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Abstract

Convolutional neural networks (CNNs) are becoming deeper and wider to achieve higher
accuracy and lower loss, significantly expanding the computational resources. Especially,
training CNN models extensively consumes memory mainly due to storing intermediate
feature maps generated in the forward-propagation for calculating the gradient in the back-
propagation. The memory usage of the CNN model training escalates with the increase in
batch size and the complexity of the model. Therefore, a lightweight training method is es-
sential, especially when the computational resources are limited. In this paper, we propose
a CNN training mechanism called Facto-CNN , leveraging low-rank tensor factorization
and lossy tensor compression to reduce the memory usage required in training the CNN
models. Facto-CNN factorizes the weight tensors of convolutional and fully-connected lay-
ers and then only updates one of the factorized tensors for each layer, dramatically reducing
the feature map size stored in the memory. To further reduce memory consumption, Facto-
CNN compresses the feature maps with a simple lossy compression technique that exploits
the value similarity in the feature maps. Our experimental evaluation demonstrates that
Facto-CNN reduces the memory usage for storing the feature maps by 68-93% with a trivial
accuracy degradation when training the CNN models.

Keywords: CNN; Training Optimization; Compression; Tensor Factorization

1. Introduction

With the advancements in deep learning, significant progress has been achieved in vari-
ous fields, such as Computer Vision, Natural Language Processing, and Automatic Speech
Recognition. However, these advancements have led to more complex and resource-intensive
Deep Neural Network (DNN) models, leading to a high burden for training such models.
For instance, a model like GPT-3 (Brown et al. (2020)) has parameter counts of 175 billion,
requiring several months for training even with high-performance GPUs (Graphics Process-
ing Units). Similarly, training the state-of-the-art Convolutional Neural Networks (CNNs)
models require high computational resources as the number of hidden layers in CNNs in-
crease (He et al. (2016)) and the high-resolution input images are used for training (Karras
et al. (2019)).

CNN training typically demands high memory capacity. In CNN training, most memory
usage is attributed to feature maps represented as tensors that store activations during the
forward pass and are utilized for gradient computation in the backward pass (Rhu et al.
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(2016)). The memory usage of the feature maps in the CNN training is at its maximum at
the end of the forward pass and gradually decreases during the backward pass. Therefore,
reducing the size of feature maps stored in memory during the forward pass becomes crucial
to minimize memory usage in CNN training. Furthermore, training with a large batch size
significantly escalates memory consumption mainly due to the enlarged memory footprint of
the feature maps (Rhu et al. (2016); Jin and Hong (2019)). This high memory requirement
of CNN training can limit the use of desirable CNN architectures (e.g., a large number
of layers) and the training with a large batch size. This limitation becomes even more
pronounced in self-supervised learning (SSL), where large batch sizes are typically required
(Chen et al. (2022)). For example, recent SSL methodologies such as SimCLR (Chen
et al. (2020)) and BYOL (Grill et al. (2020)) typically use large batch sizes ranging from
approximately 1024 to 8192, consequently necessitating a memory-efficient training method.

While CNN training needs high-capacity memory, the GPU systems, commonly em-
ployed for both inference and training of deep learning models, have a challenge in meeting
this requirement (Rhu et al. (2016); Jin and Hong (2019)). Even if GPUs provide out-
standing performance and high programmability, their memory capacity is much smaller
than the CPU systems. Since the GPU operates with separate memory spaces from the
CPU, transferring the tensors required for computations to the GPU’s memory is necessary.
When training models using a single GPU, if the memory usage of that GPU exceeds its
capacity, the training process comes to an abrupt halt. To mitigate this challenge, some
researchers resort to employing multiple GPU systems. However, this approach often intro-
duces imbalanced GPU memory consumption (Zhou et al. (2023)), undermining the GPUs’
ability to perform at their optimal capacity.

To tackle this challenge in CNN training, this paper proposes a novel CNN training
mechanism called Facto-CNN that leverages two schemes to reduce the memory footprint
of the feature maps in the CNN training: 1) Low-Rank Training (LRT) and 2) Feature
Map Compression (FMC). LRT decomposes the tensor of convolutional and fully-connected
layers into direction and magnitude matrices by leveraging the low-rank tensor factorization.
After that, it only updates the magnitude matrix. Since the feature map used to calculate
the gradient for updating the magnitude matrix is much smaller than those required for
updating the original tensor, LRT significantly reduces the memory capacity for storing
the feature map. To further reduce the memory requirement, Facto-CNN compresses the
feature map with a simple lossy compression technique that exploits the data similarity in
the feature map.

Our experimental results demonstrate that Facto-CNN reduces the memory usage of
feature maps in the CNN training by 68-93% for popular CNN models while maintaining the
inference accuracy. With an optimal configuration that delivers a significant reduction in the
memory usage with a trivial accuracy degradation (less than 1%), Fact-CNN achieves 93%,
92%, 76%, 77%, 68% reduction in the memory usage of feature maps for VGG11, VGG16
(Simonyan and Zisserman (2014)), fixup-ResNet18, fixup-ResNet34, and fixup-ResNet50
(Zhang et al. (2019)), respectively.
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2. Background and Motivation

2.1. CNN Training

Convolutional Neural Network (CNN) is the most popular network for image analysis in
various computer vision applications. To accurately classify input images into their respec-
tive labels using a CNN model, it is necessary to train the model with a prepared image
set. This training process involves using gradient descent to optimize weights. The training
process is divided into two stages: forward propagation and backward propagation.

In forward propagation, each layer receives an input feature map and produces an
output feature map that is then passed to the next layer. In this process, the fully-connected
layer takes an input vector x ∈ RI and performs a vector-matrix multiplication operation
with the weight matrix W ∈ RO×I to generate an output y ∈ RO:

y = Wx (1)

Where O is the number of output nodes, I corresponds to the number of input nodes.
The convolutional layer, which is the most crucial layer in CNN, performs convolutional
operations with an input feature map X ∈ RCI×H×W and a kernel W ∈ RCO×CI×KH×KW

to produce an output feature map Y ∈ RCO×(H−KH+1)×(W−KW+1):

Yf,x,y =

Kh∑
i=1

Kw∑
j=1

CI∑
c=1

Wf,c,i,jXc,i+x−1,j+y−1 = W ∗X (2)

H and W represent the height and width of the image, respectively, while CI and CO

correspond to the input and output channels, and KH and KW denote the kernel’s height
and width.

Also, tensors are stored during the forward pass and used to compute gradients during
the backward pass. The tensors stored in each layer are as follows:

• Convolutional and Fully-connected layers: The input feature map and weights are
stored.

• Max Pooling layer: The locations of the selected values in the input feature maps are
stored. In the PyTorch framework, when an input feature map is flattened through
vectorization, the indices of each element in the output feature map are stored. The
input feature map is also stored to determine its shape during the backward pass.

• Activation layer(ReLU): Generally, the output of the activation layers needs to be
stored. However, nothing is stored since the activation layer’s output is the input
(input feature map) of a convolutional layer, a fully connected layer, or a pooling
layer.

In Backward propagation, the parameters are updated using the Stochastic Gradient
Descent (SGD) method defined as the equation 3).

W := W − η
∂L

∂W
(3)
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Where η corresponds to the learning rate. To compute ∂L/∂W , layers with parameters
(fully connected layers, convolutional layers) need to perform the following operations:

∂L

∂X
=

∂L

∂Y

∂Y

∂X
,
∂L

∂W
=

∂L

∂Y

∂Y

∂W
(4)

Where ∂L/∂Y represents the gradient passed from the next layer. This gradient is passed
to the previous layer by multiplying with the weight, ∂Y /∂X. Furthermore, to update the
weight value, ∂L/∂Y is multiplied by the corresponding input value, ∂Y /∂W . Therefore,
in the case of a fully connected layer, the equation can be modified as follows:

∂L

∂X
= W T ∂L

∂Y
,
∂L

∂W
=

∂L

∂Y
XT (5)

Similarly, convolutional layers can also be expressed as matrix multiplication through
Im2col (Chellapilla et al. (2006)), making it possible to compute the gradients of the input
and weights similar to fully connected layers.

In the case of ReLU and max pooling, which do not have parameters, only the gradients
of the inputs need to be computed and passed back to the previous layer. The max pooling
layer utilizes the indices information of the maximum value to propagate gradients to the
corresponding location of the maximum value in the input image. Similarly, the ReLU layer
propagates gradients to elements in the input image greater than 0.

2.2. Memory Usage in CNN Training

In this subsection, we provide a detailed analysis of the maximum memory usage for storing
tensors during training. The memory usage of a CNN can be broadly divided into three
parts: feature map, weight, and optimizer state. First, during the forward pass, all layers
must store feature maps corresponding to the input or output and the weight values for
gradient computation. Table 1 provides the tensors’ sizes stored during the forward pass
in PyTorch. In the case of fully connected layers, in most scenarios, the memory occupied
by weights is larger, as B < O, here, B is the batch size. Conversely, in convolutional
layers, the memory occupied by feature maps is larger since B × H × W is much bigger
than Co×KH ×KW . Second, upon completion of the backward pass, the current gradients
need to be stored for calculating the momentum of the next gradient update, particularly in
optimizers like momentum-SGD (Hinton et al. (2012)) or Adam (Kingma and Ba (2014)).
For instance, momentum-SGD (eq. 6), the previous gradient values need to be stored (Mt),
necessitating the storage of earlier gradients.

Mt+1 = αMt − η
∂L

∂Wt

Wt+1 = Wt +Mt+1

(6)

The size of the momentum values (optimizer state) to be stored after the backward pass
is proportional to the number of trainable parameters, which are updated by the gradi-
ents. Note that the number of trainable parameters may not equal the number of weight
parameters. In typical supervised learning scenarios, the entire set of weight parameters
is updated using gradients so the number of trainable parameters matches the number of
weight parameters. However, when only a subset of parameters is updated, the number of
trainable parameters becomes smaller.
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tensor size (Byte)

Fully connected layer (B × I)× 4 + (O × I)× 4

Convolutional layer (B × CI ×H ×W )× 4 + (CO × CI ×KH ×KW )× 4

Max pooling layer (B × CI ×H ×W )× 4 + (B × CI × H
KH

× W
KW

)× 8

Activation layer(ReLU) (B × CI ×H ×W )× 4 or (B × I)× 4

Table 1: The size of tensors stored during the forward pass. The numbers 4 and 8 represent
tensors with data types float32 and int64, respectively.

2.3. Prior Work - Memory Efficient Training

Data offloading(Rhu et al. (2016), Jin and Hong (2019), Rhu et al. (2018)) is a technique
commonly employed in deep learning training processes, which involves temporarily trans-
ferring tensors stored in the GPU to the CPU. These tensors are later transferred back to the
GPU for usage during the backward pass calculations. Preemptively transferring the tensors
required for computations from the CPU to the GPU in the backward pass can help conceal
the additional time taken. However, determining the optimal timing for preloading onto
the GPU is highly challenging, and significant performance degradation is observed when
dealing with large batch sizes (Jin and Hong (2019)). Moreover, in memory-constrained
embedded systems, offloading becomes ineffective as the overall memory capacity is insuf-
ficient. Therefore, minimizing the size of tensors stored during training is crucial.

The LoRA (Hu et al. (2021)) proposes a method for efficient memory utilization when
fine-tuning transformer-based models. Pretrained model such as GPT-3 has excellent per-
formance on various natural language processing tasks. However, tremendous GPU memory
is required to fine-tune such models on downstream tasks. Due to the large number of train-
able parameters, which is 175 billion, the optimizer state requires a significant amount of
VRAM capacity. LoRA addresses these challenges by utilizing low-rank factorization train-
ing based on the evidence that the language model has a low “intrinsic rank” (Aghajanyan
et al. (2020), Li et al. (2018)). Wq,Wv,Wk and W0 matrices are replaced by the weight
matrix W +AB, and only A and B matrices are trained. This method reduces the VRAM
usage from 1.2TB to 350GB in the case of GPT-3. However, while this approach reduces
the number of trainable parameters, it increases the size of feature maps. This is because,
in LoRA, matrix A and matrix B need to be updated (eq 7).

∂L

∂A
=

∂L

∂((W +AB)X)

∂((W +AB)X)

∂(W +AB)

∂(W +AB)

∂A
=

∂L

∂Y
(BX)T

∂L

∂B
=

∂L

∂((W +AB)X)

∂((W +AB)X)

∂(W +AB)

∂(W +AB)

∂B
= AT ∂L

∂Y
XT

(7)

The equation mentioned above requires storing the matrices for input X and BX. As a
result, transformer-based models that primarily rely on fully connected layers experience
a significant decrease in VRAM usage. However, due to the large size of feature maps
in CNNs, using this approach instead leads to an increase in VRAM usage, making it
impractical.
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Figure 1: Overview of CNN training with Facto-CNN: The initial few epochs are dedicated
to full-rank training, while the remaining epochs utilize low-rank training.

3. Proposed Training Method: Facto-CNN

The overview of the Facto-CNN’s training step is illustrated in Figure 1. As shown in this
figure, we first train the model for a few epochs, which we refer to as full-rank training
(FRT) and is essentially the same as the conventional training method. Afterward, we
reconstruct the weight matrix W as W +MD for low-rank training (LRT) and update only
the M matrix. Since the rank of M and D is much smaller than that of W , we can observe
the following two effects. First, the size of the input feature map stored during the forward
pass decrease. Second, the storage required for the optimizer state decreases as the number
of trainable parameters decreases. Moreover, lossy compression is employed on the feature
maps of the layer that receives input as an image, reducing the height and width dimensions
of the feature maps. We will describe Facto-CNN’s training mechanism in more detail in
the following subsection.

3.1. Low-Rank Training with Tensor Factorization

3.1.1. Layer Reconstruction

To reduce the feature map size stored in memory, Facto-CNN introduces LRT. Facto-CNN
begins by reconstructing the weight matrix that has undergone certain epochs with FRT.
For fully connected layer’s weight matrix Wfc ∈ RO×I , we add two parameter matrices,
namely the direction matrix Dfc ∈ RR×I and magnitude matrix Mfc ∈ RO×R. And for the
input vector x to this layer, the output vector y is computed as follows:

y = (Wfc +MfcDfc)x (8)

Similarly, for the convolutional layer filter Wconv ∈ RCO×CI×Kh×Kw , Mconv ∈ RCO×CR

and Dconv ∈ RCR×CIKhKw matrices are added and the output image Y is computed as
follows:

Dfilter = vec−1
CR,CI ,Kh,Kw

(vec(Dconv))

Mfilter = vec−1
CO,CR,1,1(vec(Mconv))

Y = Wconv ∗X +Mfilter ∗ (Dfilter ∗X)

(9)
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To reduce computational complexity, operations are performed using the following equation:

△Wconv = vec−1
CO,CI ,Kh,Kw

(vec(MconvDconv))

Y = (Wconv +△Wconv) ∗X
(10)

Where R, CR corresponds to the rank of M, D matrices, which we refer to as “internal nodes”
and “internal channels”. Moreover, we introduce a vital hyperparameter that determines the
internal nodes and channels, called the “internal node ratio(INR).” This hyperparameter
takes values between 0 and 1 and is defined as R/I or CR/CI .

3.1.2. Matrix initialization

The generated M and D matrices must be appropriately initialized for LRT. (Fig 2) D ma-
trix is randomly initialized using a Gaussian distribution. Then, normalize it along the rows.
Normalizing D matrix ensures that all rows have an equal impact on the original weight
matrix W . Finally, we multiply α by the D matrix. This α guarantees that the variance
of gradients on the full weight matrix (Ω = W +MD) caused by the update of matrix M
(V ar[η(∂L/∂M)D]) is the same as the variance of gradients in FRT (V ar[η(∂L/∂WFRT )]).
Upon intuitive consideration, when transitioning from FRT to LRT phase, it serves to pre-
vent sudden shifts in gradient variance and enables updates with gradients of a magnitude
similar to FRT. To satisfy this condition, the following equation must hold:

V ar[η
∂L

∂WFRT
] = V ar[(η

∂L

∂M
)D] (11)

Assume that both FRT and LRT use the same learning rate. ∂L/∂M is equal to
(∂L/∂Ω)DT , and at the onset of LRT, ∂L/∂Ω corresponds to ∂L/∂WFRT . This can be
applied to the previous equation, leading to the following expression:

V ar[η
∂L

∂WFRT
] = V ar[(η

∂L

∂Ω
DT )D]

V ar[η
∂L

∂WFRT
] = I × V ar[η

∂L

∂Ω
]V ar[DTD]

1

I
= V ar[DTD]√
1

RI
≃ V ar[D]

(12)

Thus, we can set the α value so that the D matrix has the abovementioned variance.

V ar[D] = E[D ◦D]− E[D]2 =
α2

I
− 0√

1

RI
=

α2

I

∴ α =
4

√
I

R

(13)

The symbol ◦ denotes element-wise product. By applying this initialization method,
all internal nodes have an equal influence on the weight matrix W , generating gradients
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Figure 2: Matrix Initialization for LRT

(a) (b)

Figure 3: (a) Train loss and (b) test loss when varying the periodicity of adding the MD
matrix to W and reconstructing the M and D matrices during training with
AlexNet on ImageNet.

of the same variance as those produced in FRT. Additionally, the D matrix consists of R
vectors, each with I dimensions, which determine the desired “Direction” for learning. The
M matrix determines how much these R vectors should be applied to the W matrix. We
only train the M matrix, considering it as the learning of how randomly generated R vectors
should be applied to W in terms of their “Magnitude.”

3.1.3. Optimizing Magnitude Matrix Update

LRT can lead to underfitting and overfitting for various reasons. Underfitting in LRT
is because if the D matrix is not changed during the entire training process, the learning
direction does not change, and the weight matrix does not learn in diverse directions, causing
the network to saturate quickly. Therefore, adding the MD matrix to W and redefining the
M and D matrix at regular training steps is necessary. However, if this process is performed
too frequently, overfitting can occur. As shown in Figure 3, if the MD matrix is combined
with W with a frequency of less than one epoch (10010 steps), the training loss becomes too
high or fluctuates in a zigzag pattern. And if the frequency surpasses one epoch, it results
in a higher test loss.



Facto-CNN

(a) (b)

Figure 4: Feature map binarization for memory saving: (a) ReLU, (b) Max pooling

Another way to prevent overfitting is to apply regularization. We use two regularization
methods in LRT. The first method is to apply regularization to matrix M . This adjusts the
row vectors of matrix D to be properly applied to the full matrix Ω. The second method
is to apply regularization directly to matrix W . Therefore, matrix W is updated at each
training step as follows:

W := W − λΩ (14)

This allows us to receive similar effects of regularization applied in FRT.

3.2. Auxiliary layer feature map binarization

As layers with parameters no longer store input feature maps, the ReLU layer is required
to store the output feature map. However, directly storing the output feature map would
consume more memory than FRT. Therefore, to reduce memory usage, we compress the
feature maps as the bit-level before storing them (Fig. 4). In ReLU layer, a tensor of the
same size as the output is stored. This tensor records a value of 1 if the input is greater than
0 and 0 if the input is less than or equal to 0. During the backward pass, the output gradient
and this information are multiplied element-wise to compute the input gradient and pass it
back to the previous layer. The same approach can be applied to the max pooling layer as
well. The stored tensor contains a value of 1 at the position of the maximum value that was
outputted and 0 for the rest of the positions. Then, during the backward pass, the output
gradient is upsampled, and the positional tensor is multiplied element-wise to compute the
input gradient and pass it backward.

3.3. Lossy Tensor Compression

In addition to the commonly used convolutional and fully connected layers, there are other
types of layers in deep learning architectures that also require the storage of feature maps.
One such example is a scaling layer that multiplies an input image by a scalar value, which
necessitates storing all the input image values solely to update a single parameter. This
highly inefficient approach can lead to memory constraints in training CNN models. To
address this challenge, we employ mean pooling during the forward pass to compress the
data and upsampling during the backward pass to utilize the information. Mean pooling
reduces the height and width dimensions of the feature maps, enabling more efficient storage
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and processing of the data. By averaging the values within each pooling window, the overall
spatial resolution is reduced while preserving the essential features of the input.

In the case of convolutional layers, both LRT and feature map compression (FMC)
techniques can be applied simultaneously (Figure 5). During the forward pass, the input
image undergoes a convolution operation with the Ω filter (W + △W ) to generate an
output while simultaneously engaging in a convolution operation with the reshaped direction
matrix to produce an internal output. This internal output can be seen as the input
compressed along the channel dimension, and it is stored in the memory of the GPU after
being compressed through lossy compression. Therefore, we can store the feature map
compressed for all dimensions except the batch dimension. Subsequently, in the backward
pass, the stored tensor is upsampled to restore the internal output. It is then operated
on with the output gradient to generate the magnitude matrix gradient. Furthermore, the
output gradient is operated on with the omega filter, creating the input gradient. Finally,
the input gradient is passed to the previous layer.

3.4. Memory Efficiency

Full rank training requires storing the entire layer’s feature map, but if we only train the M
matrix parameters, we can store the compressed feature map using the D matrix. In the
case of a fully connected layer, we would normally store an B× I sized matrix. However, to
compute the gradient of the M matrix, we only need a tensor of size B×R, where obtained

Figure 5: Convolutional layer of Facto-CNN: (a) Forward pass, (b) Backward pass

Fully-connected layer Convolutional layer

Input feature map
Compression ratio

1−R/I 1− CR/(CIkHkW )

Trainable parameter
Reduction ratio

1−R/I 1− CR/(CIKHKW )

Table 2: Memory usage reduction with Facto-CNN for fully-connected and convolutional
layers
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by multiplying the D matrix by the input matrix. Similarly, we only need to store Dfilter∗X
for the convolutional layer, which size is B×CR×H ×W . Furthermore, lossy compression
can be applied, resulting in further compression to the size of B×CR× (H/kH)× (W/kW ).
Here, kH and kW represent the height and width sizes of the lossy compression kernel,
respectively. So, the compression ratio is calculated as 1−R/I and 1− CR/(CIkHkW ).

There is also a benefit of reducing the number of trainable parameters. The trainable
parameter reduction ratio can be calculated as follows:

1− M matrix parameter num

W matrix parameter num
(15)

By simple calculation, we can determine that the trainable parameter reduction ratio for
the fully connected and convolutional layers are 1−R/I and 1−CR/CIKHKW , respectively.
In particular, the trainable parameter reduction ratio for the convolutional layer is very
high. For instance, all convolutional layers of the VGG model employ a 3× 3 kernel. When
INR = 0.3, KH = 3, and KW = 3, the reduction ratio reaches 96.67%. Therefore, only
3.33% of the parameters are used for training.

4. Evaluation

4.1. Methodology

In this section, we compare the accuracy and maximum GPU memory usage of various CNN
models (VGG, fixup-ResNet) using the ImageNet dataset(Deng et al. (2009)). ImageNet is
an image classification task that contains approximately 1.4 million images and 1000 classes.
These images have various sizes, so we cropped them to 224×224 for use. All models were
trained for 100 epochs, with the learning rate decreasing by ten at the 30th, 60th, and 90th
epochs. FRT was performed for only 30 epochs, and the remaining epochs were trained
using LRT. The initial learning rate was set to 0.01 in VGG, while for fixup-resnet, it was
set to 0.1. In fixup-resnet, a data augmentation technique mixup (Zhang et al. (2017)) is
employed to prevent overfitting. The mixup λ, which determines the interpolation ratio, is
set to 0.7 during the FRT step and 0.3 during the LRT step.

4.2. Accuracy and Memory Usage

Table 3 presents each model’s accuracy and feature map size according to various hyper-
parameters. For the first line of each model, the feature map size and top-5 accuracy were
recorded when applying the general forward and backward functions provided by PyTorch
(Paszke et al. (2017)). The hyperparameters used were lossy compression kernel size, INR,
and compression apply ratio. Here, The compression apply ratio represents the propor-
tion of convolutional and scaling layers where the feature map reduction technique (LRT
+ FMC) was applied out of the total number of such layers. We did not use the reduction
techniques to the input layer and proceeded to apply compression starting from the layer
closest to the input layer in sequential order. In this experiment, VGG models were able to
train using only approximately 10% to 20% of the feature map size with no accuracy drop,
while Fixup-ResNet models achieved training with an accuracy drop of approximately 1%
and using around 20% to 30% of the feature map size.



Lee Ko Hong

Model
Lossy compression

kernel size
INR

Compression
apply ratio

Feature map size
Top-5

accuracy

vgg11(baseline) - - - 11890.5MB (100.00%) 88.620%
vgg11 2 0.3 0.6 1467.3MB (12.34%) 88.480%

1 1903.7MB (16.01%) 88.708%
3 1383.3MB (11.63%) 88.592%

0.4 1515.5MB (12.75%) 88.604%
0.2 1416.8MB (11.92%) 88.486%

0.4 2168.6MB (18.24%) 88.696%
0.8 959.9MB (8.07%) 87.906%
1.0 793.8MB (6.68%) 87.766%

vgg16(baseline) - - - 17868.5MB (100.00%) 90.382%
vgg16 2 0.3 0.6 2536.1MB (14.34%) 90.402%

1 4194.4MB (23.47%) 90.460%
3 2221.2MB (12.43%) 90.401%

0.4 2717.5MB (15.21%) 90.462%
0.2 2340.9MB (13.10%) 90.300%

0.4 3938.7MB (22.04%) 90.608%
0.8 1678.2MB (9.39%) 89.912%
1.0 1424.5MB (7.97%) 89.556%

fixup-resnet18(baseline) - - - 3871.5MB (100.00%) 88.412%
fixup-resnet18 2 0.3 0.6 941.6MB (24.32%) 87.534%

1 1794.4MB (46.35%) 87.760%
3 774.6MB (20.01%) 87.240%

0.4 978.3MB (25.27%) 87.632%
0.2 901.2MB (23.28%) 87.496%

0.4 1328.1MB (34.30%) 88.324%
0.8 700.5MB (18.09%) 86.256%
1.0 577.1MB (14.91%) 85.174%

fixup-resnet34(baseline) - - - 5709.0MB (100.00%) 90.858%
fixup-resnet34 2 0.3 0.6 1575.8MB (27.60%) 89.854%

1 3040.0MB (53.25%) 90.032%
3 1287.0MB (22.54%) 89.472%

0.4 1635.3MB (28.64%) 89.886%
0.2 1511.1MB (26.47%) 89.686%

0.4 2158.0MB (37.80%) 90.512%
0.8 1152.6MB (20.19%) 88.966%
1.0 837.7MB (14.67%) 87.652%

fixup-resnet50(baseline) - - - 15510.5MB (100.00%) 92.736%
fixup-resnet50 2 0.3 0.6 4985.0MB (32.14%) 91.744%

1 10066.5MB (64.90%) 92.094%
3 3983.4MB (25.68%) 91.282%

0.4 5191.4MB (33.47%) 91.744%
0.2 4776.5MB (30.89%) 91.658%

0.4 7080.4MB (45.65%) 92.070%
0.8 3525.7MB (22.73%) 91.266%
1.0 2471.0MB (15.93%) 89.940%

Table 3: Classification accuracy on ImageNet
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(a)

(b)

(c)

Figure 6: Memory usage breakdown based on (a) INR, (b) Lossy compression kernel size,
and (c) Compression apply ratio.

Figure 6 provides a detailed breakdown of the feature map size saved in each layer,
corresponding to the feature map size shown in Table 3. Baseline refers to models using
the default models provided by PyTorch. In VGG models, most of the feature map size
is occupied by convolutional and max pooling layers. In the case of Fixup-ResNet, scaling
layers also contribute significantly. As the figure observed, successful feature map size
reduction was achieved across all layers.

5. Discussion

5.1. Training Large CNN Models

Up to this point, we have explored the LRT and FMC techniques that reduce the fea-
ture map sizes of layers, including convolutional, fully connected, ReLU, max pooling, and
scaling layers. As a result, it is possible to decrease the memory usage of a large CNN
model composed of the aforementioned layers. In a theoretical scenario where the lossy
compression kernel size, INR, and Compression Application Ratio are set to 2, 0.3, and
0.6, respectively, it is anticipated that the feature map size of fixup-ResNet-101 could be
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reduced from 23.8GB to 9.0GB, and the feature map size of fixup-ResNet-152 could poten-
tially decrease from 34.1GB to 13.3GB.

5.2. Time Complexity

When employing the Facto-CNN technique for training the model, additional time is intro-
duced beyond the generation of outputs during the forward pass due to the supplementary
compression of feature maps. The most time-intensive operation pertains to compressing
and storing inputs using LRT. This operation incurs an additional cost of (time taken
for output generation * INR). In contrast, only the M matrix necessitates updates dur-
ing the backward pass, resulting in a reduction of weight matrix update time by a factor
of INR/(KHKW ) times. Consequently, these temporal increments have the potential to
offset one another, ultimately resulting in a time complexity akin to that of traditional
CNN training. Moreover, if the Ω matrix is precomputed and stored before inference, the
inference time aligns with a traditional CNN’s.

6. Conclusion and Future works

For CNN training, a significant amount of GPU memory is typically used. This is primarily
due to the need to store feature maps of each layer. To address this, we propose compress-
ing the stored information into the input image’s channel, width, and height dimensions,
excluding the batch dimension. This approach can be applied not only to convolutional
layers but also to any layer that performs matrix multiplication operations on weights and
inputs. Furthermore, this memory-efficient training method enables on-device training and
practical training of large CNN models.

Future work can be considered as follows: 1) In CNNs, the input to the front convolu-
tional layers, which are close to the input layer, have larger height and width dimensions.
On the other hand, the back convolutional layers, which are closer to the output layer, have
larger channel sizes and relatively more trainable parameters. Therefore, we can explore
applying lossy compression to feature maps of front convolutional layers and tensor factor-
ization to back convolutional layers. 2) The inputs and outputs of layers in Graph Neural
Network (GNN) and Graph Convolutional Network (GCN) can often contain a significant
number of zeros. As a consequence, these matrices tend to possess relatively lower ranks
in comparison to dense matrices. This characteristic enables a more favorable application
of LRT and FMC techniques. 3) When training a CNN model using SSL, the batch size
increases, resulting in larger feature map sizes. Therefore, one possible approach to address
this is to consider applying the Facto-CNN method within SSL.
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