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Abstract

The cold-start problem poses a significant challenge in recommendation systems, particu-
larly when interaction data is scarce. While meta-learning has shown promise in few-shot
classification, its application to cold-start recommendations has mostly involved simple
transplantations of generic approaches. The effectiveness of metric learning, a powerful
meta-learning method, is hindered by differences in problem definition when applied to
rating prediction.

Heterogeneous information networks (HINs), as high-order graph structures, can cap-
ture valuable semantic information even in data-starved conditions. Efficient utilization
of HINs can alleviate the cold-start dilemma. However, in the cold-start domain, there
is a lack of dynamic node-level and semantic-level feature fusion schemes, resulting in the
underutilization of complex information.

This study addresses these issues by combining metric learning and HINs, proposing
OMHIN (Dynamic Offset Metric approach to Heterogeneous Information Networks). Our
approach transforms a direct similarity metric into an indirect metric to enhance model ro-
bustness. By flexibly applying one-dimensional convolution, OMHIN effectively integrates
rich information from HINs while minimizing noise introduction.

Experimental results on two datasets demonstrate that OMHIN achieves state-of-the-
art performance in various scenarios, particularly in complex and challenging situations. It
is especially suitable for sequence cold-start recommendations.

Keywords: Meta learning; Metric-learning; Adaptive feature fusion; Prototype extraction;
Recommender systems

1. Introduction

In the era of Big Data, recommendation systems are being deployed in a considerable number
of Internet services due to their ability to effectively alleviate the information overload
problem Huang et al. (2019). However, when a new item or user enters the system, such
systems typically fail to function properly due to the sparse interaction between the user
and the item; this lead to the cold-start issue.

Few-shot learning, on the other hand, aims at solving pattern recognition problems with
insufficient sample counts, which is quite similar to the cold-start problem. Naturally, some
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studies have abstracted the cold-start problem into a Few-Shot learning problem Zhu et al.
(2020). However, most of the current solutions are direct migrations of methods, which
have some problems both in terms of model structure and at the data representation level.

In terms of the model structure, meta-learning offers an effective solution for the Few-
Shot pattern recognition problem by quickly transferring recommendation experiences from
other users or items to the target user or item, regardless of their novelty. While some
research addresses the cold-start recommendation problem using meta-learning concepts,
most of it simply replicates existing frameworks or focuses on simple binary recommen-
dation problems. This leaves room for improvement in the practical performance of this
promising method, as there are no advanced algorithmic alternatives specifically tailored to
the recommendation problem.

At the data representation level. Heterogeneous information networks (HINs) connect-
ing different classes of objects through meta-paths Shi et al. (2017), allowing for the con-
struction of a more complex and comprehensive graph from limited data. applying HIN
representations directly has limitations such as underutilization of partial data and disre-
gard for inherent differences in heterogeneous information, which is particularly critical in
scenarios with scarce data.

Based on the analysis above, this paper investigates two major issues. Firstly, how to
adapt state-of-the-art meta-learning models to the cold-start recommendation problem. Ex-
isting approaches either apply generic model-independent meta-learning Finn et al. (2017a)
or use meta-learning as a supplement to traditional methods like collaborative filtering for
simple binary recommendations Peng et al. (2016). Secondly, how to effectively leverage
the abundant information present in HINs. HINs offer rich information in scenarios with
information scarcity, but they introduce complexity. Elements in different meta-paths may
be connected differently, and elements in two meta-paths may have similar edges. Simple
aggregation of heterogeneous information in HINs is inappropriate Lu et al. (2020a).

Therefore, we propose a Dynamic Offset Metric approach to Heterogeneous Information
Networks for Cold-start Recommendation (OMHIN). OMHIN uses a newly designed metric
scheme and data representation to overcome the difficulty that metric learning works well
but is only applicable to simple classification problems. It not only successfully leverages
the idea of metric learning to solve complex rating prediction problems than binary recom-
mendations under cold-start conditions but also ensures fast model training while leveraging
the rich information provided by the HIN.

To summarize, this paper works as follows:

• To the best of our knowledge, this is the first attempt at solving the cold-start rec-
ommendation problem using a metric learning approach and HIN. We give metrics
practical meaning in terms of offset and attempt to compute metrics dynamically for
various recommendation situations.

• An adaptive feature fusion module is used to ensure that the model effectively extracts
various auxiliary features of the object.

• The multi-layered meta-path prototype extraction module works from similar meta-
paths, avoiding the phenomenon of feature attenuation caused by blind aggregation.
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• We conducted an extensive experimental study on two real-world datasets and fi-
nally demonstrated that our model achieves state-of-the-art results in majority of the
metrics.

2. RELATED WORK

2.1. Cold-start Recommendations And The Application Of HIN

As previously stated, traditional recommendation algorithms are constrained by a lack
of information caused by the limited interaction between new objects and thus cannot
accurately recommend or suggest new items to users. This leads to the cold-start issue,
which can be addressed by solving the information shortage.

One approach to solving the issue of information shortage involves introducing side
information using a content-based approach to make recommendations directly in the cold
state Han et al. (2020).

Another one focuses on the case of interaction, which is known as the few-shot problem
Vartak et al. (2017). By using highly representative data structures such as hypergraphs
La Gatta et al. (2022) or HINs, User-item interactions are captured using relevant charac-
teristics. HIN encodes diverse information by revealing higher-level relationships between
objects through meta-paths, expanding available data for limited interactions. HINs were
first used to solve the cold-start recommendation problem by MetaHIN Lu et al. (2020b).
Nodes and meta-paths can be aggregated using multi-level attention Wang et al. (2019)
to consider their importance. HIN-based approaches have also yielded promising results in
other recommendation Liu et al. (2022) and classification Linmei et al. (2019) domains.

Our work uses HINs as a representation while drawing on the idea of content-based
recommendations and fully exploiting the higher-level information provided by the HIN.

2.2. Meta-learning And Metric-based Approaches

Meta-learning is a promising approach in machine learning, often used to deal with few-
shot recognition problems and is also referred to as learning to learn Thrun (1998) which
is generally classified into optimization-based, metric-based, data augmentation-based, and
attention-based approaches Wang et al. (2020).

Optimization-based approaches are dedicated to learning a set of global parameters for
optimization, independent of the specific model Finn et al. (2017b), and are therefore more
general and have found considerable application in solving cold-start problems. MeLU Lee
et al. (2019) applies the MAML Finn et al. (2017b) approach to cold-start recommendations.
Meta-Emb Pan et al. (2019) makes use of previously learned ads through gradient-based
meta-learning to initialize the embedding of its ID by feeding its contents and attributes.
Inheriting the idea of MeLU, MAMO Dong et al. (2020) introduces the feature-specific
memories, which are used to guide the model with personalized parameter initialization,
while MetaHIN Lu et al. (2020b) attempts semantic-level adaptation for new tasks.

Metric-based approaches, on the other hand, aim to learn the similarity of two sam-
ples and were, in most cases, the first to make progress in few-shot identification. Vartak
et al. (2017) first attempted to solve the cold-start binary recommendation problem us-
ing metric-based meta-learning approaches. Since then, RelationNet Sung et al. (2018)
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and PrototypicalNet Snell et al. (2017) have created a proven end-to-end model for metric
learning in terms of metric computation and data representation, respectively. ProtoCF
10 (2021) uses metric learning methods to improve collaborative filtering algorithms for
cold-start recommendation-like problems. This model also inspired our work, which allows
it to deal with relatively complex regression problems rather than the usual classification
problems by giving metrics more complex meaning.

3. METHODOLOGY

3.1. Problem Formulation

Before formulating the target problem, antecedent definitions must be introduced.
Definition 1. Heterogeneous Information Network (HIN) Shi et al. (2017). A

HIN can be defined as a graph G = {V,E,O,R} . V is the ‘node set’, E is the ‘edge set’, O
is the ‘node object set’ and R is the ‘relation type set. Each node and edge satisfy a type
mapping function φO : V → O and φR : E → R respectively. When at least one of |O| and
|R| is greater than 2, G is called a HIN. A path consisting of several relations linked end to
end is defined as a meta-path Sun et al. (2011). In graph G = {V,E,O,R}, a meta-path

P with length l can be P = o1
r1−→ o2

r2−→o3...
r1−→ ol+1, oi ∈ O, rj ∈ R. Each oi need to be

different from others. Given that in the case of this paper only one relation is established
between a pair of object types, a meta-path P can be abbreviated as P = o1o2o3 . . . ol+1.

As a higher-order structure, the HIN contains more semantic information than other
representations. Meta-paths aid in the extraction of this semantic information.

Definition 2. Meta-learning. The meta-learning process typically consists of two
stages, meta-training, and meta-testing, with a labeled data-set D = {(x, y)} and a target
task paradigm of F = {S,Q}. A specific sub-data-set DT = {Dtrain, Dtest} is generated
in the data-set D and then a supervised task T is generated by DT under the paradigm
of F . The goal of each task is to predict the query set Q given the support set S. The
loss is calculated on a per-task basis during training. We can use the permutation concept
to generate a large number of tasks consisting of different query set Q and support set S
obtained by permuting them in D for training on a small data set.

Since each task requires only a few or even one labeled sample, few-shot learning is a
perfectly adapted testbed for meta-learning ideas.

Metric-based meta-learning for cold-start recommendation on HIN. For the
recommendation problem, the support set includes a user u and a number of items is, a set
of meta-paths Pis starting with is, and the user u’s ratings ru,is of the item is. The query
set contains a number of items iq and a set of meta-paths Piq starting with iq, and the task
goal is to predict user u’s rating ru,iq of the items in the query set. Formally, the support
set and query set can be expressed as follows:

S = {u, (is, Pis , ru,is)}
M
s=1 (1)

Q =
(
iq, Piq , ru,iq

)N
q=1

(2)

M and N represent the total number of items in the support set and the query set, respec-
tively. Note that the items in the query set and support set are mutually exclusive. Unlike
the general C-way K-shot problem, the number of items in the support set corresponding
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Figure 1: Overview of OMHIN with 1 sample in query set and 3 samples in support set

to each rating is not fixed. According to MeLU, several types of cold-start scenarios can be
distinguished by the different organization of the test task: a test task is user cold-start
(UC). if it contains a user that has not appeared in meta-training but an item that has
appeared in the training phase. Conversely, the task is considered item cold-start (IC).
In particular, if both the user and the item are appearing for the first time, then we are
faced with a user and item cold-start (UIC).

3.2. Model Overview

Our work is inspired by several metric learning-based methods, and uses HIN to obtain
more semantic information from fewer samples.

As shown in Fig. 1 OMHIN consists of two parts: the feature embedding module and the
offset module. The feature embedding module extracts high-dimensional features of users,
items, and meta-paths. The offset module is in charge of computing the metric between
different items, which we call the offset. The training goal is to find a suitable feature
extraction network and offset calculation function so that the offset function can calculate
the offset that accurately reflects the variation in user ratings of items in the embedding
space conditional on a specific user generated by the feature extraction network.

The model is input one complete task at a time, and in this case, a task contains three
samples of support items and one sample of query items, i.e., M = 3 and N = 1. Among
the model inputs, u represents the users in the support set, and for each task, there is
only a single user, is represents the items in the support set, iq represents the items in the
query set, while Pi represents the set of meta-paths corresponding to each item i, containing
several subsets of meta-paths differentiated by their path types. They are all fed into the
feature extraction network (FN) . For the user, the items, and the set of meta-paths, FN
calculates the feature map fu(u), fi(i), and fP (P ) separately. In the offset module, the
feature maps are concatenated by operation C as follows.

Fu,is,iq = C(fu (u) , fi (is) , fP (Pis), fi(iq), fP (Piq))
M
s=1

(3)
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Figure 2: Model details of OM

During the initial stages of model development, specialized models for user, item, and meta-
path features led to overfitting. Consequently, streamlining the model and delegating direct
feature extraction to the offset module, while preserving vital graph topology information,
proves more effective for ensuring information enrichment. The concatenated features are
then fed into offset calculation function (R), which computes a signed quantity b representing
the user rating offset over the item samples in the support set. For each item sample in the
support set, R generates an offset:

bu,is,iq = R(Fu,is,iq)
M
s=1,

(4)

The result of modifying the support item ratings with their corresponding offset r̂u,is,iq
is averaged to obtain the predicted value r̂u,iq of the user’s rating for the query item.

r̂u,is,iq = modification(ru,is , bu,is,iq) (5)

r̂u,iq = mean
({

r̂u,is,iq
}M

s=1

)
(6)

3.3. More Details

The practical meaning of metric. Cold-start recommendations pose unique challenges
compared to general few-shot problems. One key difference is the limited coverage of user
ratings, especially for new users. This affects the support sets used in metric learning, as
query samples may not belong to any of the classes in the support set. The conventional
approach, which assumes a default class, is ineffective in addressing the cold-start problem.
Moreover, the presence of repeated user ratings and the haphazard nature of support sets
significantly impact similarity calculations.To tackle these challenges, we propose a practical
modification to the metric. By mapping item and user features to an embedding space using
FN , we calculate the metric bu,is,iq .

bu,is,iq ← ru,iq − r
u,is

(7)
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This metric represents the offset of the user’s ratings for query samples relative to support
samples. The offset, resembling a signed vector, indicates whether the user’s rating for
the query sample is higher or lower than the support sample. We leverage these offsets to
obtain the query sample rating by adjusting the user’s rating of the support sample through
a modification operation defined in our paper.

modification
(
ru,is , bu,is,iq

)
= ru,is + bu,is,iq (8)

By giving the metric a practical meaning, our model indirectly predicts the classification of
samples not present in the support set. This approach effectively addresses the challenges of
cold-start recommendations. Fig. 2(a) shows item features, meta-paths, and the mapping
to the embedding space.

Adaptive feature fusion. As shown in Fig. 2(b), a user can have various character-
istics, like an ID, age, occupation and gender. Previous approaches have typically taken
the average of these features and treated them equally, sometimes using weights for bet-
ter blending. However, attention mechanisms can be complex. To address this, we use
one-dimensional convolution to dynamically assign adaptive weights to each feature. In
Fig. 2(b), the user feature map includes four features: ID, gender, occupation, and age. By
applying a convolutional kernel of length 1, the user’s embedded features, denoted as fu (u),
can be represented as

fu (u) = w1u[Id] + w2u[Gender] + w3u[Occupation] + w4u[Age] (9)

The mythology can be generalized that for several features u[i], embedded features can be
dynamically calculated as

fu (u) = Σ(wiu[i]). (10)

The target of fu in the feature extraction network is to learn the convolutional model during
training. As a result, we give the model the ability to construct an attention process that
allows it to focus adaptively the important features. For a more complex and non-linear
process of establishing weights, the number of convolutional layers can be enlarged or by
increasing the length of the convolutional kernel.

Multi-layered meta-path prototype extraction. Our method extracts multi-layered
meta-path prototypes by considering multiple meta-paths starting from a sample. Meta-
paths capture complex information, differentiating and relating various types. Previous
approaches, such as averaging all meta-paths for parameter updates Lu et al. (2020b), over-
look semantic richness and introduce noise.Our aim is to obtain a prototype that effectively
expresses the information from multiple meta-paths.

In Fig. 2(c), meta-paths starting from items are divided into sets (UB, UBUB, and
UBAB) representing User-Book, User-Book-User-Book, and User-Book-Author-Book meta-
paths. Averaging the meta-paths within each set yields representative features. The re-
lationships between UB and UBUB are stronger than with UBAB due to their shared
relationship. Similarly, due to their equal length, UBAB is more similar to UBUB than
UB. By organizing similar meta-paths adjacent to each other and applying one-dimensional
convolution in a distinct dimension, we capture similarity, and then perform one-dimensional
convolution in a different dimension from the user operation. The convolution kernel must
be at least 2 for first-layer prototype extraction. Each layer extracts a single prototype
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Algorithm1 Training Procedure of OMHIN

Input: Training tasks T tr , meta-path types t
for T = (S = {u, (is, Pis , ru,is)} , Q =

(
iq, Piq , ru,iq

)
) in T tr do

for P in t do
Pis [P ] = mean(Pis{P})
Piq [P ] = mean(Piq{P})

end for
Fs = (fu (u) , fi (is) , fP (Pis)) = FN(S)
Fq =

(
fi (iq) , fP

(
Piq

))
= FN(Q)

Concatenate Fs and Fq by C(•, •, . . .) to constitute Fu,is,iq

bu,is,iq = R(Fu,is,iq)
r̂u,iq = mean({ru,is + bu,is,iq}s)
L = mse(r̂u,iq , ru,iq)
Update FN, R using L by Adam optimization algorithm

end for

for similar meta-paths. fp performs multiple one-dimensional convolutions to extract all
meta-paths as a single prototype, integrating semantic information layer by layer.

3.4. Training Procedure

Algorithm 1 summarizes the training steps of our proposed OMHIN. In a training epoch,
a set of training tasks T tr and a meta-path classification t organized by similarity is input.
As shown in Algorithm 1, each task contains a training set S and a query set Q, Pi{P}
denotes the set of all meta-paths with category P beginning with the item i, and Pi{P}
denotes the representative features of meta-paths with category P beginning with the item
i. We use the Mean Square Error (MSE) loss training model that

mse (r̂u,i, ru,i) =
1

m

m∑
i

(ru,i − r̂u,i)
2 (11)

4. EXPERIMENTS

4.1. Environments and Datasets

All experiments below were executed on the PyTorch 1.8.0 GPU deep learning platform,
with python version 3.8.0. the server used for experiments was equipped with RTX3090
graphics cards and an Intel Xeon CPU, and the operating system was Linux Ubuntu
18.04LTS. The experiments are also compatible with Windows.

We build cold-start recommendation tasks on two realistic datasets, DBook1 and Movie-
Lens2. Table.1 describes these two datasets and the details related to the experiments in
this paper. DBook is a Douban book rating dataset. In this dataset, we consider the case
where users and items only have one feature and three types of meta-paths, focusing on

1. https://book.douban.com
2. https://grouplens.org/datasets/movielens
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Table 1: Statistics Of The Two Datasets
DBook MovieLens

Node type and number
of nodes in each type

User(U): 10,592, Author(A): 10,544,
Book(B): 20,934

User(U): 6,040, Actor(A): 8,030,
Director(D): 2,186, Movie(M): 3,881

Task objectives Predicting User ratings for Books Predicting User ratings for Movies

Edge type and number of
edges in each type

UB: 649,381,
BA: 20,934

UM: 1,000,209,
AM: 15,398, DM: 4,210

Meta-paths considered UB,UBUB,UBAB UM,UMUM,UMAM,UMDM

User features Location ZipCode, Gender, Age, Occupation

Percentage of difficult tasks 17.89% 29.98%

whether OMHIN can be used for cold-start recommendations. MovieLens is a stable bench-
mark dataset widely used for recommendations that contain user ratings of movies. This
dataset, on the other hand, is more complicated. We investigate how well OMHIN works
by examining more sophisticated user and item features with four meta-paths and much
more difficult tasks.

We build on previous work Lee et al. (2019) by considering users with more than 13 and
less than 100 ratings and the items they rated, using 10 of these ratings as the query set and
another 3-5 ratings as the support set to build the few-shot learning task, which simulates
new users with only 3 to 5 rating records as closely as possible. We chose users and items that
were later added to the dataset as new users and new items. The meta-training tasks were
all composed of existing users and items, and four meta-testing tasks, user cold-start(UC),
item cold-start(IC), user and item cold-start(UIC), non-cold-start(NC), were constructed
according to the previous problem definition. In terms of difficulty, non-cold-start < user
cold-start and item cold-start < user-item cold-start. A task is considered difficult if it
contains a query sample whose rating does not exist in the support set because traditional
metric learning approaches are incapable of making correct predictions in any case.

4.2. Experimental Setup

Fig. 3 depicts the OMHIN model architecture. The experimental configuration sets the
embedding dimension of each attribute to 32, which determines the values of all undefined
parameters in Fig. 3.

FN is a convolutional neural network composed of three modules. Where fi consists
of linear layers that do not modify feature dimensions. fu adds two additional convolu-
tional modules that do not change the dimension of features for enhancing non-linearity
to the basic one-layer convolutional module with a one-dimensional convolutional kernel
of 3. fp also introduces an additional layer of convolutional modules, here the number of
filters is determined by the number of meta-path feature dimensions. The initial number of
meta-path prototypes determines the size of the convolution kernel for the second layer of
convolution modules. For it to output one prototype within two layers of convolution, the
setting should be (2,2) for DBook, and for MovieLens of four initial prototypes, this setting
is (2,3). fi and fp share a fully connected module, which ensures that item features and
meta-path features are mapped to the same embedding space to calculate the offsets.

First, R splices the embedding features exported by FN before computing offsets. To
ensure a fair comparison with baselines, all fully connected layers adopt the same depth and
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Figure 3: Architecture of OMHIN

parameter settings as other meta-learning-based methods, with the value of the undefined
part being equivalent to the dimension of the spliced features.

We compare OMHIN to three categories of our previous work, which are traditional
methods (FM Rendle et al. (2011) and NeuMF He et al. (2017)), HIN-based methods
(mp2vec Dong et al. (2017) and HERec Shi et al. (2019)) and meta-learning-based methods
(MeLU Lee et al. (2019) and MetaHIN Lu et al. (2020b)). MetaHIN, in particular, is an
HIN-based approach. For the non-HIN approach, we reduce node objects to item features.
All meta-training and meta-testing tasks are combined into a training set and a testing set
for non-meta-learning methods.

We adopt two popular metrics. One is the mean absolute error (MAE), which measures
the accuracy of the rating prediction; the lower the value, the more accurate the prediction.
The other is the normalized discounted cumulative accuracy at rank K (nDCG@K), which
represents the prediction performance of the top-K rankings, the higher the value, the better
the performance. In this study, the values of K are set to 3 and 5.

Each group of experiments is conducted a minimum of ten times, and the evaluation
metrics are then averaged over at least ten rounds after the model has converged to ensure
the validity and reliability of the results.

4.3. Comparison with State-of-the-arts

We compared the overall performance of OMHIN under different scenarios on both the
datasets with the baseline. Table.2 and Table.3 presents the comparison results on DBook
and MovieLens datasets for four scenarios. Figure.4 depicts the speeds of fitting for the
different model compared to the baseline model.

OMHIN excels in predicting ratings across scenarios, similar to the state-of-the-art base-
line. Traditional approaches struggle with complex contexts like MovieLens, while our
adaptive fusion of user features and meta-paths propels OMHIN to outperform, enhancing
nDCG@5 and nDCG@3 by 3.83-5.46% and 3.90-5.25%. Utilizing heterogeneous information
significantly improves problem-solving. Our robust model effectively tackles few-shot prob-
lems, surpassing the traditional approach. OMHIN’s prioritization of sample relationships
yields higher ranking accuracy. Moreover, our model remains robust even under challenging
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Table 2: Performance Comparison in Cold-start Scenario
A) User cold-start(UC)

Model DBook MovieLens
MAE nDCG@5 nDCG@3 MAE nDCG@5 nDCG@3

FM 0.7027 0.8032 - 1.0421 0.7303 -
Neu-MF 0.6541 0.8225 - 0.8569 0.7708 -

mp2vec 0.6619 0.8144 - 0.8793 0.8233 -
HERec 0.6518 0.8233 - 0.8691 0.8389 -

MeLU 0.6353 0.8793 0.8572 0.8104 0.8415 0.8182
MetaHIN 0.6018 0.9004 0.8738 0.8053 0.8327 0.8105

OMHIN 0.6092 0.8946 0.8791 0.7929 0.8754 0.8552

B) Item cold-start(IC)
Model DBook MovieLens

MAE nDCG@5 nDCG@3 MAE nDCG@5 nDCG@3

FM 0.7186 0.8342 - 1.3488 0.7218 -
Neu-MF 0.7062 0.7396 - 0.9822 0.6063 -

mp2vec 0.7371 0.8231 - 1.0615 0.6367 -
HERec 0.7481 0.7827 - 0.9959 0.7312 -

MeLU 0.6518 0.8882 0.8697 0.9196 0.8041 0.7824
MetaHIN 0.6262 0.8897 0.8703 0.8696 0.8337 0.8106

OMHIN 0.6244 0.8932 0.8735 0.8710 0.8656 0.8423

C) User and item cold-start(UIC)
Model DBook MovieLens

MAE nDCG@5 nDCG@3 MAE nDCG@5 nDCG@3

FM 0.8326 0.8201 - 1.3001 0.7015 -
Neu-MF 0.6949 0.8566 - 0.9686 0.8063 -

mp2vec 0.7987 0.8527 - 1.0548 0.6687 -
HERec 0.7859 0.8545 - 0.9974 0.7389 -

MeLU 0.6517 0.8891 0.8740 0.9091 0.8106 0.7911
MetaHIN 0.6325 0.8891 0.8755 0.8584 0.8408 0.8204

OMHIN 0.6238 0.895 0.8739 0.8707 0.8867 0.8635

Table 3: Performance Comparison in Non-cold-start Scenario
warmModel DBook MovieLens

MAE nDCG@5 nDCG@3 MAE nDCG@5 nDCG@3

FM 0.7358 0.8086 - 1.0043 0.6493 -
Neu-MF 0.6904 0.7924 - 0.9249 0.7335 -

mp2vec 0.6897 0.8342 - 0.8788 0.7091 -
HERec 0.6794 0.8411 - 0.8652 0.7182 -

MeLU 0.6523 0.8701 0.8482 0.8132 0.8475 0.8167
MetaHIN 0.6396 0.8864 0.8630 0.8001 0.8354 0.8099

OMHIN 0.6656 0.8830 0.8571 0.7874 0.8753 0.8566
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Figure 4: Convergence of OMNIN and MetaHIN in the UIC scenario. The first and second
half of the batch in the first epoch are calculated separately for the metrics in
order to study the convergence of OMHIN.
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conditions. It shows notable improvement in more difficult scenarios, approaching few-shot
problems effectively. Comparatively, the meta-learning-based approach surpasses the tradi-
tional approach, with OMHIN showing notable improvements in nDCG@K. OMHIN focuses
on relationships between samples rather than performing a direct mapping between sample
features and ratings, resulting in a higher ranking accuracy.

OMHIN and MetaHIN share complexity and parameter settings, but OMHIN’s con-
volutional layers slightly increase complexity. However, OMHIN requires fewer epochs to
converge to a similar solution to MetaHIN. Fig. 4 illustrates OMHIN’s faster convergence
compared to metaHIN (3 epochs vs. 15 epochs). Our model effectively handles data-poor
situations.

In conclusion, our model achieves significant improvements in dealing with complex and
difficult scenarios and the fastest fitting speed.

4.4. Ablation Experiments

We conducted ablation experiments to analyze the impact of individual improvements on
our model. Two sets of experiments investigated metric patterns and feature extraction
methods. The recorded performance focused on UIC, the most challenging scenario, which
reflects performance in other scenarios.

Table 4: Ablation Study
a) Impact of the practical meaning of the metric

Model DBook MovieLens
MAE nDCG@5 nDCG@3 MAE nDCG@5 nDCG@3

OMHIN 0.651 0.895 0.8739 0.8707 0.8867 0.8635
OMHIN-A-M 0.6634 0.8877 0.8615 0.9656 0.8425 0.8137
OMHIN-P-A-M 0.7245 0.8888 0.8600 1.2329 0.8509 0.8122

b) Improvements of feature fusion and prototype extraction
Model DBook MovieLens

MAE nDCG@5 nDCG@3 MAE nDCG@5 nDCG@3

OMHIN-A-M 0.6294 0.8877 0.8615 0.9656 0.8425 0.8137
OMHIN-A 0.6274 0.8878 0.8628 0.9342 0.875 0.8566
OMHIN-M 0.6221 0.8951 0.8665 0.9117 0.8469 0.8263
OMHIN 0.6238 0.895 0.8739 0.8707 0.8867 0.8635
MetaHIN 0.6325 0.8891 0.8755 0.8584 0.8408 0.8204

Regarding the metric analysis, we examined two ablation models: OMHIN-P-A-M (ba-
sic relational metric model) and OMHIN-A-M (metric with practical meaning of offset).
Introducing the offset significantly improved OMHIN’s prediction accuracy, especially on
MovieLens with difficult tasks. However, the nDCG@K metric showed a slight dip due to
introduced uncertainty and continuity. Other improvement modules compensated for these
issues, as OMHIN consistently outperformed OMHIN-A-M across all metrics. Table.4(a)
shows the experimental results.

We also explored the benefits of feature fusion and prototype extraction using OMHIN-
A-M. Experimental results are recorded in Table.4(b). OMHIN-M added an adaptive user
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Figure 5: MAE of the predicted ratings for the various true ratings.

feature fusion module, while OMHIN-A added a meta-path prototype extraction mod-
ule. On the DBook dataset, where users have only one feature, the improvement effect
of OMHIN-M was not apparent. However, on the MovieLens dataset, the improvement
modules made significant progress. The meta-path prototype extraction module leveraged
rich semantic information, while the feature fusion module followed a traditional data rep-
resentation pattern.

Additionally, the metric-based learning models consistently outperformed the model
optimization-based approach in terms of nDCG@K metrics.

4.5. Possible applications

OMHIN excels in top-K item ranking based on previous experiments. We conducted ad-
ditional experiments to explore potential application scenarios. In Fig. 5, We compare
the predicted ratings in NC, UC, IC, and UIC scenarios with MetaHIN. Notably, OMHIN
markedly outperformed MetaHIN when the true rating was 5 in cold-start scenarios, and
the margin of error for low-rated items had minimal impact on the 5-point sample, which
further explaining OMHIN’s strong performance on the nDCG@K metric. In summary, it is
easy to conclude that our model has applications in sequential cold-start recommendations
that are more concerned with the descending fine ranking of ratings.

5. Conclusion

We propose a dynamic offset metric-learning approach for cold-start recommendation on
heterogeneous information networks (OMHIN). We attempt to give metrics practical mean-
ing so that metric-learning models can be adapted to more complex and difficult tasks.
Specifically, we use the concept of data augmentation to alleviate the cold-start problem
associated with both traditional data representation and HIN. The model is specifically
designed to treat metrics as signed rating offsets rather than simple relational scores, while
also introducing dynamic feature fusion and extracting meta-path prototypes. Experiments
on two datasets show that OMHIN achieves state-of-the-art performance in a variety of sce-
narios, with significant improvements in complex and difficult scenarios, and is especially
well-suited for use in sequence cold-start recommendations.

In the future, we will leverage the aforementioned advantages of OMHIN to conduct
large-scale experiments and applications on more complex datasets. Additionally, this paper
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demonstrates that metric-based approaches possess generality comparable to optimization-
based methods, which will contribute to our further research on universal advanced meta-
learning methods.
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