Press, 2001.

Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Com-
putation, 13:1443–1471, 2001.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position
representations. In NAACL, 2018.

Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science &
Business Media, 2008.

Michalis K. Titsias. Variational learning of inducing variables in sparse gaussian processes.
In AISTATS, 2009.

Ke Alexander Wang, Geoff Pleiss, Jacob R. Gardner, Stephen Tyree, Kilian Q. Weinberger,
and Andrew Gordon Wilson. Exact gaussian processes on a million data points. In
NeurIPS, 2019.

Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. NeurIPS, 13, 2000.

Andrew Gordon Wilson and Ryan P. Adams. Gaussian process kernels for pattern discovery
and extrapolation. In ICML, 2013.

Ji Fu

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In AISTATS, 2016.

Jinfeng Zhuang, Ivor Wai-Hung Tsang, and Steven C. H. Hoi. Two-layer multiple kernel
learning. In AISTATS, 2011.

Appendix A. Network structures

We provide the neural network structure used in the proposed models, ϕ(x) : Rd → Rp,
ψ(x) : Rd → Rp, α(·) : Rd → RJ , β(·) : Rd → RJ+, η(·) : Rd → RM , where d is the dimension
of input data, p is the dimension of extracted features, J is the number of representative
points and M is the number of different types of kernels. Moreover, X denotes one input
data, n denotes a number of J uniform distributed random data. All of these neural
networks are chosen as MLP networks. The detailed structures are shown in Table 5-9.

Table 5: Network structure of ϕ(·).

inputs layer outputs dimension of outputs activation function

X - - 1*d -
X Linear h1 1*128 ReLU
h1 Linear h2 1*64 ReLU
h2 Linear ϕ(X) 1*p -

Table 6: Network structure of ψ(·).

inputs layer outputs dimension of outputs activation function

n - - J*d -
n Linear h1 J*64 ReLU
h1 Linear h2 J*32 ReLU
h2 Linear ψ(n) J*p -

Table 7: Network structure of α(·).

inputs layer outputs dimension of outputs activation function

X - - 1*d -
X Linear h1 1*64 ReLU
h1 Linear h2 1*128 ReLU
h2 Linear α(X) 1*J -

Table 8: Network structure of β(·).

inputs layer outputs dimension of outputs activation function

X - - 1*d -
X Linear β(X) 1*J ReLU

Table 9: Network structure of η(·).

inputs layer outputs dimension of outputs activation function

ψ(n) - - J*p -
ψ(n) Linear h1 J*32 ReLU
h1 Linear h2 J*3 ReLU
h2 Softmax η(ψ(n)) J*M -

	Introduction
	Related Works
	Background
	Deep Kernel Regression
	Location Attention
	Multiple kernel technique

	Selecting or Learning of Representative Points
	Adaptive Sampling
	Generative Method

	Covariance Estimation
	Learning and Inference
	Regularization
	Training and Inference

	Simulation Study
	Ablation Study
	Results

	Regression Benchmarks
	Results

	Large-Scale Regression

	Discussion
	Conclusion
	Network structures

