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Abstract

Generalized zero-shot learning (GZSL) is still a technical challenge of deep learning. To
preserve the semantic relation between source and target classes when only trained with
data from source classes, we address the quantification of the knowledge transfer from an
information-theoretic viewpoint. We use the prototypical model and format the variables
of concern as a probability vector. Taking advantage of the probability vector representa-
tion, information measurements can be effectively evaluated with simple closed forms. We
propose two information-theoretic loss functions: a mutual information loss to bridge seen
data and target classes; an uncertainty-aware entropy constraint loss to prevent overfitting
when using seen data to learn the embedding of target classes. Simulation shows that,
as a deterministic model, our proposed method obtains state-of-the-art results on GZSL
benchmark datasets. We achieve 21%− 64% improvements over the baseline model – deep
calibration network (DCN) and demonstrate that a deterministic model can perform as
well as generative ones. Furthermore, the proposed method is compatible with generative
models and can noticeably improve their performance.

Keywords: Generalized zero-shot learning; probability vector; prototypical model; mutual
information; uncertainty-aware.

1. Introduction

Deep neural networks have made remarkable progress in object recognition in recent years.
However, most successful deep neural networks are trained under supervised learning frame-
works, which always require a large amount of annotated data for each class (Deng et al.,
2009). Inspired by human’s ability to recognize objects without having seen visual samples,
zero-shot learning (ZSL) has recently gained a surge of interest and has been used in broad
applications (Zhang and Saligrama, 2015; Zhang et al., 2017; Xian et al., 2018a).
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ZSL offers an elegant way to extend classifiers from source categories, of which labeled
images are available during training, to target categories, of which labeled images are not ac-
cessible. The goal of ZSL is to recognize objects of target classes by transferring knowledge
from source classes through the relation in the semantic space, while generalized zero-shot
learning (GZSL), a more general and challenging scenario of ZSL, tries to recognize objects
from the joint set of both source and target classes. Generally, methods for ZSL/GZSL
can be categorized into two major categories - deterministic and generative: Deterministic
methods focus on carefully designed models and semantic relations preserving the knowl-
edge from source classes to target classes, using only the seen data from source classes;
Generative methods leverage generative models/networks to transfer the knowledge of the
paired relation between the semantic representation and visual feature of source classes, in
order to generate the data for target classes. With the generated data, although less reliable,
generative methods always achieve better performance than deterministic methods. Broad
studies show that filling the performance gap between these two methods is a challenge.

Two technical problems as envisioned in deterministic ZSL/GZSL methods (Changpinyo
et al., 2016; Liu et al., 2018): (i) how to bridge source classes to target classes for knowledge
transfer and (ii) how to make predictions on target classes without labeled training data.
Toward the first problem, deterministic ZSL/GZSL methods typically embed the image fea-
tures and the semantic representations into a predefined common embedding space (with
properly defined distances) using a regression model. The choice of embedding space and
the regression model/neural network design are essential to inheriting the semantic relation
while maintaining the discriminative ability. As for the second problem, we need to effec-
tively bridge target classes to source classes and prevent overfitting when using the seen
data of source classes, as they are blind to the semantic representations of target classes.
The seminal work, deep calibration network (DCN) (Liu et al., 2018), introduces an entropy
loss for target classes which brings their semantic representations close to the seen data of
source classes. However, the entropy loss with a calibration parameter is inadequate to
accurately control how much the target classes should learn from the seen data, preventing
the DCN from obtaining superior performance.

In this work, we address the two problems discussed above from an information-theoretic
point of view and make three major contributions: 1) we choose the visual space as the
common embedding space and propose a probability vector (PV) representation, illustrated
in Fig. 1. By considering the semantic representation of either source or target classes as
clustering centroids, the position of a visual feature can be formatted into a soft assignment
PV under the prototypical model (Snell et al., 2017): we characterize the position of the
visual feature indirectly by measuring its assignment probability to the reference points.
Given the PV representation, we can evaluate information-theoretic measurements in closed
forms. Thus, the PV representation significantly benefits us by quantifying several intuitive
relations in the GSZL setting into information-theoretic loss functions; 2) we propose a
mutual information loss to link the semantic representations of target classes to seen data
of source classes. The mutual information consists of two parts: the conditional entropy
encourages the seen data to attach to a certain prototype/centroid of the target classes,
while the entropy term preserving the semantic representations collapses to trivial solutions
when projecting them to the visual space; 3) we propose an uncertainty-aware loss which
prevents overfitting when using seen data of source classes to train the embedding model of
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Figure 1: Illustration of the probability vector representation and information-theoretic loss func-

tions. Circles and diamonds with text names denote the semantic representations of all

classes (source and target classes respectively), small dots denote seen data of source

classes, and unseen data of target classes are unavailable. The probability vector, illus-

trated by the series of color bars, represents the probability that the data is assigned to

different clustering centroids, where the assignment is shown by the arrow. The proposed

loss is intuitively illustrated by the change of bars in the PV representation.

target classes. We define a regularized entropy which allows us to control the uncertainty
of the seen data when assigning them to source and target classes. With the proposed
information-theoretic loss, the change in PV is illustrated by the bars shown in Fig. 1.

We evaluate the performance of our proposed methods on broadly studied benchmark
datasets. Simulation shows that, as a deterministic GZSL model, our proposed method ob-
tains SOTA results, significantly outperforms the recent deterministic models on all bench-
mark datasets, and even performs as well as generative ones. Moreover, our proposed model
is compatible with generative models as well. We present additional loss functions to learn
with generated data by considering their higher uncertainty than seen data. The experi-
ments show that, by incorporating with the generated data from GANs (Xian et al., 2018b;
Vyas et al., 2020), we also gain noticeable improvements over these GAN models.

2. Related works

Deterministic models for GZSL. Deterministic models try to utilize the knowledge
of semantic embedding of both source and target classes sufficiently to make inferences
on visual data. To this end, previous works typically embed visual samples and semantic
embeddings into a common embedding space (Frome et al., 2013; Zhang et al., 2017), such as
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the visual space, the semantic embedding space, or an intermediate space between semantic
and visual domains. The choice of embedding space is critical for model performance.
Previous works (Shigeto et al., 2015; Zhang et al., 2017) show that using visual space instead
of semantic space or any other intermediate space as the common embedding space alleviates
the negative effect of the hubness problem (Lazaridou et al., 2015). The choice of distance
function in the common embedding space also plays an important role. In previous studies
(Ravi and Larochelle, 2017; Liu et al., 2018), Euclidean distance, dot product similarity,
and cosine similarity are broadly applied.

Most ZSL/GZSL methods tend to compensate the lack of visual representation of the
unseen classes with the learning of a semantic preserving mapping. For instance, a fairly
successful approach is based on a bilinear compatibility function that associates visual rep-
resentation and semantic features, such as ALE (Akata et al., 2013), DEVISE (Frome et al.,
2013), SJE (Akata et al., 2015) and ESZSL (Paredes and Torr, 2015). A straightforward
extension is the exploration of a nonlinear compatibility function between visual and seman-
tic spaces, such as a ridge regression (Shigeto et al., 2015). Furthermore, in Annadani and
Biswas (2018), they introduce explicit regularization for semantic preserving but require an
additional threshold for similarity. In DCN (Liu et al., 2018), they introduce an entropy
loss to allow the embedding network of target classes trained by seen data, and a calibration
parameter is required to balance the training of source classes and target classes. In our
work, we introduce a series of information-theoretic loss functions that enable the use of
nonlinear compatibility functions. Meanwhile, these functions allow us to translate several
intuitive assumptions on the semantic relation to easy computing formulas. Moreover, the
conditional entropy in our mutual information loss is consistent with the entropy loss in
DCN, while the new marginal entropy term in our loss makes additional effects to encourage
cluster balancing. The proposed MI loss is a more effective term to bridge the seen data and
unseen class semantic embedding than the conditional entropy used in DCN. Furthermore,
although MI loss has been explored in Han et al. (2020), they use a variational upper bound
of MI as a surrogate instead of a direct evaluation of MI. In our work, leveraging the pro-
totypical model based probability vector representation, we can directly evaluate both the
MI and entropy terms with closed-form expressions. Furthermore, our method significantly
outperforms the work (Han et al., 2020) for all common datasets.

Generative models for GZSL. Generative models have the advantage of utilizing
generated image features to remove blindness caused by the inaccessibility of target classes’
data during training. Variational Autoencoders (VAE) (Kingma and Welling, 2014) and
conditional VAE (Sohn et al., 2015) based generative models are proposed with the aim of
aligning the visual embedding with the semantic embedding (Schonfeld et al., 2019). A VAE
based algorithm can train stably but fails to capture the complex distribution (Bao et al.,
2017), leading to unsatisfied results. The generative adversarial network (GAN) (Goodfellow
et al., 2014) has the advantage of generating more diverse data. The f-CLSWGAN (Xian
et al., 2018b) is the model including a variant of an improved WGAN (Arjovsky et al., 2017)
and a softmax classifier. f-CLSWGAN synthesizes visual features conditioned on semantic
representations, offering a shortcut directly from a semantic descriptor to a class-conditional
feature distribution. Recently, advanced GAN models (Li et al., 2019a; Narayan et al., 2020;
Vyas et al., 2020) have been proposed that have outstanding performance in GZSL. Despite
the favorable performance, GAN always suffers from mode collapse problems and has an
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unstable training phase. Fortunately, an improved deterministic model incorporated with
a generative model has shown advanced performance (Tong et al., 2019). In this work, we
notice that the synthetic data from the generative model are generally less reliable than
the seen data, so the proposed uncertainty-aware entropy constraint loss is also applicable
here. Thus, instead of constructing a complex generative model, we train the proposed
model additionally with generated data from known GANs, and obtain competitive results
compared to recent advanced generative models.

3. Generalized Zero-shot learning

Following the notation in Liu et al. (2018), we first present the definition of generalized

zero-shot learning as follows: suppose that we have the seen data D =
{
(x(n), y(n))

}N
n=1

,

where x(n) ∈ RP is the feature of the n-th image in the visual space RP and y(n) ∈ S is
the label from the source classes S = {1, ..., S}. In this study, we assume that the image
feature x (also named visual embedding) has already been extracted by a pre-trained deep
convolutional network, such as ResNet (He et al., 2016). Let T = {S + 1, ..., S + T} denote
the target classes, where no seen data is available in the training phase. For each class
c ∈ S ∪ T , let vc ∈ RQ denote the semantic representation in the semantic space RQ,
such as word embedding generated by Word2Vec (Mikolov et al., 2013) or visual attributes
annotated by humans to describe visual patterns (Lampert et al., 2014), and let V =
{vc}S+Tc=1 denote the set of semantic representations. In the test phase, we predict unseen

data D′ =
{
x(m)

}N+M

m=N+1
of M points from either source or target classes. The task of ZSL

is that, given D and {vc}Sc=1, learn a model ϕ : x → y to classify D′ over target classes T .

The task of GZSL is that, given D and {vc}S+Tc=1 of both source and target classes, learn a
model f : x→ y to classify D′ over both source and target classes S ∪ T .

4. Proposed methods

4.1. Prototype model

To link the visual embedding of the seen data to the class semantic representations, an
intuitive way is to view the semantic representations (or their projection in another space)
as the centroids of their corresponding classes and learn to push the visual embedding
to surround the centroid of its belonging class. In this work, we utilize the prototypical
model/networks (Snell et al., 2017) to realize this goal. Prototypical networks learn a
metric space in which classification can be performed by computing distances between
samples and the prototype representation (or centroid) of each class. Under the GZSL
settings, we assume that the semantic representation vc or its projection by a network or
a liner model ψ(vc) in a common embedding space, RK , is the prototype of each class.
For the image feature x, we assume a network ϕ(x) to transform the image feature to the
same space of the prototype ψ(vc). Given a distance function d : RK × RK → [0,+ ∝)
to measure the distances between the samples and the prototypes, the prototype model
produces a soft assignment probability vector (PV), p = [p1(y = 1|x), ..., pC(y = C|x)]T ,
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over the prototypes of each class for the data sample x,

pc(y = c|x) = exp[−d(ϕ(x), ψ(vc))]∑
c′ exp[−d(ϕ(x), ψ(vc′))]

. (1)

In this formulation of soft assignment PV p, two concerns are presented, namely the selection
of the specified embedding metric space and the specification of the distance function in
that space.

4.1.1. Choice of common embedding space

Motivated by previous works (Shigeto et al., 2015; Zhang et al., 2017), we map the semantic
representations into the visual space such that the semantic relation between the mapped
semantic representations and the visual features reflect the relation between their corre-
sponding classes. We propose a multilayer perceptrons (MLP) (Rumelhart et al., 1986) as
the compatibility function to map semantic representations to the visual space ψ : vc → z,
where z ∈ RP . Therefore, the soft assignment PV p expression becomes

pc(y = c|x) = exp[−d(x, ψ(vc))]∑
c′ exp[−d(x, ψ(vc′))]

. (2)

In previous works (Akata et al., 2013; Frome et al., 2013; Tong et al., 2019), they use a
linear mode to project semantic representations into another space, since a linear model
makes it easy to maintain semantic relationships. However, MLP is more flexible and can
learn the nonlinear relation between the original semantic representations and the mapping
in the visual space. To prevent unreasonable nonlinear transform, we will introduce the
information-theoretic loss functions in Section 4.2.

4.1.2. Choice of distance function

The distance function d(·, ·) plays another important role in the prototypical model, while
the Euclidean distance, cosine similarity, and dot product similarity based distances have
been used in previous works (Snell et al., 2017; Ravi and Larochelle, 2017; Liu et al., 2018).
Generally, when we map the semantic representations to the visual space, it is a too strong
assumption that the mapped semantic representation can be well aligned to the visual
feature under Euclidean distance. Thus, in this work, we utilize the dot product similarity
based distance, besides, dot product similarity has more degrees of freedom than the cosine
similarity. In the simulation study (Section 5.3), we show the advanced performance of the
dot product based distance function.

Furthermore, as will be addressed in Section 4.2, when we bridge the semantic embedding
of target classes to the seen data, the uncertainty of the learned model should be higher
than that of learning the semantic embedding of source classes by the seen data. To reflect
this viewpoint, we propose an asymmetrical dot product based distance

d(x, ψ(vc)) = −max{m < x,ψ(vc) >, 0} (3)

where m = m1 when c ∈ S and m = m2 when c ∈ T . The setting of m is similar to
the calibration parameter ρ in the DCN model (Liu et al., 2018), which was introduced to
balance the confidence of source classes and the uncertainty of target classes.
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4.1.3. Cross entropy loss for seen data

Given the expression of PV, p = [p1(y = 1|x), ..., pS(y = S|x)]T with pc(y = c|x) =
exp[−d(x,ψ(vc))]∑S

c′=1 exp[−d(x,ψ(vc′ ))]
for each c ∈ S, and the label y of the seen data from source classes, we

can define the loss function to train the prototypical model. To be specific, given the seen
data x(n) ∈ D from source classes S, we can learn the proposed mapping network ψ(·) by
minimizing the cross entropy loss,

LCE = − 1

N

N∑
n=1

S∑
c=1

y(n)c log pc(x
(n)). (4)

However, only the cross entropy loss is insufficient to train a prototypical model for GSZL.
Therefore, we propose information-theoretic loss functions to boost the performance of a
deterministic prototypical model.

4.2. Information-theoretic loss functions

The proposed information-theoretic loss functions are specified as follows: 1) to bridge the
source and target classes through the seen data of source classes, we propose the mutual
information loss; 2) to reflect the factor that the seen data should be closer to prototypes
of sources classes rather than target classes, we propose an entropy constraint loss.

4.2.1. Mutual information loss to link seen data and target classes

To link the semantic embedding of target classes to visual images of source classes, we
leverage an intuitive factor that each seen image can be classified as a target class that
is most similar to the image’s label in the source classes, rather than being classified to
each target class with an equal assignment probability (or say equal uncertainty) (Liu
et al., 2018). Here, we translate this intuitive factor into a formal information-theoretic
measurement and let the mutual information MI(x, c), quantify the relationship (or say
closeness) between the seen data x and the target class c. With the prototypical model
discussed in Section 4.1, we can also obtain the probability vector that the seed data x
belong to the prototypes of target classes, pc(x) = exp[−d(x,ψ(vc))]∑S+T

c′=S+1
exp[−d(x,ψ(vc′ ))]

. To bridge the

seen data and the prototypes of target classes, we minimize the MI loss as follows,

LMI = −MI(x, c) = −H(c) + H(c|x) =
∑
c

Pc logPc + Ex

[
−
∑
c

pc(x) log pc(x)

]

≈
S+T∑
c=S+1

(
1

N

N∑
n=1

pc(x
(n))

)
log

(
1

N

N∑
n=1

pc(x
(n))

)
− 1

N

N∑
n=1

S+T∑
c=S+1

pc(x
(n)) log pc(x

(n)) (5)

where Ex[·] denotes the expectation with respect to x, which is always approximated by
the Monte Carlo approach, as sample {x(n)}Nn=1 are available here. Pc = Ex[pc(x(n))] ≈
1
N

∑N
n=1 pc(x

(n)). Pc can be viewed as a marginal assignment probability that a sample
data belongs to a number of T target classes. Furthermore, increasing the marginal entropy
H(c) encourages cluster balancing, which prevents trivial solutions that map the semantic
embedding of all target classes to a single prototype in the visual space.
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The second term H(c|x) in eqn (5), commonly called conditional entropy, measures the
uncertainty that a seen visual feature belongs to the target classes. Conditional entropy,
here indicated by LorgEnt ≜ − 1

N

∑N
n=1

∑S+T
c=S+1 pc(x

(n)) log pc(x
(n)), can significantly improve

prediction over target classes while having little harm on classifying seen data (Liu et al.,
2018). Here, we further introduce a margin for this conditional entropy, that

LEnt =
1

N

N∑
n=1

[
−1

log2(T )

S+T∑
c=S+1

pc(x
(n)) log pc(x

(n))−margin1

]
+

(6)

where the term log2(T ) denotes the information capacity of T bits and [x]+ := max{0, x}.
Here, we propose to regularize the entropy by dividing the information capacity term, as a
consequence, the resulting regularized entropy varies only in a small fixed interval (0, C0],
where C0 = log(n)/ log2(n), ∀n > 1.0 and n ∈ R. Therefore, the selection of margin1
becomes easy and consistent, even though the number of target classes varies among different
datasets. We also apply regularization for the marginal entropy H(c), by dividing the term
log2(T ). Finally, the improved MI loss becomes,

LMI =
1

log2(T )

S+T∑
c=S+1

Pc logPc + LEnt (7)

4.2.2. Entropy constraint loss for uncertainty-aware training

When training the embedding network of target classes using the seen data from source
classes, a notable factor is that the data seen, to some extent, are out of distribution data
for target classes. Therefore, the uncertainty of classifying the seen data to target classes
should be larger than that of classifying them to source classes. By counting this factor, we
propose an information constraint loss to control the entropy of the seen image with respect
to the prototypes of source classes to be less than that with respect to the prototypes of
target classes. Let us define the regularized entropy terms as follows:

Eu =
−1

log2(T )

S+T∑
c=S+1

pc(x
(n)) log pc(x

(n))

where pc(x) =
exp[−d(x,ψ(vc))]∑S+T

c′=S+1
exp[−d(x,ψ(vc′ ))]

is the PV that assigns the seen data to each prototype

of the target classes and

Es =
−1

log2(S)

S∑
c=1

pc(x
(n)) log pc(x

(n))

where pc(x) =
exp[−d(x,ψ(vc))]∑S

c′=1 exp[−d(x,ψ(vc′ ))]
is the PV that assigns the seen data to each prototype

of the source classes. Then, the uncertainty-aware entropy constraint loss is defined as

LEC =
1

N

N∑
n=1

[Eu − (Es +margin2)]+ (8)

This loss reflects the expectation that the entropy Eu should be greater than the sum of
Es plus a margin margin2. As discussed in the previous section, the regularized entropy Eu

and Es vary in the interval (0, C0], so it is not difficult to set a proper value for margin2.
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4.3. Learning and inference

We combine all loss functions with different weights λ1:2. Therefore, we optimize the pa-
rameters of our prototypical model by jointly learning the following loss functions:

LD = LCE + λ1LMI + λ2LEC (9)

The network parameters in ψ(·) can be efficiently optimized using the SGD or Adam algo-
rithm with the auto-differentiation technique supported in PyTorch (Paszke et al., 2017).

In the test stage, the predicted class y(x(n)) of the image feature x(n) is given by y(x(n)) =

argmaxpc(x
(n)), where pc(x

(n)) = exp[−d(x,ψ(vc))]∑
c′ exp[−d(x,ψ(vc′ ))]

and ψ(·) is the trained network that

maps semantic embedding to the visual feature space. Therefore, the prediction is made
over both source and target classes, as c ∈ S ∪ T in generalized zero-shot learning. In
conventional zero-shot learning, we only need the prediction over target classes c ∈ T .

4.4. Cooperate with generative models

Most generative methods emphasize the development of a sophisticated model to generate
more ‘realistic’ data for target classes. However, effective utilization of generated data is still
largely ignored. We noticed that the synthetic data from the generative model are gener-
ally less reliable than the seen data, so we propose an uncertainty-aware entropy constraint
to select the generated data before they are applied in training the discriminative model.
Specifically, we put the generated data {x̃(m)}Mm=1 in the prototypical model where the

prototypes are from target classes and obtain the PV, pc(x̃
(m)) = exp[−d(x̃(m),ψ(vc))]∑S+T

c′=S+1
exp[−d(x̃(m),ψ(vc′ ))]

.

Then, we define the uncertainty of the generated data by the regularized entropy, Ẽu(x̃
(m)) =

−1
log2(T )

∑S+T
c=S+1 pc(x̃

(m)) log pc(x̃
(m)). After that, we select the generated data using the cri-

terion that Ẽu(x̃
(m)) < margin3 with a predefined threshold margin3. This uncertainty

based selection can prevent improperly generated data from negatively affecting the predic-

tion of target classes. Let x̃sel = {x̃(m)
sel }

Ms
1 denote the selected generated data, then we can

train the prototypical model using these data via a cross entropy loss,

L̃CE(x̃) = − 1

Ms

Ms∑
m=1

S+T∑
c=S+1

ỹ(m)
c log pc(x̃

(m)
sel ), (10)

where the label ỹc (c ∈ T ) is known in the generation of the data.
Moreover, we can also link the generated data to prototypes of source classes. To

this end, we define another mutual information loss as eqn (5), the difference is that the

prototypes change from target classes to source classes, pc(x̃) =
exp[−d(x̃,ψ(vc))]∑S

c′=1 exp[−d(x̃,ψ(vc′ ))]
, that

L̃MI(x̃) =

S∑
c=1

(
1

Ms

Ms∑
m=1

pc(x̃
(m)
sel )

)
log

(
1

Ms

Ms∑
m=1

pc(x̃
(m)
sel )

)
− 1

Ms

Ms∑
m=1

S∑
c=1

pc(x̃
(m)
sel ) log pc(x̃

(m)
sel )

(11)
Finally, combine all loss functions, eqs (9), (10) and (11) weighted by γ1 and γ2, and

then we obtain the loss to train the proposed model with both seen data x and generated
data x̃,

LG = LD + γ1L̃CE(x̃) + γ2L̃MI(x̃). (12)
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5. Experiments

5.1. Experimental settings

Datasets. The benchmark datasets are briefly described as follows: Animals with At-
tributes (AwA1) (Lampert et al., 2014) is a widely used dataset for ZSL/GZSL, which
contains 30,475 images from 50 different animal classes. A standard split into 40 source
classes and 10 target classes is provided in Lampert et al. (2014). A variant of this dataset
is Animal with Attributes2 (AwA2) (Xian et al., 2017) which has the same 50 classes as
AwA1, but AwA2 has 37,322 images in all, which do not overlap with images in AwA1.
Caltech-UCSD-Birds-200-2011 (CUB) (Wah et al., 2011) is a fine-grained dataset with a
large number of classes and attributes, containing 11,788 images from 200 different types of
birds annotated with 312 attributes. The split of CUB with 150 source classes and 50 tar-
get classes is provided in Akata et al. (2016). SUN Attribute (SUN) (Patterson and Hays,
2012) is another fine-grained dataset, containing 14,340 images from 717 types of scenes
annotated with 102 attributes. The split of SUN with 645 source classes and 72 target
classes is provided in Lampert et al. (2014). Attribute Pascal and Yahoo (aPY) (Farhadi
et al., 2009) is a small-scale dataset with 64 attributes and 32 classes(20 Pascal classes as
source classes and 12 Yahoo classes as target classes).

Image features. Due to the variations in image features used by different zero-shot
learning methods, for a fair comparison, we use the widely used features: 2048-dimensional
ResNet-101 features provided by Xian et al. (2018a).

Semantic representations. We use the per-class continuous attributes provided with
the datasets of aPY, AwA, CUB and SUN. Note that we can also use Word2Vec represen-
tations as class embeddings (Mikolov et al., 2013).

5.2. Implementation Details

The compatibility function in the prototypical model is implemented as MLP. The input
dimension of the attribute embedding depends on the problem. The MLP has 2 fully
connected layers with 2048 hidden units. We use LeakyReLU as the nonlinear activation
function, Dropout function, for the first layer, and Tanh for the output layer to squash
the predicted values within [−1, 1]. For the distance eqn (3) in the prototypical model,
experimentally we set m1 = 0.5 and m2 = 1.0 for the asymmetric dot product distance.
The batch size of the visual feature is set to 512. For optimization, we use Adam optimizer
(Kingma and Ba, 2015) with a constant learning rate 0.001.

We design a cross-validation for the selection of hyperparameters in loss functions: first,
we divide the source classes S into two subsets S1 and S2 where we keep #S1

#S2
≈ #S

#T , where
#S represents the number of elements in the set S; then we discard the seen data (image
features) of S2 and treat them as target classes denoted by T1; let the seen data of S1, the
semantic representation of both S1 and T1 to format another GZSL problem and choose
hyperparameters that achieve the best performance in this new GZSL setting; finally we use
the chosen hyperparameters for the original GZSL problem. By this cross-validation process,
we choose the value of λ2 as 0.5 for all datasets; while the value of λ1 depends loosely on the
data sets, we choose 0.05 for dataset AwA1/2, aPY, CUB, and a larger value 0.5 for dataset
SUN. The margin value is chosen as follows: margin1 = 0.15 and margin2 = 0.05 for dataset
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Table 1: Comparison of the contribution of different approaches

Methods AWA1 AWA2 CUB SUN aPY

LCE+L
org
Ent (DCN (Liu et al., 2018)) - 39.1 38.7 30.2 23.9

LCE (space C ) 20.2 23.7 35.9 29.6 17.4
+LEnt (space A) 46.3 51.7 41.8 31.6 32.4
+LEnt (space B) 48.3 54.2 42.8 34.7 32.4
+LEnt (space C ) 50.8 56.2 43.3 36.3 31.5
+LMI (space C ) 51.1 58.2 45.9 38.6 33.7
+LMI+LEC(space C ) 55.7 61.6 46.6 39.5 37.8

aPY, CUB and SUN, while margin1 = 0.15 and margin2 = 0.0 for AwA1 and AwA2. For
hyperparameters in the loss function eqn (12) when incorporated with generated data, we
use a similar cross-validation process and obtain the hyperparameter setting: margin3 = 0.5,
γ1 = 0.2 and γ2 = 0.01.

Following the Proposed Split (PS) in the Rigorous Protocol (Xian et al., 2017), we com-
pare three accuracies: ACCts, the accuracy of all unseen images in target classes; ACCtr,
the accuracy of some seen images from source classes that are not used for training;the har-
monic mean of the two accuracies as ACCH = 2(ACCts ∗ACCtr)/(ACCts+ACCtr), which
is used as the final criterion to favor high accuracies on both source and target classes.

5.3. Ablation Study

We investigate how each strategy in the proposed approach contributes to the model per-
formance for GZSL. We include the result of the DCN model and the prototypical model
trained with only cross entropy loss as baseline methods. We compare the choice of common
embedding spaces, attribute space, and feature space, and the choice of different distance
functions. We represent the combinations as follows: space A uses the attribute space as the
embedding space and uses dot product similarity based distance; space B uses the visual
space as the embedding space and uses cosine similarity based distance; space C uses the
visual space as the embedding space and uses the distance based on dot product similarity.
Furthermore, we show the contribution of different losses: LEnt, LMI and LEC.

All simulation results are shown in Table 1, where we quote the result of the DCN
directly from. The DCN model introduces an entropy regularization LorgEnt for bridging seen
data and target classes, which is similar to the LEnt. The DCN uses the dot product distance
and projects the feature and attribute onto a common space. The third to fifth rows show
that the entropy loss LEnt significantly improves the performance of GZSL, compared to the
result obtained with only the cross entropy loss LCE. It should be noted that the results of
the third to fifth rows significantly outperform the DCN, which could be due to the factors
that it is easier to train the model using the original attribute/feature space rather than
looking for a common space, and the proposed entropy loss LEnt seems more effective than
the entropy regularization LorgEnt in the DCN model. Furthermore, the third to the fifth
rows demonstrate the importance of choosing the common embedding space and distance
function: using the visual feature space rather than the semantic space as the embedding
space gains strong improvement; using dot product similarity based distance yields better
performances than using cosine similarity based distance. Comparing the sixth row with
the fifth row, we show that the proposed marginal entropy H(c) in LMI brings additional
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Table 2: Results of conventional zero-shot learning

Method SUN CUB AwA2 aPY

DAP(Lampert et al., 2014) 39.9 40.0 46.1 33.8
CONSE(Mohammad et al., 2014) 38.8 34.3 44.5 26.9
ALE(Akata et al., 2013) 58.1 54.9 62.5 39.7
DEVISE(Frome et al., 2013) 56.5 52.0 59.7 39.8
SJE(Akata et al., 2015) 53.7 53.9 61.9 32.9
ESZSL(Paredes and Torr, 2015) 54.5 53.9 58.6 38.3
SYNC(Changpinyo et al., 2016) 40.3 55.6 46.6 23.9
PSR(Annadani and Biswas, 2018) 61.4 56.0 63.8 38.4
DLFZRL(Tong et al., 2019) 59.3 57.8 63.7 44.5
Proposed 62.1 57.6 64.6 44.7

improvements. Comparing the results in the seventh and sixth rows, we show that the
entropy constraint loss LEC further boosts the model performance.

5.4. Conventional zero-shot learning results

We investigate the proposed method for conventional ZSL that only recognizes target classes
in the test stage. And we compare the result of our method with several state-of-the-art
results from recent works (Akata et al., 2015; Paredes and Torr, 2015; Changpinyo et al.,
2016; Annadani and Biswas, 2018; Tong et al., 2019). As shown in Table 2, the proposed
approach compares favorably with existing approaches in the literature, obtaining state-of-
the-art results on SUN, AwA2 and aPY datasets. On the CUB dataset, our result is 2%
lower than DLFZRL (Tong et al., 2019).

5.5. Generalized zero-shot learning results

Comparison with deterministic models.

We compare the performance of our proposed model with several recent deterministic models
for GZSL. Taking DCN (Liu et al., 2018) as the baseline model, as shown in Table 3, our
method gains superior accuracy compared to other deterministic models on all datasets:
it obtains 21% − 64% improvements over DCN and significantly outperforms a previous
state-of-the-art deterministic model-DLFZRL (Tong et al., 2019). In addition, we observe
that our deterministic model obtains results comparable to some generative models, such
as f-CLSWGAN and DLFZRL+softmax.

Comparison with generative models.

We investigate the performance of our proposed method incorporating three generative
models: a baseline model: f-CLSWGAN (Xian et al., 2018b), and two advanced models:
LsrGAN (Vyas et al., 2020), TFVAEGAN (Narayan et al., 2020). Seen image features
and class-level attributes are used to train GAN models, and image features of unseen
classes can be generated by unseen class-level attributes. Including the generated features
for the target classes into the whole training, we train the model by the loss function
defined in eqn (12). As shown in Table 3, our proposed model significantly outperforms
the baseline model f-CLSWGAN with 7% − 13% improvements. Compared to two similar
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Table 3: Results of Generalized Zero-Shot Learning on four datasets under PS.

Methods
AwA2 CUB SUN aPY

ts tr H ts tr H ts tr H ts tr H

Non-Generative Models
ALE(Akata et al., 2013) 16.8 76.1 27.5 23.7 62.8 34.4 21.8 33.1 26.3 4.6 73.7 8.7
DeViSE(Frome et al., 2013) 13.4 68.7 22.4 23.8 53.0 32.8 16.9 27.4 20.9 4.9 76.9 9.2
ZSKL(Zhang and Koniusz, 2018) 18.9 82.7 30.8 21.6 52.8 30.6 20.1 31.4 24.5 10.5 76.2 18.5
DCN(Liu et al., 2018) 25.5 84.2 39.1 28.4 60.7 38.7 25.5 37.0 30.2 14.2 75.0 23.9
DLFZRL(Tong et al., 2019) - - 45.1 - - 37.1 - - 24.6 - - 31.0
PQZRL(Li et al., 2019b) 31.7 70.9 43.8 43.2 51.4 46.9 27.9 64.1 35.1 35.3 35.2 38.8
Proposed 52.7 74.1 61.6 41.6 54.3 47.1 41.7 37.4 39.5 30.1 50.5 37.8

Generative Models
f-CLSWGAN(Xian et al., 2018b) 52.1 68.9 59.4 43.7 57.7 49.7 42.6 36.6 39.4 - - -
DLFZRL+softmax(Tong et al., 2019) - - 60.9 - - 51.9 - - 42.5 - - 38.5
F-VAEGAN-D2(Xian et al., 2019) 57.6 70.6 63.5 48.4 60.1 53.6 45.1 38.0 41.3 - - -
CADA-VAE(Schonfeld et al., 2019) 55.8 75.0 63.9 51.6 53.5 52.4 47.2 35.7 40.6 - - -
GDAN(Huang et al., 2019) 32.1 67.5 43.5 39.3 66.7 49.5 38.1 89.9 53.4 30.4 75.0 43.4

LisGAN(Li et al., 2019a) 52.6 76.3 62.3 46.5 57.9 51.6 42.9 37.8 40.2 - - -
LsrGAN (Vyas et al., 2020) 54.6 74.6 63.0 48.1 59.1 53.0 44.8 37.7 40.9 - - -
RFF-GZSL(Han et al., 2020) 59.8 75.1 66.5 52.6 56.6 54.6 45.7 38.6 41.9 - - -
TF-VAEGAN(Narayan et al., 2020) 59.8 75.1 66.6 52.8 64.7 58.1 45.6 40.7 43.0 - - -
DR-VAE(Li et al., 2021) 56.9 80.2 66.6 51.1 58.2 54.4 36.6 47.6 41.4 - - -
DGN(Xu et al., 2021) 60.1 76.4 67.3 53.8 61.9 57.6 48.3 37.4 42.1 36.5 61.7 45.9
IZF(Shen et al., 2020) 60.6 77.5 68.0 52.7 68.0 59.4 52.7 57.0 54.8 42.3 60.5 49.8

IAS(Chou et al., 2021) 65.1 78.9 71.3 41.4 49.7 45.2 29.9 40.2 34.3 35.1 65.5 45.7

ZLAP-GZSL(Chen et al., 2022) 64.8 80.9 72.0 71.2 66.2 68.6 50.9 35.7 42.0 38.3 60.9 47.0

f-CLSWGAN+Proposed 56.4 83.2 67.2 52.1 55.8 53.9 53.3 35.0 42.3 37.1 57.7 45.2
LsrGAN+Proposed 60.4 79.1 68.5 51.7 57.4 54.3 49.0 37.2 42.3 35.1 59.7 44.2
TF-VAEGAN+Proposed 62.4 73.8 67.6 53.0 64.8 58.3 47.3 41.0 43.9 38.2 57.5 45.9

methods: DLFZRL+softmax (Tong et al., 2019) which also uses a deterministic model-
DLFZRL combined with f-CLSWGAN, and RFF-GZSL (Han et al., 2020) which uses a
mutual information-based approach to learn the redundancy free information to facilitate
f-CLSWGAN, our proposed method gains superior performance. Furthermore, the last two
rows show that our proposed method is also broadly applicable to improve the performance
of an advanced generative model. Moreover, our results are also comparable with state-of-
the-art generative models; unlike some generative models (Huang et al., 2019; Shen et al.,
2020; Chou et al., 2021), which may gain superior results on one or two datasets but inferior
results on other datasets, our proposed method obtains favorable results on all datasets.

6. Conclusion

This paper addresses information-theoretic loss functions to quantify knowledge transfer
and semantic relations for GZSL/ZSL. Using the proposed probability vector representation
based on the prototypical model, the proposed loss can be effectively evaluated with simple
closed forms. Experiments show that our approach yields state-of-the-art performance for
the deterministic approach for both the GZSL and the conventional ZSL tasks. Moreover,
by incorporating the generated data from known GAN models, the proposed method also
gains favorable performance. One limitation of this work is that we need pretty much extra
cross-validation to select the hyperparameters; Another limitation is that the loss functions
have a certain correlation, so further study is needed to simply the loss functions while
keeping similar performance.
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