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Abstract
Multivariate time series forecasting is of great importance in a diverse range of domains.
In recent years, a variety of spatial-temporal graph neural networks (STGNNs) have been
proposed to address this task and achieved promising results. However, these networks
are typically handcrafted and require extensive human expertise. Additionally, the tem-
poral and spatial dependencies hidden within di↵erent scenarios vary, making it di�cult
for them to adapt to di↵erent scenarios. In this paper, we propose an evolutionary neural
architecture search framework, entitled EMTSF, for automated STGNN design. Specifi-
cally, we employ fine-grained neural architecture search into both the spatial convolution
module and the temporal convolution module. For the spatial convolution search space,
various feature filtering and neighbor aggregation operations are employed to find the most
suitable message-passing mechanism for modeling the spatial dependencies. For the tem-
poral convolution search space, gated temporal convolutions with di↵erent kernel sizes are
utilized to best capture temporal dependencies with various ranges. The spatial convo-
lution module and temporal convolution module are jointly optimized with the proposed
evolutionary search algorithm to heuristically identify the optimal STGNN architecture.
Extensive experiments on four commonly used benchmark datasets show EMTSF achieves
promising performance compared with the state-of-the-art methods, which demonstrates
the e↵ectiveness of the proposed framework.
Keywords: Multivariate time series forecasting, Neural architecture search, Deep learning.

1. Introduction

With the development of sensors and communication technology, time series data is be-
coming ubiquitous. Accurate time series forecasting enables decision-making in many chal-
lenging domains, e.g., transportation Li et al. (2018), power management Simeunović et al.
(2021), and health care Jin et al. (2018). In contrast to univariate time series forecast-
ing, where only one time series is considered, multivariate time series forecasting takes into
account the relationships between a group of time series to produce more accurate predic-
tions. Hence, multivariate time series forecasting methods have attracted increasing interest
among researchers.
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To create an e↵ective multivariate time series forecasting model, it is essential to accu-
rately capture the spatial correlation among di↵erent time series and the temporal depen-
dence within a single time series. In recent years, the rapid advancement of deep learning
techniques has led to the emergence of several deep learning-based methods for multivari-
ate time series forecasting. Two of the pioneering works in this area are LSTNet Lai et al.
(2018) and TPA-LSTM Shih et al. (2019), which combine the convolutional neural network
(CNN) and recurrent neural network (RNN) to capture the spatial correlation and temporal
dependence, respectively. However, the global aggregation of CNN makes it challenging to
capture pair-wise correlations among time series precisely Ye et al. (2022). In fact, multi-
variate time series data can be viewed as a graph, where each node corresponds to a time
series, and the edge describes the pair-wise correlation between time series. Therefore, lever-
aging graph neural networks (GNNs) Atwood and Towsley (2016); Hamilton et al. (2017)
to capture the interdependencies among time series holds great promise.

Recently, a growing number of spatial-temporal graph neural networks (STGNNs) Yu
et al. (2017); Li et al. (2018); Ye et al. (2022) have been proposed for multivariate time
series forecasting. STGNNs use GNNs for spatial modeling, along with employing temporal
convolutional networks (TCNs) Bai et al. (2018) or RNNs for temporal modeling, which
have become the mainstream method for multivariate time series forecasting. Despite their
remarkable success, most existing STGNNs are still manually designed. This manual design
process requires significant human e↵ort and rich domain knowledge, which is not readily
available to most interested users. Moreover, neural architectures are usually tailored to
specific problems, while the spatial correlations and temporal dependencies of data may
vary across di↵erent problem scenarios, necessitating a redesign of the architecture to meet
performance requirements. Consequently, there is a growing demand for an automated
neural architecture design framework for multivariate time series forecasting.

Fortunately, neural architecture search (NAS) Elsken et al. (2019) has emerged as a
promising approach to automate architecture design without manual intervention. There
are two most critical components in NAS: (1) search space and (2) search strategy. The
search space refers to the set of all possible neural network architectures generated during
the search process. A well-defined search space can help to identify novel architectures with
high performance. The search strategy details how to explore the search space. A good
search strategy can improve search e�ciency and e↵ectiveness. NAS has been successfully
applied to various fields, including image classification Sun et al. (2020), segmentation Liu
et al. (2019a), and object detection Chen et al. (2019). AutoSTG Pan et al. (2021) first
extended NAS to the urban tra�c prediction field and proposed a NAS framework for au-
tomated STGNN design. However, they adopt pre-defined and fixed components as the
available operations in their search space. It is essentially an ensemble and fine-tuning
of the existing STGNNs, leading to redundant computation and limiting the potential for
capturing spatial correlations and temporal dependencies. Furthermore, they utilize the
gradient-based method Liu et al. (2019b) as their search strategy. Despite the high compu-
tational e�ciency, it su↵ers from excessive memory consumption. When dealing with large,
complex, multivariate time series datasets, adopting gradient-based methods to explore the
fine-grained search space can lead to out-of-memory issues.

In this paper, we propose a novel evolutionary neural architecture search framework,
entitled EMTSF, for multivariate time series forecasting. Specifically, we carefully designed
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a fine-grained search space for the spatial convolution module and the temporal convolution
module of STGNN. For the spatial convolution search space, various feature filtering and
neighbor aggregation operations are included for finding a powerful GNN with the most
suitable message-passing mechanism, which can e↵ectively capture the intricate spatial cor-
relation among time series. For the temporal convolution search space, the combinations of
temporal convolution filters with di↵erent filter sizes are explored to discover a gated TCN,
which can accurately capture the complex temporal dependence across di↵erent ranges.
Based on the designed search space, we further propose an evolutionary search algorithm
with a well-designed encoding strategy and genetic operation to heuristically discover the
optimal spatial and temporal convolution modules, thereby reducing human intervention
during architecture design and enabling us to better explore the merits of STGNN in mul-
tivariate time series forecasting. Our major contributions are outlined as follows:

• We design a fine-grained STGNN search space for multivariate time series forecasting,
which allows us to discover powerful GNNs with novel message-passing mechanisms
for spatial correlation modeling, as well as identify the combinations of temporal
convolution filters to form TCNs that can accurately capture temporal dependencies.

• We propose an evolutionary search algorithm to automate neural architecture design
for multivariate time series forecasting. Specifically, a well-designed encoding strategy
is proposed to encode the architecture of STGNN, and e↵ective genetic operations are
proposed to explore the designed search space to identify the optimal neural architec-
ture.

• We conduct extensive experiments on four real-world datasets to verify the e↵ective-
ness of the proposed EMTSF approach. The experimental results demonstrate that
EMTSF can e↵ectively automate STGNN design and achieve promising performance
compared with state-of-the-art baselines.

2. Related Works

2.1. Multivariate Time Series Forecasting

Multivariate time series forecasting plays an important role in a wide range of real-world
applications Zhang et al. (2017); Jin et al. (2018); Simeunović et al. (2021). In the early
stage, the majority of research in this field employed statistical approaches Box et al. (2015);
Frigola (2015), such as the auto-regressive model (VAR) and Gaussian process model (GP).
Recent years have witnessed the rapid development of deep learning, and several deep
learning-based methods have been proposed for multivariate time series forecasting. For
instance, LSTNet Lai et al. (2018) and TPA-LSTM Shih et al. (2019) combined CNN
with RNN (such as GRU and LSTM) for modeling the spatial and temporal dependencies,
respectively. STGCN Yu et al. (2017) and DCRNN Li et al. (2018) first integrate GNN
with temporal modeling techniques and propose STGNNs. Graph-WaveNet Wu et al. (2019)
proposed a graph convolution layer with a self-adaptive adjacency matrix to improve the
limited spatial relations from the pre-defined tra�c networks. Based on this, MTGNN Wu
et al. (2020) further proposed a graph learning layer to handle multivariate time series
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without an externally pre-defined graph structure, and employs mix-hop graph convolution
and dilated inception convolution to capture the spatial and temporal dependencies.

2.2. Neural Architecture search

Neural Architecture Search (NAS) Elsken et al. (2019) is a technique for automating neural
architecture design. It involves searching through a vast search space to find an optimal
architecture for a given task. Depending on the adopted search strategy, NAS methods
can be mainly categorized into three groups, i.e., reinforcement learning (RL)-based NAS
methods Zoph and Le (2016); Zoph et al. (2018), gradient-based NAS methods Liu et al.
(2019b); Xu et al. (2019), and evolutionary algorithm (EA)-based NAS methods Real et al.
(2019); Termritthikun et al. (2021). Generally speaking, RL-based NAS methods often re-
quire a significant amount of computational resources Real et al. (2017); Zoph et al. (2018),
which limits their practical use. Gradient-based NAS methods have merit in computation
e�ciency, but they incur high GPU memory usage since all candidate operations in their
supernet need to be computed during searching Ren et al. (2021), making it challenging to
scale to larger search spaces. Compared with these two methods, the EA-based NAS meth-
ods can e↵ectively handle large search spaces without consuming too many computational
resources Liu et al. (2021).

3. METHODOLOGIES
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Figure 1: The overview of EMTSF. Figure 1(a) depicts the main architecture of EMTSF.
Figure 1(b) and Figure 1(c) provide the detailed structure and search space of
the spatial convolution module and temporal convolution module, respectively.

We begin by elaborating on the overall architecture of the proposed EMTSF. As depicted
in Figure 1(a), the input is initially projected into a latent space using a fully connected
layer. The backbone of the architecture is comprised of interleaved temporal convolution
modules and spatial convolution modules, which will be automatically designed to capture
temporal dependencies and spatial correlations. To adaptively derive a graph adjacency ma-
trix from the multivariate time series data, we employ a graph learning layer from MTGNN.
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This matrix serves as one of the inputs for the spatial convolution modules. Additionally,
to mitigate the gradient vanishing problem, residual and skip connections are incorporated.
Finally, a multilayer perception is utilized to project the hidden features to the desired out-
put dimension, resulting in the final outputs. In the subsequent subsections, we will briefly
describe the search space for the spatial convolution module and the temporal convolution
module. Furthermore, we will introduce the evolutionary search algorithm employed in
EMTSF to explore the designed search space and discover promising architectures.

3.1. Spatial Convolution Module

GNNs are powerful tools for modeling the complex relationships between entities in graph-
structured data. Current GNNs are constructed on the message-passing mechanism, where
each node collects information from its neighbors and update its own state. Cai et al. (2021)
deconstruct the message-passing GNN and propose a graph neural architecture paradigm
that could flexibly combine feature filtering and neighbor aggregation operations to theoret-
ically approximate existing popular GNNs. To explore powerful spatial convolution modules
for multivariate time series forecasting tasks, we adopt feature filtering and neighbor ag-
gregation operations as the candidate operations in the search space of spatial convolution
modules.

As shown in Figure 1(b), the search space can be viewed as a directed acyclic graph
(DAG) consisting of Ns nodes. Each node represents a latent representation and has a
directed edge associated with a specific operation that transforms the latent representation.
The search space is divided into three parts, each containing one-third of Ns ordered se-
quence nodes. The first part comprises nodes associated with feature filtering operations
that re-scale the information which will be sent to neighbors later. The second part in-
cludes nodes associated with neighbor aggregation operations responsible for aggregating
information from neighbor nodes. Finally, the third part contains nodes associated with
feature filtering operations that preserve critical information received from neighbors.

Feature Filtering. The essence of the feature filtering operation is a gating mechanism
for adaptive node feature selection. We employ sparse filtering Fsparse(·) and dense filter-
ing Fdense(·) as candidate feature filtering operations to re-scale node features at di↵erent
granularities. These two operations can be expressed as follows:

Fsparse(H) = ZsH, (1)

Fdense(H) = Zd �H, (2)

where H 2 Rn⇥d denotes the node embedding, � denotes the Hadamard product. Zs 2
Rn⇥n and Zd 2 Rn⇥d represent the re-scaling matrix calculated jointly from H and Hin:

Zs = diag(�(fcs([H,Hin])), (3)

Zd = �(fcd([H,Hin])), (4)

where fcs, fcd denotes R2⇥d-to-R and R2⇥d-to-Rd fully-connected layer, respectively, � de-
notes the sigmoid function, and diag(·) converts the vector into a diagonal matrix. Besides,
Identity and Zero operations are also incorporated in the candidate operation set to control
the information flow.
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Neighbor aggregation. Neighbor aggregation is a fundamental operation in the
message-passing mechanism as it determines how nodes aggregate information from their
neighbors, described as:

h(k)v = AGGREGATE({h(k�1)
u : u 2 N(v)}), (5)

where h(k)v denotes the feature vector of node v at the k-th iteration of aggregation, N(v)
refers to the neighbors of node v, and AGGREGATE(·) denotes the neighbor aggregation
operation. Di↵erent neighbor aggregation operations may excel at capturing di↵erent types
of information. For instance, the sum aggregator is e↵ective in capturing the overall in-
formation of neighboring nodes, while the max aggregator can extract the most prominent
information among the neighboring nodes, and themean aggregator captures statistics from
the received message, which can help to mitigate the e↵ects of extreme values. Since their
di↵erent properties and advantages, multiple aggregators can be combined to exploit the
potential of GNN in capturing spatial correlations among di↵erent time series.

Adaptive adjacency matrix. The GNN approaches rely heavily on graph structure
for information propagation. However, in most cases, multivariate time series has no o↵-the-
shelf graph structure since the relationships between time series are not known in advance.
Manually constructing a graph structure requires extensive prior knowledge of the relevant
task and may not accurately reflect the genuine connection between time series. For this
purpose, we employ a graph learning layer to learn an adaptive adjacency matrix from data,
which can be formulated as:

M1 = tanh(↵E1⇥1), M2 = tanh(↵E2⇥2), (6)

A = ReLU(tanh(↵(M1M
T
2 �M2M

T
1 ))), (7)

where E1 and E2 denote the randomly initialized node embeddings, ⇥1 and ⇥2 denote
the learnable weight matrixs, ↵ is the scaling factor of the activation function. To reduce
the computation cost of spatial convolution, we retain the neighbors with the top-k largest
value in the adjacency matrix for each node, and set the value of the reset other nodes in
the adjacency matrix to zero. The adaptive adjacency matrix is learned in an end-to-end
manner through gradient descent.

3.2. Temporal Convolution Module

The temporal convolution module employs dilated causal convolution to construct TCN for
capturing temporal dependencies within the time series. The dilated causal convolution
sequentially slides over past observations by skipping values with a certain step to forecast
the future value, which is an e�cient and powerful tool for modeling sequential data. Math-
ematically, given a 1D sequence input z 2 RT , the dilated causal convolution operation of
z at time step t can be formulated as:

z ? f1⇥k(t) =
k�1X

s=0

f1⇥k(s)z(t� d⇥ s), (8)

where f1⇥k 2 Rk denotes the 1D convolution filter with kernel size 1 ⇥ k, and d denotes
the dilation factor. By stacking dilated causal convolution filters, the receptive field of
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the TCN grows exponentially, which enables its capability to handle longer sequences.
However, simply stacking convolution filters with identical filter sizes may not be su�cient
to e↵ectively capture both short-term and long-term temporal patterns. To address this
problem, we incorporate dilated causal convolution with di↵erent filter sizes in our search
space, and explore their combination to come up with the most optimal TCN for capturing
the temporal dependencies inherent in the given dataset.

Figure 1(c) illustrates the search space of the TCN, which is represented as a DAG
consisting of an input node, an ordered sequence of Nt intermediate nodes, and an output
node. Each intermediate node represents a latent representation, and has an edge associated
with an operation that takes input from the input node or the previous node. The output
node collects the latent representations of all the intermediate nodes and concatenates them
across the channel dimension to form the output of the TCN, described as :

⇠0 = Concat(z ? o1, z ? o2, . . . , z ? oNt), (9)

where o1, o2 and oNt denote the operation from the candidate operation set. After that,
the gating mechanism is employed to control the information flow to the next module. To
be specific, we feed the output of two TCNs to two di↵erent activation functions to get the
final output of the temporal convolution module, respectively. This computation procedure
can be formulated as:

⇠ = Tanh(⇠01)� Sigmoid(⇠02), (10)

where Tanh(·) denotes the tangent hyperbolic activation function, and Sigmoid(·) denotes
the sigmoid activation function. Following Wu et al. (2020), we incorporate 1 ⇥ 2, 1 ⇥ 3,
1 ⇥ 6, and 1 ⇥ 7 dilated casual convolution filters into the candidate operation set, the
Identity and Zero operations are also included as the convention in NAS. By combining
dilated causal convolution with di↵erent filter sizes, our temporal convolution module can
e↵ectively capture the complex temporal dependence under various ranges, enabling the
tailored neural architecture design for the target task.

3.3. Evolutionary Search Algorithm

Evolutionary neural architecture search approaches solve the problem of automated neural
architecture design by utilizing evolutionary computation techniques Davis (1991), which
are a class of population-based paradigms that simulate the process of species evolution or
population behavior in nature. In EMTSF, we propose a genetic algorithms based evolu-
tionary search algorithm to heuristically discover the best spatial and temporal convolution
modules for multivariate time series forecasting.

Algorithm 1 shows the framework of the proposed evolutionary search algorithm. Specif-
ically, we start by initializing the population, each individual is randomly generated with
the proposed gene encoding strategy. Then, the fitness evaluation proceeds, using conven-
tional training to get the validation accuracy of each individual on the target dataset as its
fitness value. After that, parent individuals are selected based on their fitness value with
the binary tournament selection Miller et al. (1995), and then generate their o↵spring with
the proposed genetic operations (i.e., crossover and mutation). Next, the fitness value of the
o↵spring individuals is evaluated, and the parent and o↵spring populations will undergo an
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（b）Mutation operation
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Figure 2: An illustration of the proposed genetic operations. The crossover operation (a)
randomly selects several crossover points at the parent chromosomes and swaps
the selected spatial/temporal convolution modules to generate new o↵spring. The
mutation operation (b) modifies the interior of the convolution module by ran-
domly selecting several pairs of indicators and replacing them with random new
indicators to create new o↵spring. SC and TC represent the spatial convolu-
tion module and the temporal convolution module, respectively. FS , FD, FI are
feature filtering operations and Lsum, Lmax, Lmean are neighbor aggregation op-
erations.

Algorithm 1: Framework of the evolutionary search algorithm
P0  Initialize a population with the given population size using the proposed
encoding stragety;

Evaluate the fitness of each individual in P0;
t 0;
while t < the maximal generation number do

Qt  � Generate o↵spring from the selected parent individuals using the proposed
mutation and the crossover operators;

Evaluate the fitness of each individual in Qt;
Pt+1 ← Environment selection from Pt \Qt;
t t+ 1;

end
Return the individual having the best fitness in Pt.

environmental selection process to determine the individuals that will survive to the next
generation. The evolution continues the until the predefined stopping criterion is satisfied.

Encoding strategy. The encoding strategy encodes neural architectures as a set of
chromosomes that can be manipulated through genetic operators. In EMTSF, we encode
the computation cells of spatial and temporal convolution modules as a set of strings (gene).
Specifically, each intermediate node in the computation cell is represented by two identifiers,
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i.e., Ii and Oi. The former identifier Ii specifies where the current node receives its input
from, while the latter identifier Oi specifies the corresponding operation performed on that
input. According to the order of the intermediate nodes, these identifiers will be combined
to form a string that describes the entire module (see Figure 2(b)).

Genetic operations. Genetic operations (i.e., crossover and mutation) are utilized to
create new o↵spring by modifying the parent individuals. The crossover operation modifies
the chromosomes of individuals at the gene level. It involves randomly selecting several
crossover points on the parent chromosome and exchanging the pointed genes (i.e., swapping
the spatial/temporal convolution modules at selected positions between two architectures)
to create two new o↵spring, as illustrated in Figure 2(a). On the other hand, the mutation
operation introduces modifications within the gene. It involves selecting several pair of
indicators inside the gene and replacing them with new random pair of indicators (i.e.,
to modify the computation cell of the selected spatial/temporal convolution modules) to
generate a new o↵spring, as shown in Figure 2(b). These two operations together enable
the exploration and exploitation of a diverse range of neural architectures, leading to the
discovery of promising solutions.

Environment selection. The goal of environment selection is to maintain a diverse
population while encouraging promising convergence. To achieve this, we employ two selec-
tion strategies: elitism Bhandari et al. (1996) and binary tournament selection. Specifically,
we first explicitly add the top Nelite individuals to the next population. After that, we con-
duct binary tournament selection to select individuals from the union of the current pop-
ulation and o↵spring, adding them to the next population until the predefined population
size is reached.

4. Experiments

In this section, we conduct a series of experiments to demonstrate the e↵ectiveness of
EMTSF in automating neural architecture design for multivariate time series forecasting.

4.1. Datasets

We evaluate EMTSF on two types of time series forecasting tasks using four real-world
datasets across various domains, the brief statistical information can be seen in Table 1.
For multi-step forecasting tasks, we employ the widely used METR-LA and PEMS-BAY
datasets Li et al. (2018), which are split chronologically into 70% for training, 10% for
validation, and 20% for testing. Similarly, for single-step forecasting tasks, we use the
Electricity and Exchange-rate datasets Lai et al. (2018), which are split chronologically into
60% for training, 20% for validation, and 20% for testing.

Table 1: Dataset statistics.
Datasets Samples Nodes Sample Rate Input Length Output Length
METR-LA 34272 207 5 minutes 12 12
PEMS-BAY 52116 325 5 minutes 12 12

Exchange-Rate 7588 8 1 day 168 1
Electricity 26304 321 1 hour 168 1
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Following previous studies Wu et al. (2020), our evaluation metrics for the multi-step
forecasting task include Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Mean Absolute Percentage Error (MAPE). As for single-step forecasting, the evalu-
ation metrics consist of Root Relative Squared Error (RRSE) and Empirical Correlation
Coe�cient (CORR). Lower values of RMSE, MAE, MAPE, and RRSE indicate better per-
formance, while higher values of CORR are desirable.

4.2. Baseline

We compare EMTSF with two groups of baseline methods for multi-step and single-step
forecasting, respectively.

Multi-step forecasting. We have chosen seven competitive spatial-temporal meth-
ods, namely DCRNN Li et al. (2018), STGCN Yu et al. (2017), ST-MetaNet Pan et al.
(2019), AGCRN Bai et al. (2020), GMAN Zheng et al. (2020), MTGNN Wu et al. (2020),
and AutoSTG Pan et al. (2021). Among them, all these methods, except AutoSTG, are
manually designed by human experts, while AutoSTG employs an automated approach.

Single-step forecasting. We have selected eight popular time-series forecasting meth-
ods, which encompass classical statistical methods such as Auto-Regressive (AR) and Gaus-
sian Process (GP) Roberts et al. (2013), as well as deep learning methods such as RNN-
GRU, VARMLP Zhang (2003), LSTNet Lai et al. (2018), TPA-LSTM Shih et al. (2019),
MTGNN Wu et al. (2020), and StemGNN Cao et al. (2020).

4.3. Experimental Setups

EMTSF is implemented by Pytorch 2.0 and DGL 1.0, and all the experiments are conducted
on an Ubuntu server equipped with four Nvidia GeForce RTX 2080Ti GPUs. In the follow-
ing test, we set both the number of spatial and temporal convolution modules to 3, and the
dilation factor of each temporal convolution module is set to 1, 2, and 4, respectively. The
spatial and temporal convolution modules have 6 and 4 intermediate nodes, respectively.
The model is trained using the Adam optimizer with a learning rate of 0.001 and gradient
clipping with a threshold of 5. The settings of the graph learning layer are identical to those
in its original paper Wu et al. (2020). For evolutionary search, the population size and the
number of generations are all set to 20, and the probabilities of crossover and mutation
are set to 0.9 and 0.5, respectively. In the environment selection, the number of elites is
specified as 4 (i.e., 20% of the population size). After the evolutionary search, we retrain
the architecture with the highest fitness 10 times to report its final performance.

4.4. Main Results

Tables 2 and 3 present the performance comparison between EMTSF and the baseline meth-
ods for multi-step and single-step forecasting, respectively. The best result is highlighted in
bold font, and the second-best result is underlined. It is evident that EMTSF outperforms
most of the baseline methods, demonstrating state-of-the-art performance in both tasks. In
the following sections, we will individually discuss the results of multi-step and single-step
forecasting.

Multi-step forecasting. In this task, we compare EMTSF with several spatial-
temporal methods, most of which are mainly designed for the tra�c prediction domain.
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Table 2 shows the performance comparison of baseline models and EMTSF on multi-step
forecasting, where the evaluation metrics MAE, RMSE, and MAPE at the next 3/6/12
timestamps are presented. In general, our EMTSF achieves comparable performance to
state-of-the-art spatial-temporal methods without leveraging any prior knowledge. On the
contrary, DCRNN, STGCN, and GMAN rely on pre-defined graphs with additional do-
main knowledge (e.g., leverage road distance, GPS locations, and nearby points of interest).
While methods like AGCRN and MTGNN can eliminate the reliance on domain knowledge,
their architectures are manually designed by human experts, which are di�cult to adjust
themselves corresponding to the data. AutoSTG employs NAS to generate data-specifical
architectures, but it still relies on additional domain knowledge from the tra�c domain to
enhance its forecasting accuracy. Furthermore, it adopts pre-defined and fixed components
as the candidate operations without any inside search, limiting its ability to achieve more
accurate forecasting.

Table 2: Performance comparison of baseline models and EMTSF on multi-step forecasting.

Data Models
Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

METR-LA

DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%

ST-MetaNet 2.69 5.17 6.91% 3.10 6.28 8.57% 3.59 7.52 10.63%
AGCRN 2.85 5.47 7.60% 3.22 6.56 8.83% 3.61 7.46 10.23%
GMAN 2.77 5.48 7.25% 3.07 6.34 8.35% 3.40 7.21 9.72%
MTGNN 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87%
AutoSTG 2.70 5.17 6.93% 3.07 6.19 8.37% 3.47 7.29 9.85%
EMTSF 2.67 5.15 6.80% 3.04 6.15 8.13% 3.47 7.21 9.94%

PEMS-BAY

DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%

ST-MetaNet 1.36 2.90 2.82% 1.76 4.02 4.00% 2.20 5.06 5.45%
AGCRN 1.35 2.83 2.87% 1.69 3.81 3.84% 1.96 4.52 4.67%
GMAN 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%
MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
AutoSTG 1.33 2.79 2.78% 1.64 3.68 3.65% 1.92 4.53 4.45%
EMTSF 1.31 2.77 2.73% 1.62 3.65 3.60% 1.88 4.31 4.41%

Single-step forecasting. In this task, we compared EMTSF with several multivariate
time series methods. The detailed experiment results for single-step forecasting are pre-
sented in Table 3, which includes the evaluation metrics RRSE and CORR for each method
at the next 3/6/12/24 timestamps. It is evident that the statistical methods AR and GP
perform poorly compared to the deep-learning-based methods, which can be attributed to
their reliance on stationary assumptions of time series. In contrast, deep-learning-based
methods are free from such assumptions and excel in capturing complex non-linear rela-
tionships among multivariate time series. However, the hand-crafted architectures of deep-
learning-based methods limit their ability to adapt to di↵erent datasets. This is supported
by the fact that no single model can be optimal on both datasets. For instance, TPA-LSTM,
which performs the second best on the exchange-rate dataset, does not perform as well as
MTGNN on the electricity dataset. In contrast, the proposed EMTSF can automate the
design of neural architectures for di↵erent datasets, allowing it to achieve state-of-the-art
performance on both datasets.
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Table 3: Performance comparison of baseline models and EMTSF on single-step forecasting.

Dataset Exchange-Rate Electricity

Horizon Horizon
Methods Metrics 3 6 12 24 3 6 12 24

AR
RSE 0.0228 0.0279 0.0353 0.0445 0.0995 0.1035 0.1050 0.1054

CORR 0.9734 0.9656 0.9526 0.9357 0.8845 0.8632 0.8591 0.8595

GP
RSE 0.0239 0.0272 0.0394 0.0580 0.1500 0.1907 0.1621 0.1273

CORR 0.8713 0.8193 0.8484 0.8278 0.8670 0.8334 0.8394 0.8818

VARMLP
RSE 0.0265 0.0394 0.0407 0.0578 0.1393 0.1620 0.1557 0.1274

CORR 0.8609 0.8725 0.8280 0.7675 0.8708 0.8389 0.8192 0.8679

RNN-GRU
RSE 0.0192 0.0264 0.0408 0.0626 0.1102 0.1144 0.1183 0.1295

CORR 0.9786 0.9712 0.9531 0.9223 0.8597 0.8623 0.8472 0.8651

LSTNet
RSE 0.0226 0.0280 0.0356 0.0449 0.0864 0.0931 0.1007 0.1007

CORR 0.9735 0.9658 0.9511 0.9354 0.9283 0.9135 0.9077 0.9119

TPA-LSTM
RSE 0.0174 0.0241 0.0341 0.0444 0.0823 0.0916 0.0964 0.1006

CORR 0.9790 0.9709 0.9564 0.9381 0.9439 0.9337 0.9250 0.9133

MTGNN
RSE 0.0194 0.0259 0.0349 0.0456 0.0745 0.0878 0.0916 0.0953

CORR 0.9786 0.9708 0.9551 0.9372 0.9474 0.9316 0.9278 0.9234

StemGNN
RSE 0.0506 0.0674 0.0676 0.0685 0.0799 0.0909 0.0989 0.1019

CORR 0.8871 0.8703 0.8499 0.8738 0.9490 0.9397 0.9342 0.9209

EMTSF
RSE 0.0173 0.0238 0.0339 0.0441 0.0740 0.0872 0.0908 0.0947

CORR 0.9792 0.9714 0.9567 0.9386 0.9482 0.9330 0.9291 0.9250

4.5. Ablation Study

In this subsection, we conduct an ablation study on the METR-LA dataset to verify the
e↵ectiveness of the key components in EMTSF. The compared variants of EMTSF are
introduced as follows:

• w/o SC: In this variant, we remove the spatial convolution module in EMTSF and
use a fully connected layer to replace it instead.

• w/o TC: In this variant, we remove the temporal convolution module and use a single
1x7 dilated convolution filter with the same output channel to replace it.

• Random: In this variant, we randomly sample architectures from our search space
of spatial and temporal convolution modules and train them directly for prediction.

• w/o crossover: In this variant, we perform the evolutionary neural architecture
search without crossover operation when generating new o↵spring.

• w/o mutation: In this variant, we perform the evolutionary neural architecture
search without mutation operation when generating new o↵spring.

Table 4 shows the performance of EMTSF and the compared variants on the METR-LA
dataset, where the average MAE, MAPE, and RMSE of all forecasting horizons (i.e., the
future 12 timesteps) are presented. As can be observed, both the spatial and temporal
convolution modules contribute to the performance of EMTSF to a certain extent. When
replacing the spatial convolution module with a fully connected layer, dramatic degrada-
tion of model performance occurs since it can not e↵ectively capture the spatial correlation
among time series. The replacement of the temporal convolution module also a↵ects the
model performance, but since the 1x7 dilated causal convolution filter still holds the ca-
pability to model temporal dependence, the model performance does not show significant
degradation. In terms of architecture search, the comparison between EMTSF and the Ran-
dom variant demonstrates the superiority of the proposed evolutionary search algorithm in
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identifying promising architectures. The result of w/o crossover and w/o mutation variants
demonstrates the importance of the genetic operation in exploring the search space. Using
only the crossover operation leads to a lack of diversity in the population, limiting the ex-
ploration ability. On the other hand, using only mutation operation restrict the exploitation
of parent generation, compromising the stability of the search process.

Table 4: Ablation Study.
Method MAE RMSE MAPE
w/o SC 3.1304±0.0084 6.3802±0.0296 0.0875±0.0010
w/o TC 3.0165±0.0063 6.0583±0.0274 0.0816±0.0009
Random 3.0812±0.0366 6.3103±0.0878 0.0857±0.0024

w/o crossover 3.0174±0.0324 6.0458±0.0762 0.0821±0.0022
w/o mutation 3.0536±0.0075 6.2989±0.0328 0.0849±0.0012

EMTSF 3.0089±0.0053 6.0372±0.0244 0.0815±0.0007

(a) METR-LA (b) PEMS-BAY

Figure 3: Evolutionary trajectory of the proposed EMTSF in discovering the best architec-
ture on the (a) METR-LA and (b) PEMS-BAY dataset.

4.6. Evolutionary Trajectories

To better analyze the convergence of the evolutionary search algorithm in identifying promis-
ing architectures for multivariate time series forecasting, we collect the individuals selected
through environmental selection in each generation and present their statistical results using
box plots. Figure 3 showcases the evolutionary trajectories of EMTSF on the METR-LA
and PEMS-BAY datasets. The horizontal axis represents the number of generations, while
the vertical axis denotes the overall MAE of the individuals (i.e., the average MAE across
all forecasting horizons). We connect the best and median overall MAE in each generation
with a violet dashed line and a black solid line, respectively. As can be seen, the median
MAE and minimum MAE exhibit a decreasing trend as the evolution progresses. During
the first two generations, there is a notable decline in the MAE for both datasets, which can
be attributed to the random initialization of the population at the start of the evolution.
In the subsequent generations, the minimum MAE steadily decreases, which is achieved
through the utilized elitism mechanism in the environment selection. Meanwhile, the rate
of decline in the median MAE and minimum MAE gradually decreases, accompanied by
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a decreasing trend in the height of the box plot, which indicates that the search is mov-
ing towards a more stable state. In conclusion, the proposed search algorithm converges
within the default parameter settings, enabling users to utilize EMTSF e↵ectively in finding
optimal neural architectures for their own data.

5. Conclusion

In this paper, we proposed EMTSF, a novel NAS framework that automates neural ar-
chitecture design for multivariate time series forecasting. Our framework incorporates a
fine-grained search space for both the spatial and temporal modules, enabling us to discover
powerful message-passing mechanisms and optimal combinations of temporal convolutions.
Besides, we employ an evolutionary search algorithm to exploit the search space and e↵ec-
tively design promising neural architecture for the given data without any expert knowledge.
Extensive experiments conducted on four real-world benchmark datasets demonstrate the
superiority of the proposed EMTSF over the baselines. This research opens new possibilities
for users interested in multivariate time series forecasting, providing an accessible solution
that eliminates the need for expert knowledge and manual labor.
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