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Abstract
This paper studies the fixed-confidence best arm identification (BAI) problem in the bandit frame-
work in the canonical single-parameter exponential models. For this problem, many policies have
been proposed, but most of them require solving an optimization problem at every round and/or are
forced to explore an arm at least a certain number of times except those restricted to the Gaussian
model. To address these limitations, we propose a novel policy that combines Thompson sampling
with a computationally efficient approach known as the best challenger rule. While Thompson
sampling was originally considered for maximizing the cumulative reward, we demonstrate that
it can be used to naturally explore arms in BAI without forcing it. We show that our policy is
asymptotically optimal for any two-armed bandit problems and achieves near optimality for gen-
eral K-armed bandit problems for K ≥ 3. Nevertheless, in numerical experiments, our policy
shows competitive performance compared to asymptotically optimal policies in terms of sample
complexity while requiring less computation cost. In addition, we highlight the advantages of our
policy by comparing it to the concept of β-optimality, a relaxed notion of asymptotic optimality
commonly considered in the analysis of a class of policies including the proposed one.
Keywords: Best arm identification, Thompson sampling, Multi-armed bandits

1. Introduction

As a formulation of reinforcement learning, multi-armed bandit (MAB) problems exemplify a trade-
off between exploration and exploitation of knowledge. In traditional stochastic MAB problems, an
agent plays an arm and observes a reward from the unknown but fixed distribution associated with
the played arm. Although a large number of studies on MAB have been designed to maximize the
cumulative rewards (Agrawal and Goyal, 2012; Slivkins et al., 2019), one might be interested only
in the quality of a final decision rather than the performance of the overall plays. For example, one
can consider the development of a new drug, where the researchers would aim to identify the most
effective treatment from a set of alternatives before testing it on a large group of patients. When
exploration and evaluation phases are separated in this way, it is known that a policy designed to
maximize the cumulative rewards performs poorly (Bubeck et al., 2011). Such a setting is called
pure exploration and several specialized policies have been proposed for this setting (Bubeck et al.,
2009; Gabillon et al., 2012; Chen et al., 2014). In this paper, we consider the most standard fun-
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damental formulation of the pure exploration problem, best arm identification (BAI), where the
agent aims to identify the optimal arm that yields the largest mean reward (Maron and Moore, 1997;
Even-Dar et al., 2006).

Two problem settings, the fixed-budget setting and the fixed-confidence setting, have been
mainly considered in the BAI problems. In the fixed-budget setting, an agent aims to maximize
the probability of successfully identifying the optimal arm within a fixed number of trials (Gabillon
et al., 2012; Komiyama et al., 2022). On the other hand in the fixed-confidence setting, the agent
aims to minimize the number of trials while ensuring that the probability of misidentifying the best
arm is less than a fixed threshold (Kalyanakrishnan et al., 2012; Kuroki et al., 2020).

In the fixed-confidence setting, Garivier and Kaufmann (2016) provided a tight lower bound
on the expected number of trials, which is also called the sample complexity, for canonical single-
parameter exponential family (SPEF) bandit models including the Bernoulli distributions and Gaus-
sian distributions with known variances. This bound represents the expected number of trials re-
quired to achieve a given level of confidence in identifying the best arm. Along with this lower
bound on the sample complexity, they also proposed the Track-and-Stop (TaS) policy that tracks the
optimal sampling proportion of arm plays and showed its asymptotic optimality. However, this pol-
icy requires solving a computationally expensive optimization at every round to obtain the optimal
sampling proportion.

To address this limitation, several computationally efficient policies have been proposed that
solve the optimization problem through a single gradient ascent in the online fashion (Ménard, 2019;
Wang et al., 2021). However, most of these policies rely on forced exploration, where an arm is
played a certain number of times to ensure that the empirical mean converges to its true value. While
one can naturally specify the number of needed explorations for simple cases such as Bernoulli or
Gaussian models, this becomes heavily nontrivial for general models where the variance of rewards
may not be bounded. Recognizing the need for a more natural approach to exploration, Ménard
(2019) emphasized the importance of finding policies that allow for exploration without the need for
forced exploration. More recently, Barrier et al. (2022) proposed a sampling policy that naturally
encourages exploration by employing an upper confidence bound. However, their algorithm is
specifically designed for Gaussian bandits with known variance and exhibits slower convergence of
the empirical mean compared to approaches that employ the forced exploration steps. As a result,
their policy requires a larger number of samples in numerical experiments.

The BAI problems have also been considered in the Bayesian setting. Russo (2016) proposed
top-two sampling rules which are adapted to solve the BAI problem. Generally in this approach,
the leader (e.g., the currently best arm) is played with a fixed probability β, and the challenger
(e.g., an arm selected by some randomized rule) is played with a probability of 1− β, where β is a
predetermined hyperparameter. This approach allows for different configurations of the leader and
the challenger in each round (Qin et al., 2017; Shang et al., 2020), for which more comprehensive
examples can be found in Jourdan et al. (2022). A relaxed notion of optimality, β-optimality, has
been commonly considered for top-two sampling rules. In other words, the sample complexity
bounds of these β-optimal policies do not match the lower bound in general at the cost of their
computational efficiency.
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Contribution In this paper, we present a simple approach that combines a heuristic policy, a vari-
ant of the Best Challenger (BC) rule1 introduced by Ménard (2019), with Thompson sampling (TS),
a Bayesian policy originally introduced for cumulative reward minimization. Although it is known
that a policy designed to maximize the cumulative rewards performs poorly when the exploration
and evaluation phases are separated (Bubeck et al., 2011), we show that TS can still be used for
the exploration part to solve the BAI problem. Our policy addresses the limitations of existing ap-
proaches, which often involve solving computationally expensive optimization problems (Garivier
and Kaufmann, 2016) and/or require the forced exploration steps (Ménard, 2019; Wang et al., 2021).
Therefore, our policy allows for a more computationally efficient and practical solution to the BAI
problem.

It is important to note that our proposed policy does not achieve asymptotic optimality in all sce-
narios, similar to the β-optimal policies. Nevertheless, we prove that our policy achieves asymptotic
optimality for any two-armed bandit problems, which distinguishes it from β-optimal policies. This
unique characteristic of our policy offers its own advantages and strengths compared to (β-)optimal
policies. The contributions of this paper are summarized as follows:

• We propose a computationally efficient policy for BAI problems in the SPEF bandits with-
out the need for solving optimization problems, forcing explorations, and using additional
hyperparameter β.

• We derive a sample complexity bound of the proposed policy for general K-armed SPEF
bandits, which achieves the lower bound asymptotically for K = 2 and is numerically tighter
than that of β-optimal policies for many instances for general K.

• We experimentally demonstrate the effectiveness of using TS as an exploration mechanism,
which serves as a substitute for the forced exploration steps in the BAI problems.

Organization The rest of this paper is organized as follows. In Section 2, we formulate the BAI
problems for the SPEF bandits and introduce the asymptotic optimality and TS. Next, in Section 3,
we propose a simple policy called Best Challenger with Thompson Exploration (BC-TE), which is
based on a variant of the best challenger policies described in previous works (Garivier and Kauf-
mann, 2016; Ménard, 2019). The sample complexity analysis of BC-TE is presented in Section 4,
where we also compare its result with the asymptotic optimality and β-optimality. Furthermore,
in Section 5, we provide simulation results that demonstrate the effectiveness of BC-TE, showing
competitive performance in terms of the sample complexity and superior computational efficiency
compared to other asymptotically (β-)optimal policies.

2. Preliminaries

In this section, we formulate the BAI problem for the model of SPEF and the asymptotic lower
bound on the sample complexity. Then we introduce the stopping rule considered in Garivier and
Kaufmann (2016).

1. The BC rule considered in Garivier and Kaufmann (2016) and Ménard (2019) can be seen as a variant of top-two
sampling since it also plays either the leader or the challenger at every round. However, the key distinction lies
in the deterministic nature of BC, which is solely determined by historical information and does not involve any
randomness introduced by a hyperparameter β. In this paper, the BC rule refers to a policy without hyperparameter
β, while top-two sampling refers to that with β.
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2.1. Notation and SPEF bandits

We consider the K-armed bandit model where each arm belongs to a canonical SPEF with a form

P =

{
(νθi)

K
i=1 :

dνθi
dξ

(x) = exp(θix−A(θi)), θi ∈ Θ, ∀i ∈ [K]

}
, (1)

where Θ ⊂ R denotes the parameter space, ξ is some reference measure on R, A : Θ → R is a
convex and twice differentiable function, and [K] := {1, . . . ,K}. For this model, we can write the
expected reward of an arm as µ(θ) = A′(θ) and the KL divergence between two distributions as
follows (Cappé et al., 2013):

KL(νθ1 , νθ2) = µ(θ1)(θ1 − θ2) +A(θ2)−A(θ1),

which induces a divergence function d on A′(θ) defined by d(µ(θ), µ(θ′)) = KL(νθ, νθ′). Follow-
ing the notation used in Garivier and Kaufmann (2016), a bandit instance ν = (νθ1 , . . . , νθK ) is
identified with the means µ = (µ1, . . . , µK). We denote a set of SPEF bandit models with a unique
optimal arm by S . Therefore, for any µ ∈ S, argmaxi∈[K] µi is a singleton and we assume that
µ(θ1) > µ(θ2) ≥ · · · ≥ µ(θK) without loss of generality. Then, we denote the current maximum
likelihood estimate of µ at round t by µ̂(t) = (µ̂1(t), . . . , µ̂K(t)) for µ̂i(t) =

1
Ni(t)

∑t
s=1 xi,Ni(s),

where Ni(t) denotes the number of rounds the arm i is played until round t and xi,n denotes the
n-th observation from the arm i ∈ [K]. By abuse of notation, we sometimes denote µ̂i(t) by µ̂i,Ni(t)

to specify the number of plays of the arm i.
In the fixed-confidence setting, a policy is said to be δ probably approximately correct (δ-PAC)

when it satisfies P[i(τδ) ̸= 1 ∨ τδ = ∞] ≤ δ. Here, τδ is the number of trials until the sampling
procedure stops for a given risk parameter δ, and i(t) denotes the chosen arm at round t ∈ N. Thus,
the agent aims to build a δ-PAC policy while minimizing the sample complexity Eµ[τδ].

2.2. Asymptotic lower bound on the sample complexity

Garivier and Kaufmann (2016) showed that any δ-PAC policy satisfies for any δ ∈ (0, 1) and µ ∈ S

Eµ[τδ] ≥ T ∗(µ) log

(
1

2.4δ

)
, (2)

where

T ∗(µ) :=

(
sup

w∈ΣK

min
i ̸=1

fi(w;µ)

)−1

. (3)

Here, the function fi is defined as

fi : ΣK × S → R+

(w;µ) 7→ w1d(µ1, µ
w
1,i) + wid(µi, µ

w
1,i), (4)

where µw
1,i =

w1
w1+wi

µ1 +
wi

w1+wi
µi is a weighted mean and ΣK = {w ∈ [0, 1]K :

∑K
i=1wi = 1}

denotes the probability simplex. We define fi(x; ·) = −∞ for x ̸∈ ΣK and i ∈ [K] for simplicity.
Through the derivation of (2), Garivier and Kaufmann (2016) also showed that the maximizer w∗ =
w∗(µ) := argmaxw∈ΣK

mini ̸=1 fi(w;µ) indicates the optimal sampling proportion of arm plays,
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that is, it is necessary to play arms to bring wt :=
(
N1(t)

t , . . . , NK(t)
t

)
closer to w∗ for matching

the lower bound. The convergence of wt towards w∗ is widely recognized as a crucial factor for
achieving optimal performance in the BAI problem (Ménard, 2019; Wang et al., 2021).

Along with the lower bound in (2), a policy is said to be asymptotically optimal if it satisfies

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ T ∗(µ).

Garivier and Kaufmann (2016) proposed the Track-and-Stop (TaS) policy, which tracks the optimal
proportions w∗ at every round, and showed its asymptotic optimality. Since the true mean reward
µ is unknown in practice, the TaS policy tracks the plug-in estimates w∗(µ̂(t)). This means that
the TaS policy essentially requires solving the minimax optimization problem at every round to find
w∗(µ̂(t)). Although some computational burden can be alleviated by using the solution from the
previous round as an initial solution, the TaS policy remains computationally expensive due to the
presence of the inverse function of the KL divergence.

On the other hand, a relaxed optimality notion, β-optimality, has been considered in top-two
sampling rules, where the leader is played with a predefined probability β ∈ (0, 1) (Russo, 2016;
Qin et al., 2017; Shang et al., 2020; Jourdan et al., 2022). Here, a policy is said to be asymptotically
β-optimal if it satisfies

lim
t→∞

wt
1 → β and lim sup

δ→0

Eµ[τδ]

log(1/δ)
≤ T β(µ),

where

T β(µ) :=

(
sup

w∈ΣK ,w1=β
min
i ̸=1

fi(w;µ)

)−1

. (5)

From its definition, T ∗(µ) = minβ∈[0,1] T
β(µ) holds. Thus, the β-optimality does not necessarily

imply the optimality in the sense of (2) unless β is equal to w∗
1(µ). Still, β = 1/2 is usually

employed since T ∗(µ) ≤ T 1/2(µ) ≤ 2T ∗(µ) holds, that is, T 1/2(µ) is at most two times larger
than that of optimal policies (see Russo, 2016, Lemma 3).

2.3. Stopping rule

One important question is when an agent should terminate the sampling procedure, which is usually
related to a statistical test. Garivier and Kaufmann (2016) considered the generalized likelihood
ratio statistic that has a closed-form expression for the exponential family. Based on this statistic,
they proposed Chernoff’s stopping rule which is written as

τδ = inf

{
t ∈ N : max

a∈[K]
min

b:µ̂a(t)≥µ̂b(t)
tfa,b(w

t; µ̂(t)) > β(t, δ)

}
, (6)

where fa,b(w;µ) := wad(µa, µ
w
a,b) + wbd(µb, µ

w
a,b) for µa ≥ µb and β(t, δ) is a threshold to

be tuned appropriately. Therefore, several thresholds β(t, δ) have been proposed (Garivier and
Kaufmann, 2016; Ménard, 2019; Jedra and Proutiere, 2020; Kaufmann and Koolen, 2021). In this
paper, we simply utilize the deviational threshold β(t, δ) = log

(
Ctα

δ

)
for α > 1 and some constants

C = C(α,K) since it was shown that using Chernoff’s stopping rule with this threshold ensures
the δ-PAC of any policies for the SPEF (see Garivier and Kaufmann, 2016, Propostion 12).
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2.4. Thompson sampling with the Jeffreys prior

In the regret minimization problem, Thompson sampling has been shown to be asymptotically op-
timal for various reward models (Kaufmann et al., 2012; Honda and Takemura, 2014; Riou and
Honda, 2020; Lee et al., 2023). For the SPEF bandits, TS with the Jeffreys prior was shown to
be asymptotically optimal (Korda et al., 2013). The Jeffreys prior is a noninformative prior that is
invariant under any reparameterization (Robert et al., 2009), which is written for the model in (1)
by

πj(θ) ∝
√
|I(θ)| =

√
|A′′(θ)|,

for the Fisher information I(θ).
Under the Jeffreys prior, the posterior on θ after n observations is given by

π(θ|x1, . . . , xn) ∝
√

|A′′(θ)| exp
(
θ

n∑
m=1

xm − nA(θ)

)
. (7)

For more details on the Jeffreys prior, we recommend referring to Robert et al. (2009) and Ghosh
(2011), as well as the reference therein. Additionally, one can find more specific configurations on
Thompson sampling with the Jeffreys prior for SPEF bandits in Korda et al. (2013).

3. Best Challenger with Thompson Exploration

In this section, we aim to build a δ-PAC policy that does not rely on the forced exploration steps. To
achieve this, we utilize TS with the Jeffreys prior as a tool to encourage the exploration of arms in
a natural manner.

3.1. The use of the best challenger rule

Here, we first introduce the intuition behind the best challenger rule.
For the sake of simplicity, we define a concave objective function g(w;µ) := mini ̸=1 fi(w;µ)

for x ∈ ΣK and g(x; ·) = −∞ for x ̸∈ ΣK . Then, (3) can be rewritten as

(T ∗(µ))−1 = sup
w∈ΣK

g(w;µ) = g(w∗;µ).

As discussed in Section 2.1, one can achieve the asymptotic optimality by moving the empirical
proportion wt closer to the optimal proportion w∗. Since the optimal proportion w∗ is a point that
maximizes g, moving wt in the direction of increasing g is a reasonable idea to reduce the gap
between wt and w∗. As w∗ is a solution to a convex optimization problem, a natural approach is
to apply a gradient method to iteratively update wt, which would bring wt to w∗ without explicitly
solving complex optimization problems. Although g is not differentiable, it can be expected that
playing arms to track a subgradient of g would achieve the lower bound since g is concave.2

Here, we say that v is a subgradient of the concave function g at the point (w;µ) if

∀w′ ∈ ΣK , g(w′;µ) ≤ g(w;µ) + v⊤(w′ −w).

2. In the strict sense, we should use the term subgradient to minimize the convex function −g or supergradient to
maximize the concave function g. However, we use the term subgradient for g since the term subgradient is more
popular, and the use of −g needlessly degrades the readability.
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The subdifferential ∂g(w;µ) is the set of all such subgradients. The following lemma shows that
the subgradients of the objective function g are expressed as the sum of all-ones vector 1 and convex
combinations of the gradients ∇wf(w;µ) of f with respect to w. The proofs of all lemmas and
theorems are given in the supplementary material.

Lemma 1 The subdifferential ∂g of g with respect to w ∈ IntΣK for given µ ∈ S is such that

∂g(w;µ) =

{ ∑
i∈J (w;µ)

λi∇wfi(w;µ) + r1 :
∑

i∈J (w;µ)

λi = 1, λi ≥ 0, r ∈ R

}
,

where J (w;µ) := argmini ̸=1 fi(w;µ) denotes the set of challengers, fi is defined in (4), and
IntΣK denotes the interior of the probability simplex.

By letting r = 0 and λi = 1/|J (w;µ)| for any i ∈ [K] in Lemma 1, we can obtain a subgradi-
ent v for µ ∈ S satisfying

vi(w;µ) =


0 if i /∈ {1} ∪ J (w;µ),

1
|J (w;µ)|

∑
j∈J (w;µ) d(µi, µ

w
i,j) if i = 1,

1
|J (w;µ)|d(µi, µ

w
1,i) if i ∈ J (w;µ).

Since our objective is to maximize the objective function g, one can easily consider a greedy ap-
proach that plays an arm with the maximum subgradient, that is

i(t) ∈ argmax
i∈[K]

vi(w
t; µ̂(t)),

which plays either the currently best arm m(t) = argmaxi∈[K] µ̂i(t) or the challenger j(t) ∈ Jt =
J (wt; µ̂(t)) at round t. For the arbitrarily chosen challenger

j(t) = argmin
i ̸=m(t)

fi(w
t; µ̂(t)), (8)

a variant of the Best Challenger (BC) rule introduced by Ménard (2019) can be expressed as

i(t) =

{
m(t) if d(µ̂m(t)(t), µ̂m(t),j(t)(t)) ≥ d(µ̂j(t)(t), µ̂m(t),j(t)(t)),

j(t) otherwise,

where we denote µ̂wt

a,b(t) = wt
a

wt
a+wt

b
µ̂a(t) +

wt
a

wt
a+wt

b
µ̂b(t) by µ̂a,b(t) for notational simplicity. This

simple heuristic with forced exploration was shown to be computationally very efficient and showed
excellent empirical performance in the BAI problems despite its lack of theoretical guarantee.

Note that the use of subgradients instead of solving the optimization problem at every round
has been considered by Ménard (2019), where they applied the online mirror ascent method, and by
Wang et al. (2021), where they applied the Frank-Wolfe-type algorithm to optimize the non-smooth
concave objective function g. It is worth noting that both policies are shown to be asymptotically
optimal for various BAI problems. Nevertheless, the families of top-two samplings (including BC
rules) are especially simple, and for this reason, β-optimality is still considered despite its subopti-
mality (Jourdan et al., 2022, 2023; Mukherjee and Tajer, 2022).
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Algorithm 1: Best challenger with Thompson Exploration (BC-TE)

Initialization: Play every arm twice and set w2K = 1
K and t = 2K.

while stopping criterion is satisfied do
Sample µ̃i(t) from the posterior distribution in (7).
Set m(t) = argmaxi∈[K] µ̂i(t) and m̃(t) = argmaxi∈[K] µ̃i(t).
if m(t) = m̃(t) then

Find the subgradient vt of g(wt, µ̂t).
Play i(t+ 1) ∈ argmaxi∈[K] v

t
i and observe the reward.

else
Play i(t+ 1) ∈ argmini∈{m(t),m̃(t)}Ni(t).
Update t = t+ 1, µ̂t and wt.

end
end

3.2. The use of Thompson exploration

Although the policies using gradient methods are asymptotically optimal and/or simple, they still
include the forced exploration steps to ensure that the empirical means converge to their true val-
ues. Therefore, it is worth finding a natural way to explore without forcing policies to explore.
Although Barrier et al. (2022) replaced the forced exploration steps by using the upper confidence
bound-based approach, their policy was restricted to the Gaussian models and exhibited large sam-
ple complexity in numerical experiments. Instead, in this paper, we employ TS as an exploration
tool to eliminate the forced exploration steps, which can be applied to any SPEF bandits and per-
forms well in practice. To be precise, we play an arm according to the BC rule only when the
empirical best arm and the best arm under the posterior sample agree, that is,

i(t) =

{
argmaxi∈[K] vi(w

t; µ̂(t)) if m(t) = m̃(t) := argmaxi∈[K] µ̃i(t), (BC)
argmini∈{m(t),m̃(t)}Ni(t) otherwise, (Thompson exploration)

where µ̃i(t) denotes the posterior sample of the arm i generated by the posterior in (7). As the
number of plays increases, the probability of observing a sample that deviates significantly from the
current empirical mean decreases exponentially. In other words, if an arm is played only a few times,
its posterior sample is more likely to deviate from its empirical mean. This discrepancy between
the best arm under the posterior sample and the empirical best arm can be a guide to the policy for
further exploration. By selecting an arm with a small number of plays only when the empirical best
arm and the best arm under the posterior sample disagree, we can ensure the convergence of the
empirical means to their true values without relying on forced exploration, which is formulated in
Section 4. The proposed algorithm, called Best Challenger with Thompson Exploration (BC-TE),
is described in Algorithm 1. Notice that BC-TE plays every arm twice at initialization steps to avoid
an improper posterior distribution.

4. Main Theoretical Results

In this section, we show the effectiveness of TE and prove that BC-TE is nearly optimal, similar to
β-optimality.
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4.1. Main theorems

Firstly, let us define a random variable TB ∈ N such that for any ϵ < µ1−µ2

2

TB = inf{T ∈ N : ∀s ≥ T, ∀i ∈ [K], |µ̂i(s)− µi| ≤ ϵ}. (9)

Therefore, the empirical mean estimate µ̂(t) is sufficiently close to its true value µ for all rounds
after TB . The theorem below shows the expected value of TB is finite.

Theorem 2 Under Algorithm 1, it holds that

E[TB] ≤ O(K2d−2
ϵ ),

where
dϵ := min

i∈[K]
min(d(µi + ϵ, µi), d(µi − ϵ, µi)). (10)

From the definition of TB , one can expect that the sampling rule will behave as expected after
TB rounds since the estimated means are close to the true ones. Note that TB is not a stopping
time with respect to the sequence of observations and we need a careful analysis for its expectation.
The key property used in the proof is that BC-TE always plays an arm that increases the objective
function g(wt; µ̂(t)) at every round t. Since most arguments in the proof of Theorem 2 do not
depend on the procedure when TE does not occur, we can expect that one can derive the same result
for Theorem 2 for any policy designed to increase the objective function at every round such as
Frank-Wolfe sampling (Wang et al., 2021). Then, the sample complexity of BC-TE can be upper
bounded as follows.

Theorem 3 Let α ∈ [1, e/2] and r(t) = O(tα). Using the Chernoff’s stopping rule in (6) with
β(t, δ) = log (r(t)/δ) under Algorithm 1,

lim sup
δ→0

E[τδ]
log(1/δ)

≤ αT (µ),

where

T (µ) :=

 sup
w∈ΣK ,

w2
w1+w2

=γ

min
i ̸=1

fi(w;µ)

−1

(11)

for γ satisfying
d(µ1, (1− γ)µ1 + γµ2) = d(µ2, (1− γ)µ1 + γµ2). (12)

From the definition of T ∗(µ) in (3), one can see the suboptimality of BC-TE from T (µ) ≥
T ∗(µ), which indicates that BC-TE may be not always optimal, as it only achieves optimality when
the condition γ =

w∗
2

w∗
1+w∗

2
is true. This observation is akin to the result for β-optimality.

4.2. Comparison with β-optimality and asymptotic optimality

Recall that the quantity T β(µ) in (5) demonstrates that β-optimality is achieved when the allocation
of the optimal arm is β. On the other hand, T (µ) considers the scenario where w2

w1+w2
= γ, which

is the best ratio between the best arm and the second best arm to distinguish them. Both notions
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are more relaxed compared to asymptotic optimality, and it is not possible to determine definitively
which one is better in general.

However, it is important to note that our policy does not require prior knowledge of γ, differently
from existing β-optimal policies that take β as an input to the algorithm (Russo, 2016; Shang et al.,
2020; Jourdan et al., 2022; Jourdan and Degenne, 2022). Therefore, if there is no prior knowledge of
β, using BC-TE would have its own advantages over β-optimal policies. In general, it is challenging
to compare the quantities T and T β for β = 1/2 analytically due to the complex formulation of
KL divergence and the optimization problem in (5) and (11). For this reason, in Section 4.2.3, we
provide numerical comparisons for K ≥ 2 across various SPEF bandits.

Then, the natural question is the relationship between T ∗(µ) and T (µ). Unlike the β-optimality
where β does not depend on the bandit instance, the quantity T (µ) is problem-dependent since γ is
determined by µ1, µ2, and d(·, ·). Here, we provide a rough comparison with the quantity T ∗(µ).

4.2.1. TWO-ARMED BANDITS

When K = 2, (3) can be written as

(T ∗(µ))−1 = sup
α∈(0,1)

αd(µ1, µ
α) + (1− α)d(µ2, µ

α),

where µα = (1 − α)µ1 + αµ2. Here, Garivier and Kaufmann (2016) showed that the maximum
is reached at α∗ satisfying d(µ1, µ

α∗
) = d(µ2, µ

α∗
). From (12), one can directly see that γ = α∗

holds, which implies T = T ∗(µ) for any µ ∈ S if K = 2. A more detailed discussion is given in
the supplementary material for the sake of completeness.

4.2.2. GAUSSIAN BANDITS

When µ belongs to the Gaussian distributions with known variance σ2 > 0, the KL divergence
takes a simple form of d(µ, µ′) = (µ−µ′)2

2σ2 . This allows us to derive a more explicit comparison with
asymptotic optimality.

Lemma 4 Let ∆i = µ1−µi for i ̸= 1 and ∆1 = ∆2. When µ belongs to the Gaussian distributions
with known variance σ2 > 0,

T (µ) =
K∑
i=1

4σ2

∆2
i + (∆2

i −∆2
2)
.

Here, Garivier and Kaufmann (2016) showed the following inequalities for the Gaussian bandits

K∑
i=1

2σ2

∆2
i

≤ T ∗(µ) ≤ 2
K∑
i=1

2σ2

∆2
i

,

which directly implies that
T ∗(µ) ≤ T (µ) ≤ 2T ∗(µ), (13)

where the left equality holds when w∗
1(µ) = w∗

2(µ) and the right equality holds only when µ2 =
· · · = µK . Notice that the same result as (13) holds for T β with β = 1/2 (Russo, 2016), though
T 1/2(µ) ̸= T (µ) holds in general.



THOMPSON EXPLORATION WITH BEST CHALLENGER RULE IN BEST ARM IDENTIFICATION

0 25 50 75 100 125 150 175 200

The number of arms K

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
R

at
io

to
T
∗ (
µ

)
T

T β, β = 1/2

Gaussian

Bernoulli

Poisson

Exponential

(a) Instance µ(1) with varying K.

0 25 50 75 100 125 150 175 200

The number of arms K

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
at

io
to
T
∗ (
µ

)

(b) Instance µ(2) with varying K.

Figure 1: The ratio of T (µ) and T 1/2(µ) to T ∗(µ) for different reward distributions.

4.2.3. NUMERICAL COMPARISON FOR VARIOUS SPEF BANDITS

Here, we compare the quantities T (µ), T ∗(µ), and T β(µ) with β = 1/2 across different bandit
models and varying numbers of arms. Specifically, we consider two instances µ(1) and µ(2) for
Gaussian (with unit variance), Bernoulli, Poisson, and Exponential distributions.

We consider two instances, µ(1) = (0.3, 0.21, 0.21 − 0.001, . . . , 0.21 − 0.001(K − 2)) and
µ(2) = (0.9, 0.7, 0.7 − 0.001, . . . , 0.7 − 0.001(K − 2)). For example, when K = 4, µ(1) =
(0.3, 0.21, 0.209, 0.208) and µ(2) = (0.9, 0.7, 0.699, 0.698) are considered. In Figure 1, the solid
line represents the ratio T (µ)/T ∗(µ), while the dashed line represents the ratio T 1/2(µ)/T ∗(µ).
Each line corresponds to a different reward model, which is distinguished by a different color and
marker. From Figure 1, we can observe that T (µ) keeps being close to T ∗, while T 1/2(µ) does not
for large K. This contrasting behavior indicates the advantage of BC-TE over β-optimal policies,
particularly for large K, as it suggests that BC-TE enjoys a much tighter upper bound on its sample
complexity. Additional comparisons are provided in the supplementary material.

5. Simulation Results

In this section, we present numerical results to demonstrate the performance of BC-TE.

Compared policies We compare the performance of BC-TE with other policies, where ⋄ denotes
that the policy requires forced exploration. For policies with † and ‡, we used the implementation
by Koolen (2019) and by Wang et al. (2021), respectively.

• Track-and-Stop†,⋄ (TaS): an asymptotically optimal policy that solves the optimization prob-
lem in (3) at every round, which is computationally costly (Garivier and Kaufmann, 2016).
Here, we focus on the TaS policy with D-tracking (T-D) in our experiment.

• Lazy Mirror Ascent†,⋄ (LMA): a computationally efficient and asymptotically optimal policy
that performs a single gradient ascent in an online fashion (Ménard, 2019).
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• AdaHedge vs Best Response† (AHBR): an asymptotically optimal policy that solves the op-
timization problem as an unknown game (Degenne et al., 2019).

• Optimistic TaS‡ (O-C): The optimistic TaS policies with C-tracking proposed by Degenne
et al. (2019), which is known to be very computationally expensive.

• Frank-Wolfe Sampling‡,⋄ (FWS): an asymptotically optimal policy that just relies on a sin-
gle iteration FW algorithm instead of solving the optimization problems in (3) at every
round (Wang et al., 2021).

• Round Robin (RR): a simple baseline that samples arms in a round-robin manner.

• Top-Two Transportation Cost (T3C): a computationally efficient asymptotically β-optimal
top-two policy based on TS (Shang et al., 2020). Notice that its β-optimality was extended to
bounded distributions by Jourdan et al. (2022) and we set β = 1/2.

In addition, we implement a modified version of FWS, called FWS-TE, where we replace the forced
exploration step in FWS with our Thompson exploration step. This adaptation is based on the
discussion below Theorem 2 that TE can be used for policies designed to increase the objective
function g at every round.

Stopping rule Following the experiments in the previous researches (Garivier and Kaufmann,
2016; Degenne et al., 2019; Ménard, 2019; Wang et al., 2021), we considered the same threshold
β(t, δ) = log((log(t) + 1)/δ).

General setup Here, we provide the empirical sample complexities of various policies for a range
of risk levels δ ∈ {0.2, 0.1, 0.01, 0.001} averaged over 3,000 independent runs. Following Degenne
et al. (2019), we consider the practical version of the lower bound (PLB), which refers to the first
round where tg(w∗;µ) ≥ β(t, δ) is satisfied. Hence, this practical lower bound indicates the
earliest round where the generalized likelihood ratio statistic approximately crosses the threshold,
and is defined as round s where s = β(s, δ)T ∗(µ) holds. Recall that the lower bound (LB) is given
as T ∗(µ) log

(
1

2.4δ

)
according to (2).

Bernoulli bandits In the first experiment, we consider the 5-armed Bernoulli bandit instance
µB
5 = (0.3, 0.21, 0.2, 0.19, 0.18) where w∗(µB

5 ) = (0.43, 0.25, 0.18, 0.13, 0.10). This instance
was considered in previous researches (Garivier and Kaufmann, 2016; Ménard, 2019; Wang et al.,
2021).

Gaussian bandits In the second experiment, we consider the 4-armed Gaussian bandit instance
µG
4 = (1.0, 0.85, 0.8, 0.7) with unit variance σ2 = 1 where w∗(µG

4 ) = (0.41, 0.38, 0.15, 0.06).
This instance was studied in Wang et al. (2021).

Results The overall results are presented in Table 1. Although our proposed policy BC-TE does
not achieve the asymptotic optimality in general, it exhibits a better empirical performance than
other optimal policies across most risk parameters, especially when large δ is considered. Interest-
ingly, Figure 2 shows that both BC-TE and FWS-TE consistently outperform other optimal policies
especially when large δ is considered, demonstrating the practical effectiveness of TE as an alterna-
tive to the forced exploration steps. Furthermore, we observe that BC-TE is more computationally
efficient than other asymptotically optimal policies, and FWS-TE outperforms the original FWS in
terms of efficiency, as demonstrated in Table 2.
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Table 1: Sample complexity over 3,000 independent runs, where outperforming policies are high-
lighted in boldface using one-sided Welch’s t-test with the significance level 0.05. LB
denotes the lower bound in (2), and PLB denotes the practical version of LB consid-
ered in Degenne et al. (2019). µB

5 denotes 5-armed Bernoulli bandit instance with means
(0.3, 0.21, 0.2, 0.19, 0.18) and µG

4 denotes 4-armed Gaussian bandit instance with means
(1.0, 0.85, 0.8, 0.7) and unit variance.

µ δ BC-TE FWS-TE FWS LMA T-D O-C AHBR T3C RR PLB LB

µB
5

0.2 1065 1077 1176 1415 1107 1545 1615 1115 1977 1208 272
0.1 1288 1326 1373 1668 1337 1818 1859 1372 2326 1442 574
0.01 2064 2102 2125 2509 2066 2706 2675 2180 3460 2211 1471
0.001 2849 2870 2880 3362 2823 3584 3469 3011 4555 2974 2252

µG
4

0.2 1415 1435 1499 1799 1472 1837 1959 1482 2555 1683 374
0.1 1759 1772 1829 2153 1806 2235 2339 1833 3078 2004 791
0.01 2895 2887 2890 3300 2835 3501 3524 2947 4730 3062 2026
0.001 3987 3967 3922 4445 3908 4732 4657 4042 6349 4112 3101
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(a) Bernoulli instance µB
5
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(b) Gaussian instance µG
4

Figure 2: Stopping times of various policies for δ = 0.1 over 3,000 independent runs. The black
star denotes the mean of stopping times. LB denotes the lower bound given in (2), and
PLB denotes the practical version of LB considered in Degenne et al. (2019).

6. Conclusion

In this paper, we introduced BC-TE, a computationally efficient approach for solving the BAI prob-
lem in SPEF bandits. By combining a gradient-based policy with Thompson sampling, BC-TE
overcame the limitations of existing approaches that involve computationally expensive optimiza-
tion problems, forced exploration steps, or hyperparameter tuning. Through theoretical analysis and
experimental evaluation, we demonstrated that TS can serve as a substitute for the forced exploration
steps in BAI problems. Although BC-TE is not universally optimal in general, we showed its opti-
mality for the two-armed bandits setting and provided a comparison with β-optimality. Simulation
results further validated the effectiveness of BC-TE, showing competitive sample complexity and
improved computational efficiency compared to other optimal policies.
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Table 2: Relative average time of one step of various policies.

µ BC-TE FWS-TE FWS LMA T-D O-C AHBR T3C RR
µB
5 1 35.53 40.13 1.743 43.52 448.1 2.695 0.8415 0.3246

µG
4 1 80.77 96.30 3.588 582.3 4533 3.935 0.7111 0.4226
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