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Abstract

Learning latent representations of nodes in graphs is important for many real-world ap-
plications, such as recommender systems, traffic prediction and fraud detection. Most of
the existing research on graph representation learning has focused on static graphs. How-
ever, many real-world graphs are dynamic and their structures change over time, which
makes learning dynamic node representations challenging. We propose a novel k -truss
based temporal graph convolutional network named TTGCN to learn potential node rep-
resentations on dynamic graphs. Specifically, TTGCN utilizes a novel truss-based graph
convolutional layer named TrussGCN to capture the topology and hierarchical structure in-
formation of graphs, and combines it with a temporal evolution module to capture complex
temporal dependencies. We conduct link prediction experiments on five different dynamic
graph datasets. Experimental results demonstrate the superiority of TTGCN for dynamic
graph embedding, as it consistently outperforms several state-of-the-art baselines in the
link prediction task. In addition, our ablation experiments demonstrate the effectiveness
of adopting TrussGCN in a dynamic graph embedding method.

Keywords: Graph Neural Networks, Dynamic Graphs, Representation Learning

1. Introduction

Learning the relationships between nodes in a graph is important for many real-world ap-
plications, such as recommender systems (Yang et al., 2022), traffic prediction (Zhao et al.,
2019) and fraud detection (Guo et al., 2022). Graph representation learning aims to learn
low-dimensional dense vector representations of nodes in a graph, where the learned embed-
ding space can reconstruct the original graph and support inferences about the graph (Cui
et al., 2019). Most of the current research on graph representation learning has focused
on static graphs, where nodes and edges remain fixed. However, many real-world graphs
are dynamic, with structures changing over time, and are often represented as a series of
graph snapshots. Each snapshot stores data for a specific time interval, such as a day or
a week. For example, in a social network, relationships between users evolve over time
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with users adding or removing friends, or joining different groups. These changes lead to
the addition or removal of nodes and edges, and also affect the properties and behaviors
of nodes in the social network. Therefore, it is very important to learn the representation
of dynamic structures. Dynamic graph representation learning methods need not only to
preserve topological structure information of graphs, but also to capture their temporal
evolution at the same time.

Existing dynamic graph representation learning methods fall into two main categories.
Temporal smoothing methods ensure the continuity and stability of embeddings across ad-
jacent time steps (Goyal et al., 2018; Zhou et al., 2018). Recurrent methods integrate
the graph neural network with a recurrent structure to generate dynamic node embed-
dings (Pareja et al., 2020; Yang et al., 2021; Liu et al., 2022), where the former captures
the structural information of the graph and the latter captures the temporal information
of the graph to summarize its historical evolutionary behavior by retaining and updating
the hidden state. Temporal smoothing methods can reduce the effects of noise and outliers
in dynamic graphs, enabling better capture of the evolutionary trends of dynamic graphs.
However, it is difficult to model temporal dynamics with temporal smoothing methods when
nodes present significantly different evolutionary behaviors. In comparison, recurrent meth-
ods are more widely applied due to their ability to capture intricate temporal dependencies,
but they also face some challenges. On the one hand, graph neural networks usually ag-
gregate information from neighboring nodes to generate embeddings for the target node.
A typical example is graph convolutional network (GCN) (Kipf and Welling, 2017), which
has been successfully applied in many graph-based applications. However, a one-layer GCN
can only retain first-order proximity and may suffer from oversmoothing when the number
of GCN layers increases, which limits the ability of GCN to capture global graph struc-
ture information. On the other hand, most methods only set the recurrent architecture
on top of the graph neural network, which ignores the temporal evolutionary behavior of
the lower-level node embeddings for multi-layer graph neural networks. In addition, the
recurrent architecture has difficulties in modeling long-term dependencies and scalability.
This motivates us to rethink whether it is possible to extend graph neural network methods
to be able to capture more complex topological information of graphs and simultaneously
learn rich evolutionary patterns and regularities.

To tackle the aforementioned problems, in this work, we propose a novel k -truss based
temporal graph convolutional network named TTGCN to learn potential node representa-
tions on dynamic graphs. Since truss decomposition can naturally extract nested subgraphs
at different scales, and each subgraph reflects important properties of the network such
as connectivity and centrality, we design a novel truss-based graph convolutional network
named TrussGCN to capture the hierarchical structure information in each snapshot. Then,
we integrate the TrussGCN with advanced sequence models to further capture the temporal
dependencies. To better capture the intricate temporal dependencies under different tasks
and data features, we provide two different structures here. The hierarchical recurrent ar-
chitecture differs from the general recurrent architecture. For a multilayer graph neural
network, it models the temporal dynamics of the node embedding in each layer by retaining
and updating the hidden state of each layer. The temporal self-attention layer is more effi-
cient in capturing distant temporal dependencies due to its ability to extract context from
all past graph snapshots and adaptively assign weights to historical representations.
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We conduct link prediction experiments on five datasets with different sizes. The results
indicate that TTGCN has significant gains compared to several state-of-the-art baselines,
which further demonstrates that TTGCN can effectively learn the latent representations
of nodes in large-scale dynamic graphs. We also demonstrate the superiority of using the
TrussGCN module in dynamic graph embedding models through an ablation experiment.
In summary, the main contributions of this paper are as follows:

• We propose a novel truss-based graph convolutional network which can effectively
capture the multi-scale topological structure information of the graph.

• We propose a novel k -truss based temporal graph convolutional network, which can ef-
fectively capture both the intricate topology and the temporal dependencies of graphs.
To the best of our knowledge, this is the first study of a dynamic graph representation
learning method based on k -truss decomposition strategy.

• Extensive experiments on different real-world graphs demonstrate the superiority of
TTGCN, as it consistently outperforms state-of-the-art methods on all datasets.

2. Related Works

Our work is mainly related to dynamic graph representation learning. Dynamic graphs are
generally defined in two ways: (1) discrete time dynamic graphs, which are represented as
a collection of graph snapshots at different time steps; and (2) continuous time dynamic
graphs, which are denoted as graph updating event streams. The continuous time dynamic
graph approach is effective in retaining temporal information. However, it may not always
be feasible, as dynamic graphs often lack fine-grained timestamps. In contrast, the discrete
time dynamic graph approach can be utilized in all graphs with timestamps by creating
appropriate snapshots. Hence, we primarily focus on representation learning for discrete
time dynamic graphs. For a systematic and detailed review, readers could refer to (Zhu
et al., 2022) and (Barros et al., 2021).

Existing dynamic graph representation learning methods fall into two main categories.
Temporal smoothing methods ensure continuity and stability of embeddings across adjacent
time steps. For instance, DynGEM (Goyal et al., 2018) utilizes autoencoders to incremen-
tally generate embeddings for the current time step based on the embedding of the graph
snapshot from the previous time step. However, these methods have difficulty modeling tem-
poral dependencies effectively when nodes exhibit highly different evolutionary behaviors.
Recurrent methods combine the static graph neural network with a recurrent architecture
to generate dynamic node embeddings. The former captures the structural information
of graphs, while the latter captures the temporal information of graphs to summarize its
historical evolutionary behavior by retaining and updating the hidden state. GCRN (Seo
et al., 2018) provides two different architectures to capture the spatial and temporal in-
formation of dynamic networks by integrating the GCN model with an LSTM. Similarly,
HTGN (Yang et al., 2021) projects the dynamic graph into hyperbolic space, and generates
dynamic node representations utilizing hyperbolic GNN and hyperbolic GRU. CTGCN (Liu
et al., 2022) uses a k -core based GCN to learn node embeddings, which are then fed into an
RNN to capture evolving behaviors. On the other hand, EvolveGCN (Pareja et al., 2020)
is a variant of GCN, which utilizes an RNN to dynamically evolve the parameters of GCN
to capture the structural evolution of graphs.
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However, the recurrent methods face challenges in modeling long-term dependencies
and have some limitations in scalability. Therefore, some methods explore similar ideas
but leverage other sequence models to capture complex temporal evolutionary behavior.
DySAT (Sankar et al., 2020) employs a joint self-attention mechanism across spatial rela-
tionships and temporal evolution to learn dynamic node embeddings. GraphTCN (Wang
et al., 2021) utilizes a 1-D convolutional neural network to capture temporal information
and generate dynamic node representations. ROLAND (You et al., 2022) proposes a frame-
work to extend static GNNs to dynamic graphs by updating the hierarchical node states
with update modules.

3. Preliminaries

In this section, we first formally present the problem of representation learning for dynamic
graphs. Then, we briefly introduce the principle of GCN.

3.1. Dynamic Graph Representation Learning

A dynamic graph can be represented as G = (V, E ), where V denotes the set of nodes of the
graph and E denotes the set of edges of the graph. Each edge in the edge set is associated
with a timestamp τ and can have additional edge features such as weight. The dynamic
graph representation learning approach splits the dynamic graph into a series of graph
snapshots G = {G0, ..., GT }, where T denotes the total number of graph snapshots. Each
graph snapshot is a static undirected graph Gt = (V, Et), containing a shared set of nodes
V and a set of edges Et = {e ∈ E | τ = t}. The objective of dynamic graph representation
learning is to learn a latent representation for each node at each time step, and the learned
representation preserves the topology of the graph and the temporal evolutionary behavior
up to the current time step t such as edge joining or removal.

3.2. Graph Convolutional Network

Graph convolutional network (GCN) has achieved superior performance in many tasks.
To learn the representation of each node, it leverages the connectivity between nodes to
propagate and aggregate neighbor information through the graph’s topology. Formally, a
multi-layer GCN follows the layer-wise propagation rule:

H(l) = σ(ÂH(l−1)W(l−1)) (1)

where H(l) denotes the node representations of the l -th layer, H(0) = X is the input fea-
ture matrix, W(l−1) denotes a trainable weight matrix of the (l -1)-th layer, σ(·) denotes a
nonlinear activation function, and Â is a normalized adjacency matrix defined as:

Â = D̃
− 1

2 ÃD̃
− 1

2 (2)

where D̃ denotes a diagonal matrix with D̃ii =
∑

j Ãij , Ã = A + I denotes the adjacency
matrix with added self-connections, I is the identity matrix.

Since a one-layer GCN can only retain one-hop neighbor information, a multi-layer GCN
is usually required to retain multi-hop neighbor information in the graph. However, as the
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Figure 1: The overall architecture of the k -truss based temporal graph convolutional
network(TTGCN-H).

number of layers increases, the GCN suffers from the problem of oversmoothing, which
severely hinders the ability of the GCN to capture the rich contextual information in the
graph. Therefore, it is critical to choose the appropriate number of layers when building a
GCN model.

4. K-Truss Based Temporal GCN

We propose a k -truss based temporal graph convolutional network (TTGCN), which con-
sists of the TrussGCN module and the temporal evolution module. Specifically, we provide
two different temporal evolution modules, i.e., hierarchical recurrent architecture and tem-
poral self-attention layer, and the corresponding TTGCN models are named TTGCN-H
and TTGCN-S. Here, we present the overall framework of the TTGCN-H, as depicted in
Fig. 1. We will elaborate the details of each module in the next paragraphs.

4.1. Truss-based GCN Module

We propose a novel truss-based graph convolutional network named TrussGCN to preserve
the topological structure information in graphs. By utilizing k -truss subgraphs, TrussGCN
is able to naturally capture the inherent multi-scale structural informations of the graph.
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Here, we commence by presenting the formal definition of support and k-truss (Zheng et al.,
2017).

A triangle is a cyclic structure of length 3. We denote a triangle consisting of three
nodes u, v, w ∈V by △uvw. Based on the definition of triangle, we present the definition
of the support of edges as follows:

Definition 1 (Support)).For each edge e = (u, v) in the edge set E of a graph G, its support
is defined as sup(e, G) = |{△uvw : w ∈ V }|.

The support of each edge in a graph G is determined by the number of triangles in G
that contain that edge. Next, we present the definition of k -truss.

Definition 2 (K-truss).Given a graph G, a subgraph Tk of the graph G is k-truss (k ≥ 2 )
if each edge e in the subgraph is contained in at least (k - 2 ) triangles, that is, ∀e ∈ ETk

,
sup(e, Tk) ≥ (k - 2 ).

From the above definitions, we can discover some important properties of k -truss.
Firstly, k -truss captures a dense subgraph within nodes tightly connecting to each other,
where each node has degree no less than k -1 (Cohen, 2008). The dense subgraph reflects
important properties of the graph, such as connectivity and centrality. An analogous clas-
sical approach is k -core (Nikolentzos et al., 2018). Compared to k -core, k -truss is more
consistent with the basic structure of the graph. This is because there are only simple
edge connections in k -core, while k -truss is defined based on triangles, which are referred
to as the basic building blocks of the graph (Wang and Cheng, 2012). Secondly, a nested
structure is formed between the k -truss subgraphs of a graph G. Specifically, each k -truss
subgraph is a subset of the k -truss subgraphs with smaller k values. Formally, let T = {T2 ,
T3 , · · · , Tkmax} be the k -truss set of a graph G, then, the relationship between the k -truss
subgraphs is denoted as:

Tkmax ⊆ · · · ⊆ T3 ⊆ T2 = G (3)

where kmax is the maximum truss number of G.
Many problems of computing non-hierarchical dense subgraphs (Tsourakakis, 2015; Gao

et al., 2018; Chen et al., 2021) are NP-hard. In contrast, we can obtain all k -truss subgraphs
of G by using truss decomposition algorithm with algorithmic time complexity of O(m1.5),
where m is the number of edges in G (Che et al., 2020). This allows k -truss to be applied
efficiently in large-scale graphs (Kabir and Madduri, 2017). In addition, k -truss decomposi-
tion can be regarded as a graph partitioning strategy. A similar graph partitioning strategy
is used in ClusterGCN (Chiang et al., 2019), which divides the graph into several subgraphs
by a graph clustering algorithm to improve memory and computational efficiency. Here, we
aim to extend the GCN to capture the abundant hierarchical structure information in the
graph.

Based on the nested subgraph structure obtained by truss decomposition, we leverage
all subgraphs to propagate the node features at different scales in the graph. Then, we
aggregate the information of all subgraphs to capture the multi-scale topological structure
information of the graph. The structure of the proposed TrussGCN is depicted in Fig. 2.
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Figure 2: The architecture of the TrussGCN layer.

Similar to GCN, we defined the feature propagation rule of each k -truss subgraph as:

Z′
k = σ(ÃkZ) (4)

where Ãk = Ak + I is the extended adjacency matrix of the k -truss subgraph that incorpo-
rates self-connections for all nodes to ensure all k -truss adjacency matrices have the same
dimension, Z denotes the feature transformation matrix obtained from the input feature
matrix X by linear mapping, that is, Z = XW + b, and Z′

k denotes the hidden node rep-
resentation of the k -truss subgraph. Notably, we share Z on all k -truss subgraphs, which
reduces the complexity of the model.

After feature propagation on each subgraph, a simple and effective way to obtain the final
embedding is to sum all the Z′

k directly. We will validate the effectiveness of this approach
in the later experiment section. Furthermore, we suppose that there is a potential structural
evolution relationship between the k -truss subgraphs of each graph. We employ the Gated
Recurrent Unit(GRU) (Cho et al., 2014) to model the potential temporal dynamics between
k -truss subgraphs, which is defined as:

H̃n = GRU(Z′
kmax+2−n, H̃n−1), n = 2, · · · , kmax (5)

where H̃1 = 0 is a zero matrix. Finally, the output embeddings H̃ of the TrussGCN is
obtained by aggregating all H̃n using an aggregation function:

H̃ =

kmax∑
n=2

H̃n (6)

It is worth noting that, similar to GCN, a one-layer TrussGCN can only capture the
information of one-hop neighbors, while a multi-layer TrussGCN can expand the receptive
field and capture richer contextual information in the graph.

4.2. Temporal Evolution Module

To capture the intricate graph evolution behavior under different tasks and data charac-
teristics, we provide two structures, a hierarchical recurrent architecture and a temporal
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self-attention layer, to model the temporal dependencies between node representations at
different time steps. We will present the details of each of these two structures.

For a multi-layer TrussGCN, the hierarchical recurrent architecture sets a GRU after
each TrussGCN layer. Each GRU maintains a hidden state vector, and updates this hidden
state vector at each time step to remain temporal dependency of the node embedding at

each layer. Specifically, at time step t, the hidden state vector H
(l)
t of the l -th layer is

affected by both the output representation H̃
(l)
t of the l -th TrussGCN layer at the current

time step t and the historical hidden state H
(l)
t−1 of that layer, denoted as:

H
(l)
t = GRU(l)(H

(l)
t−1, H̃

(l)
t ) (7)

H̃
(l)
t = TrussGCN

(l)
t (At,H

(l−1)
t ) (8)

where At is the adjacency matrix of Gt, H
(l)
0 = 0 is a zero matrix, H

(0)
t = Xt is the input

feature matrix of Gt, t = 1, · · · , T, and l = 1, · · · , L.
On the other hand, we build a temporal self-attention layer on top of the TrussGCN.

The temporal self-attention layer is easier to take into condideration long-term dependencies
and is computationally more efficient for long sequences as it can operate in parallel across
time steps. We add the position embedding into the output representation of the top
TrussGCN layer and use it as the input representation of the temporal self-attention layer.
Formally, let Xv = {x1

v,x
2
v, · · · ,xT

v } denote the input representation of a node v packed
together across time. To compute the output representation of the node v at t, we use the
scaled dot-product form of attention (Vaswani et al., 2017), where the input representation
is mapped into queries, keys and values through the weight matrices Wq, Wk and Wv. To
maintain the auto-regressive property, we enable each time step to attend all previous time
steps, including itself. The temporal self-attention layer is defined as:

αij
v = (

((XvWq)(XvWk)T )ij√
dk

+ Mij) (9)

Hv = Av(XvWv), Aij
v =

exp(αij
v )∑T

k=1 exp(αik
v )

(10)

where αij
v denotes the attention score from time step i to j, dk denotes the dimensions of

both the query and key vectors, M is a mask matrix defined as:

Mij =

{
0, i ≤ j

−∞, otherwise

When Mij = −∞, Aij
v = 0 is a zero matrix, which turns off the attention from time step i

to j. Av is the attention weight matrix calculated by the multiplicative attention function.
Then, the output representation Hv is fed into a position-wise feedforward layer to generate
the final node representation.

It is worth noting that if more intricate temporal information is required, similar to the
hierarchical recurrent architecture, we can extend the temporal self-attention approach to
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capture the temporal dynamics of the node embedding at each layer. In addition, consider-
ing the structural evolution between k -truss subgraphs across time steps is also a method
to enhance the module. However, these extension methods could have implications for the
computational efficiency of the model.

4.3. Objective Function

In order for the learned representation to capture the temporal evolving behavior during
temporal evolution, our objective function maintains the local connections surrounding a
node across multiple time steps. At each time step t, we use two TrussGCN layers to
preserve the 2-order proximity information in the graph snapshot. Specifically, we utilize
an unsupervised loss function to incentivize nodes co-occurring in fixed-length random walks
to possess similar representations.

The overall objective of the TTGCN can be described as follows:

L =
T∑
t=1

∑
v∈V

(
∑

u∈N t
w(v)

− log(σ(< ht
u,h

t
v >))

−Q ·
∑

u′∈P t
n(v)

log(1 − σ(< ht
u′ ,ht

v >)) (11)

where N t
w(v) represents the nodes that appear alongside v in fixed-length random walks at

graph snapshot t, the negative sampling ratio Q is a modifiable hyper-parameter utilized
to balance the positive and negative samples, < . > denotes the dot product operation,
and P t

n(v) represents a negative sampling distribution of the graph snapshot Gt, which is
usually defined as a function of degree.

5. Experiments

In this section, extensive experiments are conducted to evaluate the proposed TTGCN
model. We propose the following research questions to guide our experiments:

• RQ1. How does TTGCN perform compared to state-of-the-art dynamic graph repre-
sentation learning methods?

• RQ2. What does each component of TTGCN contribute?

5.1. Experimental Setup

5.1.1. Datasets

We conduct experiments on five different datasets: (1) UCI dataset contains a collection of
private messages sent on an online message network among students at the University of
California, Irvine1. (2) Facebook dataset is a social network consisting of Facebook users,
where users are represented as nodes and friendships between users are represented as edges
between these nodes2. (3) The Autonomous Systems (AS) dataset consists of traffic flows

1. http://konect.cc/networks/opsahl-ucsocial/
2. http://networkrepository.com/fb-wosn-friends.php
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Table 1: Dataset statistics.(kmax: maximal k -truss number.)

UCI Facebook AS Enron Math

kmax 6 7 11 18 11

# Nodes 1899 60370 6828 87036 24740

# Total Edges 59835 607487 1947704 530284 323357

# Snapshots 7 27 100 38 77

between routers that make up the Internet3. (4) Enron dataset is an email communication
network from the Enron Corporation4. (5) Math is a communication network from the
stack exchange website Math Overflow5. Table 1 provides detailed statistics of the above-
mentioned datasets.

5.1.2. Baselines

We compare the performance of our TTGCN-H and TTGCN-S models with 7 state-of-the-
art dynamic GNNs: (1) GCRN provides two different architectures to generate dynamic
node representations. We choose the first architecture of GCRN, which captures the topol-
ogy with the GCN model and then inputs the obtained node embeddings into an LSTM
to capture the temporal dependence of the graph (Seo et al., 2018). (2) DynGEM utilizes
autoencoders to incrementally generate embeddings for the current time step based on the
embedding of the graph snapshot from the previous time step (Goyal et al., 2018). (3)
EvolveGCN is a variant of GCN, which utilizes an RNN to dynamically evolve the pa-
rameters of GCN to capture the structural evolution of graphs (Pareja et al., 2020). (4)
HTGN projects the dynamic graph into hyperbolic space, and leverages hyperbolic GNN
and hyperbolic GRU to capture the spatial information and temporal information simul-
taneously (Yang et al., 2021). (5) ROLAND extends static GNNs to dynamic graphs by
recursively updating hierarchical node states utilizing update modules (You et al., 2022).
(6) CTGCN-C and (7) CTGCN-S use a k -core based GCN to learn node embeddings, which
are then fed into an RNN to capture evolving behaviors (Liu et al., 2022).

5.1.3. Parameter Settings

In our experiments, we use one linear layer and two TrussGCN layers in both TTGCN-H
and TTGCN-S methods. Both models obtain the original node feature matrix through
one-hot encoding, and the final node embedding dimension is set to 128. We adopt the
Adam optimizer (Kingma and Ba, 2014), and the weight decay and learning rate are set to
5 × 10−4 and 1 × 10−3, respectively.

3. http://snap.stanford.edu/data/as-733.html
4. http://networkrepository.com/ia-enron-email-dynamic.php
5. http://snap.stanford.edu/data/sx-mathoverflow.html
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Table 2: Average AUC scores of all timestamps for link prediction.

Dataset UCI Facebook AS Enron Math

GCRN 0.8175 0.6829 0.8621 0.8891 0.8239

EvolveGCN 0.8528 0.7042 0.9036 0.8682 0.7599

HTGN 0.8227 0.7587 0.8934 0.8048 0.7639

DynGEM 0.9022 0.7923 0.9530 0.8901 0.8926

CTGCN-S 0.9106 0.8284 0.9628 0.9041 0.9232

ROLAND 0.9345 0.8360 0.9650 0.9119 0.9381

CTGCN-C 0.9272 0.8815 0.9332 0.9685 0.9687

TTGCN-H 0.9659 0.9327 0.9623 0.9830 0.9786

TTGCN-S 0.9551 0.9184 0.9736 0.9708 0.9820

5.2. Link Prediction

We perform link prediction tasks to evaluate the proposed TTGCN-H and TTGCN-S mod-
els. For t = 1, · · · , T, we use the node embedding information at each time step t to
predict whether an edge is present in the next snapshot (t+1). To obtain the set of labeled
edges, we randomly sample edges in snapshot (t+1) as positive samples and sample the
same number of node pairs without edge connectivity to generate negative samples. Then,
we follow the experimental setup in the (Liu et al., 2022) to apply the Hadamard operation
to the embedding vectors of the node pairs in the edge set to compute the edge feature
vectors and train a logistic regression (LR) classifier to classify the positive and negative
edge samples. We use the area under the curve (AUC) to evaluate candidate models and
report the average AUC score as the measure of prediction performance.

We report the results of link predictions on different datasets in Table 2, with the best
result for each dataset in bold and the next best result in italics. The results show that
both our proposed TTGCN-H and TTGCN-S models significantly outperform all compari-
son methods on all datasets, which indicates that our proposed models are able to effectively
preserve the hierarchical structure information in the graph and capture intricate temporal
trends at the same time. We also observe that TTGCN-H and TTGCN-S each have advan-
tages on different datasets. This suggests that the two models can cope with sequence data
with different characteristics and hence model the temporal dynamics more effectively. In
addition, we argue that the TrussGCN module can help the TTGCN model achieve better
performance in the link prediction task by effectively capturing the topological and hierar-
chical properties of the graph at different scales, which is one of the reasons why TTGCN
performs well in the link prediction task. We will follow up with an ablation experiment to
further validate the effectiveness of the TrussGCN module.

5.3. Parameter Sensitivity

The proposed TTGCN models contain some parameters that may affect the performance.
To study these parameters, we conduct experiments on the UCI dataset. We first analyze
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Figure 3: Sensitivity analysis of the hyperparameter Q and the embedding dimension d on
the UCI dataset.
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the impact of hyperparameter Q (defined in Eq. 11) and embedding dimension d on the
link prediction performance of TTGCN-H and TTGCN-S.

As shown in Fig. 3, we find that both TTGCN-H and TTGCN-S are sensitive to the
hyperparameter Q. The performance of TTGCN-H and TTGCN-S increases as Q increases
until Q reaches a certain value, and decreases when Q is too large. We also observe that
the performance of TTGCN-S increases with the embedding dimension d and remains
largely stable after reaching 200. In contrast, TTGCN-H is more sensitive to d, and its
link prediction performance increases with increasing d.

We also test the effect of the number of linear layers and TrussGCN layers on the link
prediction performance of TTGCN-H and TTGCN-S on the UCI dataset. The results are
shown in Fig. 4. We can observe that both models are robust to changes in the number of



TTGCN

Table 3: Average AUC scores of all timestamps for ablation study.

Method UCI Facebook AS Enron Math

GCN-H 0.8443 0.8404 0.7687 0.9319 0.9255

TTGCN-Simple 0.9294 0.9170 0.9065 0.9779 0.9774

TrussGCRN 0.9367 0.8795 0.9407 0.9711 0.9701

TTGCN-H 0.9659 0.9327 0.9623 0.9830 0.9786

TrussGCN layers, and the performance of both TTGCN-H and TTGCN-S is largely stable
when the number of TrussGCN layers increases. In addition, we observe that both TTGCN-
H and TTGCN-S are very sensitive to the number of linear layers. TTGCN-H is compatible
with only one linear layer, and its performance decreases significantly when the number of
linear layers increases. TTGCN-S reaches its best performance when the number of linear
layers reaches 2. Then, if the number of linear layers continues to increase, its performance
also decreases significantly. In conclusion, our experiments show that selecting appropriate
values for these parameters is essential for achieving optimal performance of TTGCN-H and
TTGCN-S.

5.4. Ablation Study

We conduct ablation experiments to further validate the effectiveness of the main compo-
nents of our proposed model. We obtain the TTGCN-H variants as follows:

• GCN-H : Replace the TrussGCN module in TTGCN-H with GCN.
• TTGCN-Simple : Simplified TTGCN by omitting the GRU in each TrussGCN layer.
• TrussGCRN : Replace the graph evolving module in TTGCN-H by only building RNN

on top of the TrussGCN.
We conduct five repetitions of each experiment and present the average AUC scores for

the link prediction task. The results are shown in Table 3. It can be observed that the
TTGCN-Simple and the TTGCN-H consistently outperform the GCN-H on five datasets.
This indicates that the k -truss decomposition strategy can capture important structural
properties at different scales of graphs, which is crucial to improve the link prediction
performance of the model. Furthermore, it can be observed that the TTGCN-H consistently
outperforms the TTGCN-Simple, which demonstrates that modeling the latent subgraph
evolution process between k -truss subgraphs can effectively help the model improve its
performance. In addition, we also observe that the TTGCN-H performs better than the
TrussGCRN, suggesting that capturing the lower-level evolution information of the model
is equally important to help the model better capture intricate temporal dependencies and
improve performance of the model.

6. Conclusions

In this work, we propose a novel k -truss based temporal graph convolutional network named
TTGCN for dynamic graph representation learning. Specifically, TTGCN learns dynamic
node representations by integrating the novel truss-based graph convolutional network with
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the temporal evolution module to capture the intricate topology and temporal dependencies
of graphs. Experiments on five real-world graphs indicate significant performance improve-
ments of TTGCN over state-of-the-art dynamic graph embedding baselines. In future work,
we will develop new graph representation learning models based on k -truss decomposition
strategy and explore continuous time dynamic graph learning to include finer-grained tem-
poral changes.
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