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Abstract
We consider the challenge of establishing relationships between samples in distinct domains, A
and B, using supervised data that captures the intrinsic relationships within each domain. In other
words, we present a semi-supervised setting in which there are no labeled mixed-domain pairs
of samples. Our method is derived based on a generalization bound and incorporates supervised
terms for each domain, a domain confusion term on the learned features, and a consistency term for
domain-specific relationships when considering mixed-domain sample pairs. Our findings show-
case the efficacy of our approach in two disparate domains: (i) Predicting protein-protein interac-
tions between viruses and hosts by modeling genetic sequences. (ii) Forecasting link connections
within citation graphs using graph neural networks.
Keywords: Unsupervised Domain Adaptation, Cross-domain learning, Protein-Protein Interac-
tions, Graph Neural Networks.

1. Introduction

A key element to the success of deep learning methods is the advent of effective transfer learn-
ing. While many classical machine learning methods notoriously require that the test and training
distributions be as close as possible, the generalization ability of deep neural networks meant that
supervised or unsupervised learning in a source domain would greatly benefit downstream learning
in a target domain.

Naturally, some of the knowledge gained in the source domain is irrelevant to the target domain
and one has to selectively employ such knowledge, e.g., by only using the lower layers, fine-tuning
the knowledge to align with the target domain, or tailoring the initial training in the source domain
to suit the characteristics of the target domain.

The final category of techniques is known as domain adaptation. They have solid theoretical
foundations, with many of the leading methods derived based on generalization bounds that employ
terms arising from the triangular inequality: the error of the learned function on the target domain is
smaller than the sum of (i) the error of that function on the source domain, and (ii) a term quantifying
the maximal discrepancy between the domains for the relevant family of functions.

In conventional learning in the first domain, the primary focus is on minimizes the first term. The
second term is minimized by providing the learned function with features that are domain-agnostic,
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i.e, features that do not disclose the domain from which the sample originates. Many contemporary
methods enforce this constraint through the incorporation of adversarial terms.

We present a new type of domain adaptation problem, where we learn a relation between pairs
of samples. We focus on symmetric relations and discrete labels. The pair of samples can be, for
example, ’equivalent’ or not, ’same’ or ’different’, and ’connected’ or not.

Three sets of training samples are given: (i) a set of labeled pairs in a first domain A (all samples
of all pairs are from this domain), (ii) a set of similar pairs in a second domain B, and (iii) a set of
unlabeled mixed pairs, where one sample is from each domain. For the third set, we do not need to
know which sample in each pair comes from which domain. If the third set cannot be obtained, we
can create a virtual set by mixing samples from the first two sets to create mixed-domain pairs.

The goal is to learn a classifier that estimates the relation for mixed pairs of samples, from the
distribution from which the third set is obtained.

As an example, consider the problem of protein interaction networks in humans and viruses.
Biologists have constructed graphs that represent the interactions between proteins within an or-
ganism. These graphs indicate whether two proteins interact or not. Given such connectivity maps
for humans and viruses, our objective is to deduce whether a specific human protein can interact
with a particular virus protein. This information, which one can validate using several advanced lab
methods, is relevant for understanding infection mechanisms.

Other computational problems that share our settings include, for example, knowledge-graphs
relationships between different languages, cross-domain recommendations (e.g., books to movies),
connecting user data across multiple services, or identifying related content in news-sites’ articles
and forums.

Our algorithm is based on training two relation-classifiers, one in each domain, and applying
both to the mixed samples, considering their averaged prediction. In this method, domains A and B
are treated in a symmetrical manner.

The method proposed is based on a new generalization bound that we derive. The error of the
combined classifier on mixed samples is bounded by terms that evaluate the performance of each
classifier on its domain, a term that assesses the consistency between the two learned classifiers in
the mixed domain, and additional terms that ensure that the encoding of pairs of samples is agnostic
to their domain: A, B, or mixed.

The terms of the generalization bound are readily converted to loss terms, which are then applied
to a compound neural network. This network includes a feature extraction network, which processes
pairs of samples as input, two classifiers that are applied on top of the resulting representations, and
a domain-confusion network that is trained through adversarial techniques.

We demonstrate the effectiveness of our method in two markedly diverse problem domains:
the virus-host problem mentioned above, and graph link prediction, where we separate the vertices
based on category and predict inter-group links after training on labeled intra-group links. In each
case, our proposed method is superior to the alternatives by a sizable margin.

2. Related Work

2.1. Unsupervised Domain Adaptation

In unsupervised domain adaptation, the algorithm is tasked with learning a labeling function over a
target domain based on two inputs: (i) a dataset of labeled samples from a source domain and (ii)
a dataset of unlabeled samples from a target domain. Earlier attempts suggested various statistical
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methods for selecting features that are predictive and meaningful in both domains (Blitzer et al.,
2006; Chelba and Acero, 2006; Ando and Zhang, 2005). Theoretical analysis of domain adaptation
generalization bounds by (Ben-David et al., 2006; Mansour et al., 2009; Ben-David et al., 2010)
suggested minimizing the discrepancy between the distribution of the features on both domains.

Following the rise of neural networks and their success in various predictive tasks, approaches
trying to reduce the discrepancy between domains using a neural network and based on back-
propagation optimization have arisen, e.g., (Long et al., 2015, 2017) have suggested minimizing
the discrepancy itself using an efficient statistical estimation.

Following the Generative Adversarial Network (GAN) framework (Goodfellow et al., 2014),
(Ganin et al., 2016; Tzeng et al., 2017) minimize the discrepancy using adversarial learning. These
methods employ a domain classifier that discriminates between the encoded features extracted from
the two domains, and a feature extraction mechanism that tries to fool this classifier while maxi-
mizing the classification score on the source domain. Adversarial methods have led to a remarkable
increase in performance over the previous methods.

2.2. Protein-Protein Interactions (PPIs)

Proteins are sequences of amino-acids, which are used for various functions inside organisms. Many
proteins interact with one another. It was estimated by (Stumpf et al., 2008) that there are 650, 000
PPIs in the human body alone, which is still relatively sparse when considering that there are ap-
proximately 400, 000 proteins in the human body. Aside from intra-species PPI, many viruses and
bacteria have proteins that interact with their host’s proteins. The understanding of those cross-
domain interaction networks sheds light on infection mechanisms and on host cell disruption and
can promote drug design efforts.

Viewing proteins as sequences of amino-acids, one may use various tools developed for 1D se-
quence analysis in Natural Language Processing (NLP) to study proteins, including CNNs, LSTMs,
and multi-layer perceptrons. Following the emerging dominance of pretrained transformers in NLP
(Vaswani et al., 2017), (Rao et al., 2019; Rives et al., 2019; Elnaggar et al., 2020) pretrained trans-
formers for protein amino-acid sequences using masked language modeling and showed their effi-
ciency for various protein prediction tasks.

Earlier attempts to employ machine learning for virus-host PPIs prediction relied on classic
machine learning approaches, looking only at small interaction networks of humans with specific
families of viruses. More recently, (Ahmed et al., 2018) used a multi-layered neural network to
predict interactions between humans and Bacillus Anthracis, and (Yang et al., 2020) employed a
doc2vec embedding along with a random forest classifier to infer the interaction network of virus-
humans, using the amino-acid sequences as doc2vec inputs. All of these previous attempts relied
on supervised learning of the virus-host relations, while our work performs this task without inter-
species labels.

2.3. Graph link prediction

Graph link prediction is the task of predicting whether two vertices in a graph are connected via
an edge, using previously known existing edges. Given the generality of the problem, many tasks
can be described using those specifications, e.g. the relationship between entities in knowledge
graphs, user preferences in various recommendation systems, and friend and family suggestions
and identifications among users of social networks.



KESSLER1 LIFSHITZ1 BENAIM2 WOLF1

A B

Labeled relations
Unlabaled relations

Figure 1: The cross-domain adaptation setting.

With the recent advances in neural network methods, various algorithms have been used to
harness their effectiveness for graph-related problems. (Kipf and Welling, 2016) presented a way
to use Convolutional Neural Network(CNN) and Variational-Autoencoder(VAE) on graphs using
the symmetric normalized graph’s Laplacian. (Hettige et al., 2020) presented an efficient graph
embedding method that scales to large graphs and preserves both local and global features.

In our work, we focus on the problem of inferring inter-group links given intra-group links,
which was not studied in the literature as far as we can ascertain.

3. Problem Setting

We consider a problem with two domains A and B and a set of labels Y used to categorize the
relations between unordered pairs of samples. During training, the pairs are homogeneous, i.e., we
have training samples from A×A×Y and B×B×Y , but no samples from A×B×Y , see Fig. 1
for visualization. Our goal is to learn a function yT : (A× B) → Y . We assume that this function
is obtained by limiting a more general function y : (A ∪ B)2 → Y to the mixed domain. We also
assume that the pairs are unordered y(u, v) = y(v, u), regardless of the domain of samples u and v.

The cross-domain adaptation problem is formulated as a tuple, (H1,H2,DA2 ,DB2 ,D×, y, ℓ):

• H1 = {f : (A ∪ B)2 → F}, a set of feature maps.

• H2 = {g : F → [0, 1]|Y|}, a set of classifiers, returning a vector of pseudoprobabilities over
the labels.

• DA2 ,DB2 distributions over the source domains A2,B2.

• D×, a distribution over the target domain A× B.

• y : (A ∪ B)2 → Y , the labeling function over pairs mentioned above.

• ℓ : [0, 1]|Y| × [0, 1]|Y| → R+, a loss function. The loss is also defined over the domain
[0, 1]|Y| × Y , in which case we consider the one-hot vector of length |Y| for the label t ∈ Y
as the second argument of ℓ.
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The hypothesis class in this setting is H = {g ◦ f |f ∈ H1, g ∈ H2}. f is used to extracts features
from a pair of samples, regardless of their domain, and g classifies the obtained features into a
distribution over the labels.

The fitting of some hypothesis h on the target distribution D× is measured by the target gener-
alization risk:

RD× [h, y] = Ex∼D× [ℓ (h(x), y(x))] . (1)

In other words, the goal of the learning algorithm is to pick argminh∈H(RD× [h, y]). Since the
target labels are unknown at the learning phase, we wish to bound RD× [h, y] with terms that can be
optimized during training.

Inspired by the generalization risk bound introduced by (Mansour et al., 2009) for the problem
of unsupervised domain adaptation, we devise a theorem for the setting of cross-domain adapta-
tion. The theorem relies on the notion of the discrepancy between two distributions D1, D2 over a
hypothesis class C, which is defined as:

discC [D1, D2] = sup
c1,c2∈C

|RD1 [c1, c2]− RD2 [c1, c2]| (2)

The theorem also considers three “ideal” classifiers:

h∗A2 = argmin
h∈H

(RDA2 [h, y]) (3)

h∗B2 = argmin
h∈H

(RDB2 [h, y]) (4)

h∗× = argmin
h∈H

(RD× [h, y]) . (5)

Theorem 1. Assume that the loss function ℓ is symmetric, convex, and obeys the triangle inequality.
Then, for any two hypotheses h1 = g1 ◦ f ∈ H, h2 = g2 ◦ f ∈ H, and their ensemble h1+h2

2 (x) =
h1(x)+h2(x)

2 , the following holds:

RD×

[
h1 + h2

2
, y

]
≤ RDA2

[
h1, h

∗
A2

]
+

RDB2

[
h2, h

∗
B2

]
+RD× [h1, h2] + disc

H2◦f
[DA2 ,D×]

+ disc
H2◦f
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∗
×
]
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[
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]
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Proof.
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(triangle) ≤RD×

[
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2

]
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∗
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Most of the terms in the RHS of Eq. 6 can be estimated and are converted to loss terms in our
method.

• RDA2

[
h1, h

∗
A2

]
is the error between h1 and the best hypothesis in H with respect to DA2 .

Since the classification error includes both this term and the modeling error of class H but
the latter is fixed, this is estimated in domain adaptation methods using the training error in
domain A.

• RDB2

[
h2, h

∗
B2

]
is the error between h2 and the best hypothesis in H with respect to DB2 . It

is estimated by the training error in domain B.

• RD× [h1, h2] is a consistency term between h1 to h2.

• disc [DA2 ,D×] + disc [DB2 ,D×], measures the discrepancy between DA2 ,DB2 , and D× on
the hypothesis space H2 ◦ f . This term can be estimated by employing a domain confusion
term.

The term RD×

[
h∗×, y

]
denotes the expressiveness of the hypothesis class in terms of the target

labeling. It is a fixed value, given a learning problem and the hypothesis class.
Finally, the terms RD×

[
h∗A2 , h

∗
×
]

and RD×

[
h∗B2 , h

∗
×
]

are the differences between the ideal
classifiers in the source domains and the ideal one in the target domain, as measured on the target
domain. This cannot be estimated. However, similar to the unsupervised domain literature (Mansour
et al., 2009), which presents domains of the form DS and DT , where DS and DT are the source and
target domain distributions respectively, these terms are assumed to be small.
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4. Method

Thm. 1 shows that we can bound the target generalization risk of two-classifier ensembles, by con-
sidering the source generalization risk, the discrepancy between the domains, the consistency be-
tween the two classifiers on the target domain, and the difference between the labeling functions
in the different domains. We, therefore, seek to minimize the four optimizable components of the
bound: (i) the risk of h1 on A2, denoted by RDA2

[
h1, h

∗
A2

]
, (ii) the risk of h2 on B2, denoted by

RDB2

[
h2, h

∗
B2

]
, (iii) the consistency of h1 and h2 on D×, denoted by RD× [h1, h2], and (iv) the

discrepancy of DA2 , DB2 with D× with regard to the hypothesis space H2 ◦ f , disc [DA2 ,D×] +
disc [DB2 ,D×].

Naturally, we do not have access to the underlying distributions DA2 ,DB2 and D×, only to the
training samples. The training set SA (SB) denotes the training samples from domain A (B), each
sample being a tuple in A × A × Y (B × B × Y). In addition, we employ an unlabeled mixed
training set S×, specifically designed to depict the cross-domain distribution. This set comprises
pairs of unlabelled samples, each pair containing one sample from each domain (A× B).

The method learns three main networks: the classifiers g1, g2, and a common feature extraction
backbone f . In addition, a single discriminator d is learned. Similar to Thm. 1, we denote h1 =
g1 ◦ f ∈ H, h2 = g2 ◦ f ∈ H.

The terms RDA2

[
h1, h

∗
A2

]
, RDB2

[
h2, h

∗
B2

]
are optimized by the following two loss terms, re-

spectively:

LA =
∑

(a1,a2,y)∈SA

ℓ(g1(f(a1, a2)), y) (24)

LB =
∑

(b1,b2,y)∈SB

ℓ(g2(f(b1, b2)), y) , (25)

where for the loss ℓ, cross-entropy is used.
Denote by ℓsym the symmetric cross-entropy loss ℓsym[a, b] = ℓ[a,b]+ℓ[b,a]

2 . The consistency
term RD× [h1, h2] can be readily estimated, by employing the set S× as follows:

L× =
∑

(a,b)∈S×

ℓsym(g1(f(a, b)), g2(f(a, b))) , (26)

For the discrepancies terms, disc [DA2 ,D×], disc [DB2 ,D×], we follow (Ganin et al., 2016)
and optimize a domain confusion term that includes the discriminator d. Similar to (Taigman et al.,
2017), we employ a three-way discriminator trained to distinguish between f ◦ DA2 , f ◦ DB2 and
f ◦ D× (the composition of a function with a distribution denotes the distribution obtained by
applying the function to the samples of the distribution).

The discriminator d, is implemented as a neural network with the same architecture as the
classifiers g1, g2. The loss term used for the optimization is then:

Ldisc =
∑

(a1,a2)∈SA

[ℓ (d(f(a1, a2)), 0)]+∑
(b1,b2)∈SB

[ℓ (d(f(b1, b2)), 1)] +
∑

(a,b)∈S×

[ℓ (d(f(a, b)), 2)] (27)
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VSYASSSRLL SNKNQFKSFL RTIPNDEHQA TAMADIIEYF
RWNWVGTIAA DDDYGRPGIE KFREEAEERD ICIDFSELIS
QYSDEEEIQH VVEVIQNSTA KVIVVFSSGP DLEPLIKEIV
RRNITGKIWL ASEAWASSSL IAMPQYFHVV GGTIGFALKA
GQIPGFREFL KKVHPRKSVH NGFAKEFWEE TFNCHLQEGA
KGPLPVDTFL RGHEESGDRF SNSSTAFRPL CTGDENISSV
ETPYIDYTHL RISYNVYLAV YSIAHALQDI YTCLPGRGLF
TNGSCADIKK VEAWQ

Figure 2: The amino-acid sequence of human’s calcium-sensing receptor.

Table 1: Average prediction accuracy (%) on a balanced positive/negative virus-host PPI dataset
extracted from viruses.STRING after reducing near-duplication, over all backbone models.

Method TAPE ProtBert ProtAlbert ProtXLNet

Unsupervised 63.5 66.9 67.6 66.0

Host-host model 63.2 65.6 66.1 67.9
Virus-Virus model 63.4 67.3 66.4 68.6

Conventional DA 64.7 73.6 69.3 71.1
Our Full Method 69.9 80.7 69.1 78.6

The discriminator d minimizes Ldisc, while the backbone feature extractor f maximizes it in
an adversarial manner. Following (Ganin et al., 2016) this is obtained by employing a gradient
reversal layer. Note that the feature extractor can be either trained from scratch or one can finetune
a pretrained backbone that is learned, for example, using self-supervised training.

The final training objective of f ∈ H1, g1, g2 ∈ H2 is

L = LA + LB + λ1L× − λ2Ldisc , (28)

for some weight parameters λ1 and λ2.

5. Experiments

We evaluate our method on datasets from two different domains: proteins described as a text se-
quence of amino-acids, and citation networks represented as attributes graphs. In each of these do-
mains, we demonstrate the effectiveness of our algorithm, using alternatives state of the art domain-
specific learning techniques. In other words, we apply our method as a template to which we
incorporate state of the art methods, demonstrating its real-world applicability.

We also experiment using various settings of the two weight parameters λ1, λ2 (Fig.3), showing
the low sensitivity of our method to the different hyper-parameters.

All the experiments were performed on an Intel® Core™ i7-5960X processor and four NVIDIA
TITAN X GPUs.

5.1. Protein-Protein Interactions

We employ the viruses.STRING dataset (Cook et al., 2018), containing 9 million proteins described
by their amino-acid sequence (see Fig. 2), and 652 million interactions. The proteins come from
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Table 2: An ablation study showing average prediction accuracy (%) on viruses.STRING using
TAPE as the backbone.

Method Accuracy

Full method 69.9

Method without consistency (λ1 = 0) 66.8
Method without DA (λ2 = 0) 66.0
Method with backbone frozen 65.0
Method with no pretraining 65.4

239 viruses and 319 hosts. The domains A and B are then, respectively, host proteins and virus
proteins.

The dataset viruses.STRING provide a score for each interaction, depicting its confidence when
integrating knowledge from both experiments and the relevant literature. Following (Szklarczyk
et al., 2015), we filter interactions by their score at a threshold of 500, in order to consider the
interactions which are more likely to be valid. To refrain from training on redundant data, as many
proteins have several near-duplicates that evolved from close ancestors, we filter the training set
such that no two proteins have sequence-identity larger than 25%(Brenner et al., 1998). For negative
samples, we randomly select two proteins from the whole dataset and assert there is no interaction
between them. For all datasets we use a balanced positive/negative ratio. For proteins longer than
500 amino-acids, as they might overrun the GPU memory, we randomly select a substring of length
500.

Table 3: AUC of heterogeneous link prediction using GLACE. Reported are mean AUC averaged
over 16 runs. Bold fonts are used to denote the best results for the unsupervised methods,
whereas an underline emphasizes the best supervised method.

Method Cora Cora-ML DBLP CiteSeer PubMed

Supervised (Single Head) (our re-run) .956 .939 .908 .898 .924
Supervised (Head Per Group) .963 .938 .903 .924 .918

Unsupervised (Single Head) .661 .654 .780 .620 .861
Unsupervised (Head Per Group) .682 .646 .764 .633 .861
Conventional domain adaptation .696 .787 .721 .623 .910
Our full method .752 .825 .812 .715 .851

Our method without consistency .750 .808 .761 .572 .837
Our method without DA .685 .809 .810 .713 .858

The representation we employ for the amino-acid sequences is based on a pretrained backbone
network f . We use four different transformer models: (i) TAPE, which is a pretrained BERT (De-
vlin et al., 2019) model, published by (Rao et al., 2019), as well as three models published by
(Elnaggar et al., 2020) (ii) ProtBert (Devlin et al., 2019) (iii) ProtAlbert (Lan et al., 2019), and (iv)
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ProtXLNet (Yang et al., 2019). We follow the common practice for classification of pairs of strings
using transformer-like models (Devlin et al., 2019; Yang et al., 2019), and provide a concatenated
version of both proteins, relative positional encodings, and type encodings, and use the final layer
representation of the first ‘start‘ token as the embedding.

We report results for multiple methods. (i) The unsupervised method, using a pretrained back-
bone f and a classification head on the labeled pairs in SA and SB, (ii) A method in which we
employ the host-host PPI prediction model h1 as is, trained using SA, (iii) reporting similarly for
the virus-virus PPI model h2, trained using SB, (iv) the application of conventional domain adap-
tation, in which we add a discriminator to the unsupervised method, and train the backbone using
both the supervised loss LA, LB, and adversarially using the domain confusion loss Ldisc using a
single head, similarly to (Ganin et al., 2016), (v) our full model.

Tab. 1 depicts the results of all these methods under different backbones. Evidently, under
almost all backbones our method improves the baseline results by a sizable margin. Using stronger
unsupervised representations (ProtBert and ProtXLNet), our method achieves ∼80% classification
rate.

We also run an ablation study, using TAPE as the backbone, where we explore the following
variations of our method: (i) our method with the consistency term removed (λ1 = 0), (ii) our
method with the domain confusion term removed (λ2 = 0) (iii) our method with backbone frozen,
i.e., initializing f by TAPE’s weights and not updating it (iv) our method where we train the back-
bone f from scratch, using the same architecture as TAPE.

Tab. 2 presents the results of the ablation study. It is evident that both the consistency loss and
the domain adaptation terms contribute to the success of the method. It can be observed that the
pretraining of the backbone has a significant impact on the accuracy achieved by the model and so
does finetuning. Without finetuning, the representation produced by the mask language modeling
alone is not sufficient, and results in a sub-optimal solution.

5.2. Graph Link Prediction

We test our method for link prediction in citations graphs using several well-known datasets: Cora,
CiteSeer, DBLP, and PubMed. In these datasets, each node represents a publication associated with
a group identifier denoting the publication’s research topic, and each edge represents a citation.

Each publication in the citation graphs also contains attributes regarding the content of the
publication. We follow the common prepossessing procedure (Kipf and Welling, 2016; Hettige
et al., 2020) and use the TF-IDF of a publication’s abstract as its attribute vector.

In this cross-domain adaptation task, unlike the PPI domain which only had two groups (hosts
and viruses), each of the citation graphs contain multiple group identifiers per graph, each repre-
senting a different research topic. We look at each group of nodes as a different domain, where the
homogeneous edges between nodes of the same group are labeled (intra-group), and the heteroge-
neous edges between nodes of different groups (inter-groups) are unlabeled and are only used for
unsupervised learning.

To verify the generality of our algorithm, we experiment with two different approaches to link
inference. In each case, we adapt our method to the exact framework of the approach. The first
approach uses GLACE (Hettige et al., 2020), a graph embedding neural networks, which uses Gaus-
sians as its embeddings space. The second approach uses Graph Convolutional Networks (GCN)
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(Kipf and Welling, 2016) to embed nodes using both their feature vector and their neighborhoods,
using the symmetric normalized graph’s Laplacian.

In this setting, as there are multiple groups for each of the graphs, we generalize our method
to a many-domains setting: (i) for the domain confusion term, we train the intermediate represen-
tations of each method to be indistinguishable between the different groups. This is done using a
discriminator that is trained in an adversarial manner to classify each representation to the group
it originated from. (ii) for the classification heads, we implement a classification head per group,
where each group classification head is trained in a supervised manner using homogeneous edges
that connects nodes of this group. (iii) To implement the consistency term, we simply use the
squared difference between predictions of different heads on heterogeneous edges.

5.2.1. GLACE

GLACE encodes each attributes vector using a neural network into an intermediate representation,
which we treat as the backbone f , and then embeds it into a Gaussian distribution with a diagonal
covariance matrix using another linear layer, which we treat as the classifier g. We denote the output
Gaussian GLACE outputs for node i as zi.

The algorithm in GLACE encourage nodes that are connected by an edge to be close in the rep-
resentation space while distancing nodes that are not connected. Let E be the set of (labeled) edges
of the graph G, and D(zi, zj) be a dissimilarity measure between the Gaussians. The following
objective is used in GLACE:

L1 =
∑

(i,j)∈E

log σ(−D(zi, zj)) +
∑

(i,j)∈EN

log σ(D(zi, zj)) , (29)

where EN denotes the non-existing edges set of graph G.
As the graphs are sparse, the number of negative edges is extremely large. To solve this, we in-

stead sample a subset of the negative edges for each batch. We use the exact same random sampling
used in GLACE, where the negative edges are sampled proportionally to its nodes degrees.

In line with GLACE, we use the symmetric KL divergence to measure the dissimilarity be-
tween the embeddings, as they represent Gaussians distributions. Denote DKL(zi, zj) as the Kull-
back–Leibler divergence of the two distribution zi, zj , then:

D(zi, zj) = DKL(zi, zj) +DKL(zj , zi) (30)

To apply our method, we employ a different g for each group. We define, for each group k, the
functions gk, which result in a Gaussian embedding zki for each node i.

Denote i, j as any two nodes, and ki and kj as the groups that nodes i and j belong to respec-
tively. We define our dissimilarity prediction, by generalizing GLACE as follows:

D(i, j) =
D(zkii , zkij ) +D(z

kj
i , z

kj
j )

2
(31)

To optimize the domain confusion terms from the theorem, we use domain adaptation training.
A discriminator d with similar architecture to g, classifies each node to its respected group, while
the backbone f is trained in an adversarial way using gradient reversal to confuse d. To use a similar
loss structure to the classification loss that is used to train g, the discriminator d is tasked to embed
the nodes’ representation after the backbone in a way where the Gaussian embeddings of intra-group
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Table 4: AUC of link prediction using GCN.

Method Cora-ML DBLP CitSeer PubMed

Supervised (Single Head) .873 .958 .947 .955
Supervised (Head Per Group) .907 .937 .880 .922

Unsupervised (Single Head) .697 .838 .725 .850
Unsupervised (Head Per Group) .739 .888 .783 .902
Conventional domain adaptation .769 .882 .911 .912
Our full method .803 .890 .942 .908

Our method without consistency .780 .870 .827 .919
Our method without DA .705 .882 .820 .850

(a) (b)

Figure 3: Hyper parameter sensitivity analysis over the Cora ML graph. (a) varying (a) λ1 or (b)
λ2.

pairs are close, and the Gaussian embeddings of inter-group pairs are further apart. Denote zdi as
the Gaussian embedding produced by the discriminator d on node i, then the loss is defined as:

Ld =
∑
k∈K

∑
i,j∈Vk

log σ(−d(zdi , z
d
j )) +

∑
k∈K

∑
i∈Vk,j∈V \Vk

log σ(d(zdi , z
d
j )) , (32)

where K is the set of groups in the graph and Vk are the vertices of group k ∈ K.
To fit our method’s consistency term (Eq. 26) to GLACE, we use the squared error measure

between the predictions of the different classifiers on heterogeneous edges:

Lc =
∑

(i,j)∈Vk1
×Vk2

,k1 ̸=k2

(log σ(d(zk1i , zk1j ))− log σ(d(zk2i , zk2j )))2 (33)

Link prediction experiments with GLACE The results of the link prediction experiments with
GLACE are reported in Tab. 3. We can see that in almost all the datasets our method outperforms
the unsupervised baseline and the conventional domain adaptation method by a sizable margin.
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Removing either the consistency or the domain adaptation term from our method hurt results in
almost all benchmarks. Removing the consistency term hinders the performance in all benchmarks
by a significant margin, except for on the full Cora benchmark, where the difference is smaller.

The sensitivity of our method to its hyper-parameters is explored in Fig. 3, where we vary
either the consistency coefficient λ1, or the domain confusion coefficient λ2. These experiments are
performed on the Cora-ML benchmark. As can be seen, performance is stable for a wide range of
λ1 ≥ 10. For λ2 performance is stable over a smaller region, with the best results in the range of
10 < λ2 < 100.

5.2.2. GRAPH CONVOLUTIONAL NETWORKS

For the second experiment, we used a GCN (Kipf and Welling, 2016) to model our network. Denote
G = (V,E) as the graph the convolution layer works on, X ∈ R|V |×F0 as representation vectors
of some size F0 for all nodes in V , A as the adjacency matrix of the graph G, Â = I + A as the
adjacency matrix with self-loops added, and Dii =

∑|V |
j=1 Âij as the diagonal matrix of the degree

of each node. Then a graph convolution layers, parameterized by some Θl, can be described using
the following notion:

X ′ = GCN(X; Θl) = D− 1
2 ÂD− 1

2XΘl , (34)

where Θl ∈ RF0×F1 and X ′ ∈ R|V |×F1 where F1 is the dimension of the representations of the
nodes after the layer.

Denoted by K the number of categories in the graph. Our method employs 2 +K GCN layers.
One represents f , the backbone, which reduces the TD-IDF representation to an intermediate rep-
resentation. The other K are gk, the embedding layers of each category k = 1..K, which transform
the intermediate representation into a final representation. The last one is the discriminator d which
is represented by a similar GCN layer.

The adjacency matrix used in the GCN layers only contains labeled homogeneous (intra-group)
edges, which reduces each group in the graph into a separate component.

For the classification loss, we employ a standard reconstruction loss, using the inner product
between the embeddings to denote the logits of an edge between two nodes.

The domain discriminator d is implemented using a GCN layer similar to the classifiers, and
outputs, for each node, a distribution over the K categories of the graph nodes. We train it using the
cross-entropy loss.

For the consistency loss, we use the square of the difference between predictions of different
heads on heterogeneous edges. Let S× be the unlabeled set of inter-category edges (positive and
negative) and Zk

i as the final representation of node i using group’s k embedding layer gk.

Link prediction experiments with GCN We use the exact same baselines and variants of our
method, as used in the GLACE experiments. For GCN, we did not test on the full Cora dataset
due to scalability issues: Cora contains 70 classes, which implies computing 70 embeddings for
all nodes in each step, which overrun the GPU. The results of our experiments are presented in
Tab. 4. With the exception of PubMed, our method outperforms the unsupervised baselines and the
simplified variants of our method. On PubMed, the variant without the consistency term and the
conventional domain adaptation outperform our full method. On CiteSeer, our unsupervised method
almost matches the performance of the fully supervised method.
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6. Conclusions

We present a new type of transfer learning problem. This novel setting is relevant to many real-world
scenarios, such as integrating multiple datasets, wherein each dataset, information on the relation
between pairs of samples is available.

The setting we explore is a specific unsupervised domain adaptation problem. The target domain
is the product of two domains A and B, where there are two source domains A×A and B×B. We
derive a new generalization bound for this setting and develop a method that implements the terms
of the bound. The result is a method that differs from the one obtained when considering this as
a vanilla domain adaptation problem: first, multiple source classifiers are used; second, the source
classifiers are required to be consistent; third, the domain confusion term takes a specific form.

We present experiments on two very different learning problems: virus-host protein interac-
tions prediction based on their amino-acid sequences, and inter-category citation prediction based
on graph algorithms. In both, we explore the different state of the art representations and neural
frameworks and show that the proposed method consistently outperforms the domain adaptation
baseline, as well as other semi-supervised methods.
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