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Abstract

With the rapid development of deep learning and its pervasive usage on various low-power
and resource-constrained devices, model compression methods are increasingly used to
reduce the model size and computation cost. Despite the overall high test accuracy of
the compressed models, our observation shows that an original model and its compressed
version (e.g., via quantization) can have deviated prediction outputs on the same inputs.
These behavior deviations on compressed models are undesirable, given that the compressed
models may be used in reliability-critical scenarios such as automated manufacturing and
robotics systems.

Inspired by software engineering practices, this paper proposes CompD, a differential
testing (DT)-based framework for detecting and repairing prediction deviations on com-
pressed models and their plaintext versions. CompD treats original/compressed models as
“black-box,” thus offering an efficient method orthogonal to specific different compression
schemes. Furthermore, CompD can leverage deviation-triggering inputs to fine-tune the
compressed models, largely “repairing” its defects. Evaluations show that CompD can
effectively test and repair common models compressed by different schemes.

Keywords: Model compression, differential testing, model repairing.

1. Introduction

Modern deep neural networks (DNN) can easily have millions of parameters, requiring
high-performance devices like GPUs for inference. With this regard, model compression
techniques Cheng et al. (2017) are proposed to reduce the model latency and memory
consumption, enabling the execution of DNN models on small devices like edge or low-
power mobile devices. In particular, standard compression techniques like pruning Han et al.
(2015) strives to remove weights or channels with little contribution, whereas quantization
techniques Jacob et al. (2018) aim to encode weights and activations into fewer bits.

To date, it is widely acknowledged that model compression methods have been suc-
cessfully deployed to reduce computations, decrease power demands, and thus enable the
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Figure 1: Motivating example and CompD overview. Mo and Mc denote the original
model and its compressed version.

deployment of DNNs on low-power devices. Furthermore, it is shown that compressed mod-
els can often exhibit overall high test accuracy compared to the original DNN models Cheng
et al. (2017). Nevertheless, our observation shows that the original modelMo and its com-
pressed version Mc (e.g., via pruning), though they may both exhibit high test accuracy,
can have deviated prediction outputs on the same input, as illustrated in upper Fig. 1. We
name such inputs as deviation-triggering (DT) inputs in this paper.

Given that compressed models can be involved in supporting safety-critical applications
like autonomous vehicles or automated manufacturing processes when deployed in low-cost
edge devices and embedded devices. We thus believe that even minor differences between
Mo and Mc on rare inputs can cause significant security problems, and test accuracy on
its own is not sufficient to unveil such hidden behavior deviations between Mo and Mc.
Inspired by principles of software differential testing McKeeman (1998), this research pro-
poses CompD, the first testing and repairing framework to detect prediction deviations
between original models and their compressed counterparts. CompD is agnostic to un-
derlying compression methods. As illustrated in ¬ of Fig. 1, CompD features a unified
differential testing approach to effectively search for inputs that result in largely deviant
outputs between Mo and Mc. To enhance the test efficiency, CompD features a novel
search-based input generation technique, progressively identifies inputs that maximize the
neuron coverage deviations ofMo andMc. We show that DT inputs identified by CompD
are of high (visual) quality compared with normal inputs, thereby uncovering defects that
may cause users of these compressed models substantial confusion in their daily usage and
potentially jeopardize the safety of real-world low-cost devices. Moreover, as shown in  of
Fig. 1, CompD collects DT inputs and their corresponding outputs fromMo as new train-
ing data to repair the output deviations, thereby enhancing the robustness and mitigating
mispredictions without requiring manual annotations.

Our evaluation encompasses three widely-used model compression methods, pruning,
and quantization, offered by the PyTorch framework. To assess the common defects com-
pression techniques may introduce, we evaluate three widely-used DNN models, VGG11 Si-
monyan and Zisserman (2014), ResNet18 He et al. (2016), and DenseNet121 Huang et al.
(2017). After searching 50, 000 mutated inputs in total for testing, CompD detected 1958
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inputs that resulted in greatly deviant outputs from zero accuracy gap caused by compres-
sion, where the prediction labels are inconsistent between Mc and Mo. With these 1958
inputs, we are able to fine-tune the compressed models, largely improving their robustness.
When re-evaluating the “repaired” model M+

c , we find that almost all the DT inputs are
mitigated. The “repaired” Mc also shows better robustness against adversarial attacks,
regarded as the most widespread threats to machine learning models. Developers can use
CompD to benchmark and enhance their compressed models before releasing them to end
devices. In sum, we make the following contributions.

• This paper, for the first time, proposes a testing and enhancing framework particularly
designed for compressed DNN models. We reveal defects that result in deviant pre-
diction outputs, which can cause great confusions or enable adversarial manipulations
in the daily usage of compressed models.

• CompD uses feedback-driven differential testing to effectively search for inputs that
maximize behavior deviations of Mc and Mo. CompD can also “repair” compressed
DNN models to enhance their robustness at a moderate cost and without human
annotations.

• Our evaluation of standard compression techniques and popular DNN models exposes
a substantial number of DT inputs. We further repair the exposed defects, making
compressed models considerably more robust.

Artifact Availability.
We provide CompD at https://github.com/winnylyc/ModelCompressionTest to fa-

cilitate the community to reproduce our results. We will maintain CompD to benefit the
community.

2. Preliminary and Related Works

Pruning. Pruning is an effective and general way to reduce the model size and computa-
tions. Exiting pruning works can be divided into two categories: unstructured pruning and
structured pruning. Unstructured pruning aims to prune connections in the DNN, leading
to unstructured sparsity of models. Han et al. proposed a three-step method to prune
redundant connections Han et al. (2015). Dynamic network surgery designed by Guo et al.
can integrate connection splicing into the pruning process, significantly reducing network
complexity Guo et al. (2016). Tung and Mori proposed CLIP-Q, combining the advantages
of weight pruning and weight quantization in a single framework Tung and Mori (2018).
Structured DNN pruning aims to reduce the memory footprint and computational workload
of DNNs by strategically identifying and removing “unimportant” inter-layer connections
and thus simplifying their computation graphs. It has been shown to effectively improve
the performance and energy efficiency of DNN models while causing little to no accuracy
loss Molchanov et al. (2016); Zhao et al. (2019). For instance, CNNs can be boosted by
removing filters with a smaller L1-norm Li et al. (2016). To date, we have seen a variety
of metrics quantifying the importance of channels Liu et al. (2017); Kruschke and Movellan
(1991), under which the least important channels are pruned.

https://github.com/winnylyc/ModelCompressionTest
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Quantization. Quantization is another widely used technique to compress models. It
largely facilitates reducing the computational and storage complexity of DNN models. Given
that floating-point operations are more expensive to evaluate than integer operations, model
quantization uses integers as an approximation for the full-precision floating-point numbers
in the original model. Quantization can be applied to the model inference Choukroun
et al. (2019); Yao et al. (2021). Some works have also designed methods for quantized
model training Banner et al. (2018). An issue with model quantization is that the quan-
tized model may give different outputs from its full-precision counterpart. Thus, it is
often necessary to adjust the parameters of the quantized models for better accuracy and
usability. Quatization-Aware Training (QAT) re-trains quantized models, whereas Post-
Training Quantization (PTQ) directly adjusts the parameters of quantized models without
fine-tuning.

Robustness of Compressed Models. Model compression techniques generally focus on
the accuracy comparison between the original model and the compressed one. However,
even though compressed DNN models can achieve high accuracy, they can be susceptible
to adversarial attacks, i.e., designing inputs with normal appearance as benign ones while
leading the attacked DNN models to give incorrect predictions. In fact, Lin et al. (2019)
show that compressed models are more vulnerable to adversarial attacks than their original
counterparts. To mitigate such issues, some works Ye et al. (2019); Gui et al. (2019); Song
et al. (2020) have investigated designing model compression methods that are both robust
against adversarial attacks and high in accuracy. Also, while we have noticed some parallel
works Tian et al. on testing compressed models, we clarify that their methods simply treat
the target models as “black-boxes”, while this paper explores a “white-box” view such that
model gradients can be properly leveraged to guide the discovery of DT inputs. Moreover,
this paper for the first time illustrates that the discovered DT inputs can be used for model
retraining and effectively improve the robustness of compressed models.

3. Design of CompD

Overview. This work designs CompD, the first automated framework to detect and repair
deviation behaviors of compressed DNNs. We have depicted the pipeline of CompD in
Fig. 1. Overall, given a target compressed model Mc, developers are also anticipated to
possess the original model Mo. These two models serve as inputs of CompD for the
following two steps.

¬ Differential Testing. CompD employs feedback-driven differential testing to explore
inputs that result in deviant outputs of Mc and Mo (Sec. 3.2). That is, CompD aims to
find an input i which can result in a considerably large output deviation δ as follows.

maximize:
i

δ = |Mo(i)−Mc(i)| (1)

In particular, we define δ in accordance with the prediction output, such that when
Mo and Mc yield distinct prediction labels, we collect the inputs as deviation-triggering
(DT) input set Idt. We further augment CompD’s ability to find DT inputs through neuron
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coverage deviation. We have derived the concept of neuron coverage from the work presented
in Pei et al. (2017). However, our approach differs from theirs in that we particularly focus
on neuron activation changes over pruned neurons instead of activation changes over any
neurons. This approach leads to the discovery of more DT inputs. Sec. 3.2 provides technical
details on our approach.

In Sec. 5.1, we compare the number of effective DT inputs found by CompD on prun-
ing with and without neuron coverage. While recent work Yang et al. (2022) indicates
that combining coverage-driven and gradient-based methods may be ineffective to enhance
adversarial testing, this work uses empirical results to illustrate the effectiveness of this
combination in the differential testing setting. Furthermore, we show that most DT inputs
are stealthy and hardly distinguishable compared with normal test inputs. Our evaluation
results illustrate stealthy attack vectors toward compression models that are practical in
real-world scenarios.

 Repairing. Further to the testing campaign, we also “repair” the compressed models
and enhance their robustness. In particular, we collect the DT inputs i ∈ Idt discovered in
¬ and form a repairing dataset {(i,Mo(i))|i ∈ Idt} where Mo(·), the prediction outputs
of Mo over i denotes the expected label of Mc(i). This formed training repairing dataset
will be used to fine-tune the compressed model Mc. The end result would be another
compressed model M+

c with better robustness while retaining stable accuracy. Note that
this step benefits from the DT inputs automatically discovered by CompD and their labels
yielded by the original modelMo. Thus, no human efforts are required, making the overall
repairing effort moderate. Users of CompD, as the model provider, can release M+

c for
users to use. Before discussing the technical details, we first clarify the application scope of
CompD in Sec. 3.1.

3.1. Application Scope

Main Audiences. The main audiences of CompD would be model owners who want to
use model compression techniques to process their models before shipping them to low-cost
edge or mobile devices. Our work helps model owners to assess and augment the robustness
of their compressed models before release. This would eliminate potential attack vectors of
compressed models and enhance their reliability. CompD is the first automated framework
in this field.

Malicious Model Owners. Following our discussion above, CompD is designed for normal
model owners to benchmark the quality of their compressed models in an in-house setting.
That is, CompD is not intended to be used against an active adversary. For instance, a
malicious model owner may want to add a backdoor in his compressed models to control
the model predictions regarding inputs with backdoor triggers. Detecting such injected
backdoors in compressed models is an orthogonal area, and we leave it for future work.

Distinguishing from Adversarial Examples (AEs). Similar to adversarial examples
(AEs), CompD’s findings, DT inputs, can manipulate the prediction outputs of compressed
models. Real-world black-box AE attacks often denote an online setting Ilyas et al. (2018);
Guo et al. (2019); Suya et al. (2020), where they require attackers to iteratively query a
remote model (e.g., a cloud service) with mutated inputs to control the model predictions
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Algorithm 1 Feedback-driven differential testing.
Input: Corpus of Seed Inputs S,Mo,Mc

O ← ∅
for io in S do

i← io
for 1 ... p do

label← Predict(Mo(i))
CSo ← ConfidenceScore(Mo(i), label)
CSc ← ConfidenceScore(Mc(i), label)
Loss← −(CSo −CSc)
Grad← ∂loss

∂i

Grad← Constraint(Grad)
i← i−Grad
add i in O

end

end
return O

at their will. Nevertheless, we clarify that the findings of CompD are distinct from AEs
found by prior techniques. CompD uses differential testing to find inputs that maximize
the output deviations of original and compressed models. In particular, we find that the DT
inputs Idt will not alter the prediction labels in the original modelsMo, whereas they largely
alter the predictions of the compressed models Mc. In contrast, conventional AEs change
the predictions of Mo. The root cause of DT inputs Idt is the reduction in information.
Pruning reduces the number of neurons and synapses connecting neurons. Quantization
reduces the precision of neurons. Based on the result in Sec. 5.1 , we prove that these
root causes can be leveraged to augment the ability to find Idt. In contrast, conventional
AEs are pervasive in DNNs and are believed to root in inadequate training and unsmooth
classification boundaries of the trained model Leino et al. (2021).

3.2. CompD — Differential Testing

Alg. 1 depicts the general workflow of our testing. Function DT is the main entry point.
It accepts a collection of seed inputs S, and a pair of models Mo and Mc. All detected
deviation-triggering inputs would be stored in the output O. For each iteration, we pick
one input i from the seed and use gradient back-propagation to mutate it. We will mutate
a seed with p times, which is empirically fixed as 10. We first get the predicted label Lo
from Mo. Then, get the confidence score from Mo and Mc of i being predicted as Lo.

We use gradients from loss to mutate i (lines 9–12). We want to change the predicted
label of Mc, and meanwhile keep the predicted label of Mo, so the objective function
aims to increase CSo and decrease CSc. We use the loss function to calculate the gradient
of input. The gradient is constrained to guarantee the stealthiness of mutation. For the
current implementation, we limit the mutation over i within the variance in the standard
input dataset that was used to train Mo. When a mutation over a pixel in i is beyond the
variance, we clip it to variance.

For testing on pruning, we use neuron coverage deviation to augment the ability to find
DT input as depicted in Alg. 2. During the process of calculating the confidence score,
we need to record the output neurons before each ReLU layer. These neurons are used
to calculate the neuron coverage (lines 11–16). We aim to find the neurons that have
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Algorithm 2 Neuron coverage augmented feedback-driven differential testing.
Input: Corpus of Seed Inputs S,Mo,Mc

O ← ∅
for io in S do

i← io
for 1 ... p do

label← Predict(Mo(i))
CSpo ← ConfidenceScore(Mo(i), label)
Neuronsp ← Hook(Mo(i), label)
CSc ← ConfidenceScore(Mc(i), label)
Neuronsc ← Hook(Mc(i), label)
while True do

Index← RandomSelect(Neuronso)
Neurono ← Neuronso[Index]
Neuronc ← Neuronsc[Index]
if Neurono > 0 &Neuronc <= 0 then

break
end

end
Loss← −(CSo −CSc + λ ∗Neuronc)
Grad← ∂loss

∂i

Grad← Constraint(Grad)
i← i−Grad
add i in O

end

end
return O

been activated by Mo and have not been activated by Mc. The shape of Neurons0 and
Neuronsc are the same since pruning will not influence the structure of the models. Given
a randomly chosen neuron from Neurons0, we can easily find the corresponding neuron
in Neuronsc through the index. If these two related neurons are different in activation,
we add it to the loss calculation. Note that we also tentatively explored to determine the
difference in the activation through neurons after ReLU layers. However, the ReLU layers
cut off the gradient backpropagation from neurons, so we use the neurons before each ReLU
layer instead. We want to increase the difference in the selected neuron, so the objective
function aims to increase the value of the neuron (line 17). Compared withMo, it is harder
for Mc to increase the selected neuron due to the pruned related neuron and synapses.
In this situation, the deviation in the selected neuron will be enlarged and propagate the
deviation to the prediction during inference. A hyperparameter is applied to weight the
neuron in the loss function, which is empirically fixed as 20.

We do not check the validation of deviation-triggering inputs in Alg. 1. The models’
inputs are normalized, so the mutated inputs will be changed when denormalized and saved
as pictured, including conversion from floating-point numbers to integers. Though the
changes are small compared to the mutation conducted on the seed, we found that these
changes can influence some predictions from models. We save the O in picture format for
further repair and evaluation.

Availability of Seed S. CompD testing requires a collection of seeds S. We underline
that we have no specific requirements for the seeds. In our evaluation, we randomly select
the first half of the model’s test dataset, which contains 5,000 inputs.
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3.3. CompD — Repairing

With the deviation-triggering inputs discovered by CompD, we can repair Mc. We first
need to collect Idt for repairing. We test the deviation-triggering inputs in the picture form
and divide them into three classes. The first class is effective deviation-triggering inputs.
They will not change the prediction from Mo through mutation. However, mutation on
them will change the prediction from Mc. The second class is invalid deviation-triggering
inputs. They will directly change prediction from Mothrough mutation. They are similar
to AEs. However, their mutations are not strictly constrained as AEs, so many of them are
meaningless pictures. There may be doubt about whether the effective deviation-triggering
inputs are meaningful. Though they are not constrained as strictly as AEs, they can be
recognized successfully byMo, which guarantees that they are meaningful. The third class is
valid deviation-triggering inputs. They are all the remaining inputs. They will be collected
with effective deviation-triggering inputs to form Idt together and join the repairing. Our
experiment result shows that repairing only with effective deviation-triggering inputs will
reduce the accuracy of Mc.
Idt is utilized to fine-tune Mc by forming data set {(i,Mo(i))|i ∈ Idt}. It needs to be

emphasized that Mo(i) is used as the training label instead of the true label. Otherwise,
fine-tuning with testset data, even mutated, will reduce the models’ ability of generalization.
Due to this risk, we use another half testset data that does not participate in CompD to test
the accuracy to guarantee the ability of generalization. Trainset data also joins the repairing,
because fine-tuning only with Idt will greatly reduce accuracy. In our implementation,
trainset data is mixed with Idt to form the new trainset data, so during the fine-tuning
process, Idt and original trainset data are randomly selected to form a batch. The learning
rate needs to be much less than the learning rate applied during the original training process.
In this work, the learning rate in the fine-tuning process is 0.01 times the learning rate in
the training process.

The process of repairing is orthogonal to all specific different compression schemes and
different models mentioned in this paper. They all use the same automatic workflow without
human effort, and generally show improved robustness and stable accuracy after repair. A
small difference in implementation between pruning and quantization is depicted in Sec. 4.

Table 1: Evaluation setup and statistics.

Scheme Model
Original Model Compressed Model #Effective Deviation-

Accuracy Accuracy Triggering Inputs

Pruning
VGG11 93.12% 92.78% 1731

ResNet18 95.80% 95.80% 1959
DenseNet121 96.16% 95.82% 1417

Quant.
VGG11 92.90% 92.78% 767

ResNet18 95.66% 95.76% 554
DenseNet121 96.16% 95.16% 2751
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4. Implementation & Evaluation Setup

CompD is written primarily in Python. All experiments are launched on a machine with
one AMD Ryzen CPU, 256GB RAM, and one Nvidia GeForce RTX 3090 GPU.

Compression Schemes. CompD’s testing and repairing technique is orthogonal to the
compression schemes. We evaluate CompD using two representative compression schemes:
quantization and pruning. We have introduced each scheme in Sec. 2. We implement both
compression schemes in PyTorch.

For pruning, we prune the weight parameters of all convolution layers with L1-unstructured
pruning. The pruning rate is set to 0.75, meaning that 75% of the parameters will be set to
0. After obtaining the pruned model, it was fine-tuned for 20 epochs with a learning rate of
0.01 during the training process. Based on our observations, the choice of hyperparameters
during fine-tuning did not significantly affect the results of the subsequent testing.

As for the setting of quantization, we convert the model from float32 to int8. We use
Quantization-Aware Training (QAT) for the quantization. Initially, we perform layer fusion,
wherein all combinations of convolutional, batch normalization, and ReLU activation layers
are fused together. Subsequently, we retrain the model using quantization-aware regular-
ization terms. In PyTorch, this is done by adding quantization and dequantization layers
to the input and output, respectively. Additionally, we need to specify the quantization
configuration, which for our experiment is fbgemm in PyTorch. After obtaining a float-32
model Mc−float32 to mimic the behavior of the quantized model Mc−int8 in int-8, we need
to convertMc−float32 to quantized integer in PyTorch to obtain our final compressed model.
However, conducting gradient backpropagation on Mc−int8 is challenging in PyTorch, so
we use Mc−float32 in the test and repair process. In the DT setting, we find DT inputs
to Mc−float32 and test DT inputs’ quality, including the effect on deviation output and
stealthiness. During the repairing process, we first fine-tune Mc−float32 to get M+

c−float32

using our discovered DT inputs, then quantize it to the corresponding repaired int8-model,
M+

c−int8. For robustness testing depicted in Sec. 5.2, we use Mc−float32 and M+
c−float32 to

conduct a white-box attack. The mutated inputs will be fed into bothMc−int8 andM+
c−int8

to compare the robustness of those two models.

Models under Testing. We use three common DNN models, VGG11, ResNet18, and
DenseNet121, trained on CIFAR-10, as our tested models. All these models are representa-
tive ]in the Computer Vision domain and are widely used. The models are slightly adjusted
in order to meet the requirements of the compression schemes. The prediction accuracies
of the adjusted models are reported in the column “Original Accuracy” of Table 1.The
DenseNet121 exhibits a noticeable decrease in accuracy following quantization. This can
be attributed to the inability to fuse layers as other models, as half of the convolutional
layers in DenseNet121 are connected to multiple batch normalization layers, precluding the
possibility of conducting layer fusion on these layers. Although some existing quantiza-
tion methods for DenseNet have demonstrated superior performance, we opted to employ
the same quantization setting on DenseNet121 as on other models to ensure the method’s
universality across all compression schemes. Nonetheless, this decision has imposed a con-
straint on our experiment, as it amplifies the divergence between Mc−float32 and Mc−int8.
Despite this limitation, our testing and repairing method has remained highly effective.
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Table 2: Effect of neuron coverage. 5/X represents testing without/with neuron coverage.

Model
Neuron #Effective Deviation-

Coverage Triggering Inputs

VGG11
5 1636
X 1731

ResNet18
5 1955
X 1959

DenseNet121
5 1305
X 1417

5. Evaluation

5.1. Finding Deviation-Triggering Inputs

Scheme Effective Deviation-Triggering Inputs
Avg. 

L2-Distance

DNN 

Models

Pruning

VGG11

Resnet18

VGG11

Resnet18Quant.

...

...

...

...

...

0.0306

0.0304

0.0303

0.0300

0.0304

DenseNet121

DenseNet121 0.0302...

Figure 2: Examples of deviation-triggering inputs found by CompD. We report the average
L2 distance of deviation-triggering inputs and the normal inputs to illustrate how close they
are. We also present several examples. It can be observed that such deviation-triggering
inputs, though stealthy change the prediction outputs of the compressed models, manifest
high visual similarity with the normal inputs.

Table 1 reports the statistics of our evaluated two compression schemes and three models.
The “Quant.” in the table refers to the “Quantization.” The accuraciers of uncompressed
models are shown in the column “Original Accuracy.” Then we compress the three original
models using the two compression schemes, and fine-tune the obtained models with the
training set. The prediction accuracy of the compressed models is illustrated in the column
“Compressed Accuracy”. The compressed models exhibit similar or even higher accuracy
than their original counterparts, primarily due to the fine-tuning process. In other words,
deviation-triggering inputs found by CompD are not due to the accuracy loss brought by
model compression itself. Instead, they are caused by the decision boundary driftings due
to model compression techniques.

We use the first half of testset data as seed and the other quater of testset data as test
data for our implementation. We launch CompD to test each compressed model with a
maximum of 50, 000 mutation iterations over the seeds. Overall, CompD detects a great
number of deviation-triggering inputs, which will not change the prediction results in Mo,
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Table 3: Models after applying repairing.

Scheme Model
Acc. on Test Data #Effective Deviation-Triggering Inputs

Before / After Repairing Before / After Repairing (Test Inputs)

Pruning
VGG11 92.78% / 92.82% 1731 (829) / 636 (533)

ResNet18 95.80% / 95.74% 1959 (991) / 617 (477)
DenseNet121 95.82% / 95.92% 1417 (617) / 513 (514)

Quant.
VGG11 92.78% / 92.86% 767 (389) / 0 (236)

ResNet18 95.76% / 95.64% 554 (310) / 0 (219)
DenseNet121 95.16% / 94.74% 2751 (1450)/ 167 (330)

but will leadMc to give deviated prediction labels from the corresponding unmutated ones.
We report several effective deviation-triggering samples in Fig. 2.

Neuron Coverage Augmentation. At this step, we use neuron coverage to augment
CompD’s ability to find effective DT inputs. Table 2 compares the number of effective DT
inputs found by CompD on pruning with and without neuron coverage. Neuron coverage-
guided mutation helps to uncover slightly more DT inputs on all models. We further tune
the parameter of λ (described in Sec. 3.2. We observe that when λ is less than 20, increasing
λ would increase the number of effective DT inputs on VGG11, illustrating the effectiveness
of neuron coverage.

Deviation-Triggering Input Quality. As discussed in Sec. 3.2, CompD bounds the
total number of mutations toward each input to ensure that the inputs are meaningful.
Moreover, we save the mutated seed in picture format before all the tests on them. This
guarantee that the inputs are within a pre-defined value range. In addition, the influence
of normalization and data format can be eliminated. In other words, the attack can be
applied in practical scenarios. As a common setup, we calculate the L2 distance between
the mutated deviation-triggering inputs and the original inputs to quantify the distance
between these inputs.

Fig. 2 illustrates that the deviation-triggering inputs retain meaningful contents. More
importantly, we find that the original model Mo can indeed give correct predictions on all
these “deviation-triggering” inputs, which in turn demonstrates that they are perceptually
meaningful from the well-trained DNNs’ perspective. The average L2 distance over the input
features also reflects that our mutation is small, which is about 0.03 divergence per pixel
on average for the CIFAR-10. In our implementation, the range of data during inference is
about [-2.7, 2.7].

5.2. Repairing Compressed Models

With the detected deviation-triggering inputs on hand, we are able to repair the compressed
models. We find that following the repairing, all models retain high accuracy on the test
dataset and become more robust against the deviation-triggering inputs found by CompD.
Moreover, as we ignore all the invalid DT inputs, which directly change prediction from
Mothrough mutation, the models’ robustness against adversarial examples cannot be guar-
anteed. We use the common adversarial attack method FGSM Goodfellow et al. (2014) to
test models. Models after repair show great improvement in robustness.

Testing on Repaired Models. To further demonstrate the effectiveness of the repairing,
we use the deviation-triggering inputs found by CompD launched on original models to test
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Table 4: Robustness against FGSM with ε = 2/8/16.

Scheme Model
Accuracy on Adversarial Accuracy on Adversarial

Examples Before Repairing Examples After Repairing

Pruning
VGG11 57.90%/25.46%/15.00% 61.12%/35.00%/26.20%

ResNet18 53.40%/35.84%/24.42% 64.44%/53.84%/51.26%
DenseNet121 60.34%/31.6%/19.84% 65.84%/49.22%/39.86%

Quant.
VGG11 59.24%/27.96%/16.64% 61.90%/33.84%/22.48%

ResNet18 59.92%/40.18%/25.32% 67.06%/54.44%/44.04%
DenseNet121 57.78%/23.72%/15.10% 68.88%/51.64%/38.14%

the repaired models. Additionally, we produced a set of test inputs that were not involved
in the fine-tuning process to demonstrate the repaired model’s robustness against DTI. The
results are shown in Table 3. We observe that deviation-triggering inputs can influence the
compressed models to a much less degree. For quantization, seldom deviation-triggering
inputs are still effective on repaired models. Furthermore, all repaired compressed models
retain stable accuracy. Most of them show even better accuracy than before, indicating the
high effectiveness of our repairing scheme. While some models exhibit a slight reduction
in accuracy after repairing, we view the downgrading is negligible, and the overall model
accuracy is still sufficiently high. It needs to be noticed that the test data has never
participated in any process of testing or repairing as described in Sec. 3.3. The result of
accuracy shown here can guarantee the ability of generalization.

Robustness on Repaired Models. Evaluation of effective deviation-triggering inputs
does not include input that misleads the prediction of the original model. These inputs
are similar to adversarial examples, except there is no strict constraint on mutation. An
Adversarial attack is easier to be realized on the compressed model than deviation-triggering
inputs, since the deviation-triggering inputs also need the information of the original model.
Thus, the robustness against adversarial examples is significant. Referring to the setting in
Lin et al. (2019), we use a common adversarial attack method FGSM, with ε = 2/8/16 and
infinite norm, which means the infinite norm of mutation needs to be smaller than ε. ε=1
means 1/255. It is the smallest meaningful mutation on pictures.

The results are shown in Table 3. The repaired compressed model shows improvement in
all the experiment sets. It performs extremely effectively on the ResNet18 model, both on
the pruning scheme and quantization scheme. Fine-tuning with deviation-triggering inputs
works similarly to adversarial training. Compared with adversarial training, deviation-
triggering inputs are bounded by the decision boundaries of original models, so the accuracy
of the compressed model will not be reduced as adversarial training.

The robustness of the original models is shown in Table 5. It matches our results on
the robustness of repaired models. The original ResNet18 shows much better robustness
compared with the other two models. The corresponding repaired compressed ResNet18
shows the best robustness on both pruning and quantization. This high correlation proves
that repairing compressed models leverages the original models’ decision boundary.



Detecting and Repairing Deviated Outputs of Compressed Models

Table 5: Original models’ Robustness against FGSM with ε = 2/8/16.

Model
Original Accuracy on
Adversarial Examples

VGG11 59.26%/26.30%/15.34%

ResNet18 58.96%/41.24%/27.24%

DenseNet121 59.5%/32.36%/20.74%

6. Discussion

Limitations. CompD is a feedback-driven differential testing tool. The Idt collected from
CompD can be utilized to repair Mc. The end result M+

c shows better robustness while
retaining stable accuracy. However, using CompD to test M+

c will not find obviously less
deviation-triggering inputs than Mc. We regard robustness against adversarial attack as a
more critical issue than robustness against CompD. Both the compressed model and original
model are necessary for CompD. It is impractical to meet the requirements of attack.
However, as described in Sec. 3.1, the deviation-triggering inputs differ from adversarial
examples. They reveal potential threats to the compressed model. We assume robustness
against CompD will contribute to the general robustness. Our future work will focus on
improving robustness against CompD while retaining stable robustness against adversarial
training.

More DataSet. While we acknowledge the significance of conducting experiments on
additional datasets, comprehensive testing on multiple datasets was not feasible within the
given time constraints. Our preliminary experiments demonstrate notable results. DT found
in CNN for MNIST decreases from 348 to 70 for pruning and from 64 to 4 for quantization,
indicating a expected effect. However, DT found in VGG11 for CIFAR100 decreases from
985 to 929 for pruning and 980 to 387 for quantization, indicating not sufficient effect for
pruning. We hypothesize that the increasing number of labels diminishes the effectiveness
of our tool CompD. We leave more experiments as future work.

Alternative Feedbacks. As depicted in Table 5.1, we apply neuron coverage to com-
pression and observe the increasing effect over reducing parameters. We also test neuron
coverage on quantization and observe the negligible effect. Since the neuron coverage is
implemented based on root causes of DT inputs from pruning, it is reasonable to perform
poorly on quantization. Neuron coverage is the main direction for the more powerful dif-
ferential test because it can leverage the root cause of deviation between the original model
and the compressed model. In the future, We will further explore the neuron coverage mod-
erated for quantization and models with massive parameters. The key point is to expand
the single neuron deviation to channel-wise or even layer-wise.

Other Compression Methods. In addition to the pruning and quantization, we also
notice other compression methods, such as knowledge distillation (KD). KD is a technique
that distills knowledge from a well-trained, often redundant model into a smaller model.
Hinton et al. (2015); Romero et al. (2014); Yim et al. (2017). Our workflow is mostly or-
thogonal to the specific implementation of compression schemes, including KD. The process
on KD will be similar to pruning. We leave it as one future work to explore the feasibility
of testing and repairing models compressed via other schemes like KD.
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7. Conclusion

We present CompD, a feedback-driven differential testing tool to detect deviation behaviors
of compressed DNNs. The detected deviation-triggering inputs appear to be highly mean-
ingful and visually consistent with regular model inputs. However, they stealthily change
the model prediction outputs of compressed models. This illustrates that defects found
by CompD are practical, yet overlooked by existing works. We further demonstrate tech-
niques to enhance the robustness of compressed models. We show that the repaired models
have high robustness without incurring much extra overhead. We envision that fixing these
deviation-triggering inputs can effectively enhance the robustness of compressed models,
making their adoption in reliability-critical scenarios more feasible. We have also released
the source code of CompD for the community to use and benefit follow-up research.
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