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Abstract

Through ground-breaking advances in Machine Learning its real-world applications have
become commonplace in many areas over the past decade. Deep and complex models are
able to solve difficult tasks with super-human precision. But for manufacturing quality
control, in theory a ideal match for these methods, the step from proof-of-concept towards
live deployment is often not feasible. One major obstacle is the unreliability of Machine
Learning predictions when confronted with data diverging from the known characteristics.
While overall accuracy is high, wrong results may be returned with no indication of their
uncertainty. In manufacturing, where scarce errors mean great damages, additional safety
measures are required.

In this work, I present Visual Machine Learning Control (VMLC), an approach devel-
oped upon a real world visual quality control system that operates in a high throughput
manufacturing line. Instead of applying sole classification or anomaly detection, both is
done in combination. A scalar metric derived from an Auto-Encoder reconstruction error
measures the compliance of captured images with the training data the system is trained
on.

This metric is integrated into the widely used framework of industrial Statistical Process
Control, significantly increasing robustness through meaningful control limits and enabling
active learning. The system is evaluated on a large dataset of real-world industrial welding
images.

Keywords: Computer vision, Manufacturing, Monitoring, Robustness

1. Introduction

In the past decade, Machine Learning (ML) has made revolutionary advances in the fields
of computer vision, natural language processing, data mining and many more. Many ap-
plications found their way into the consumer market, be it trough adaptive image filters,
speech-to-text or translation and a new wave of generative tools like ChatGPT or DALL-E
open a whole new world of possibilities. Despite all this, manufacturing still struggles to
develop ML assisted tools past the state of proof-of-concept.

Potential is plenty: Many quality controls involve visual checks, often conducted by
humans. These are costly, especially in high throughput manufacturing, often rely on
individual subjective bias and are both stressful and monotonous for the inspector. Modern
classification systems with the promise of super-human performance and real-time error
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Figure 1: Core classification system with added process control.

detection capabilities are a good fit for these tasks, especially as huge amounts of visual
data seems easily obtainable. Many implementations exist, for example in the fields of opto-
semiconductor Lin et al. (2019), pharmaceutical Unnikrishnan et al. (2019) or electronics
Tabernik et al. (2020) production.

But the inherent nature of manufacturing creates obstacles often overlooked by outsiders
and academic research:

� The best performing ML systems are often based on a single training run and static in
nature. This collides with the dynamic environment of manufacturing, where changes
in process, materials or equipment as well as product re-designs may invalidate the
deployed model.

� Furthermore, the captured data may drift due to perturbations like mechanical vari-
ance, degradation of the light source or dust and other contamination.

� Online learning methods like Reinforcement Learning Arulkumaran et al. (2017) are
not applicable since the required exploration actions are not feasible for production.

� Industrial data sets often differ immensely in a few key aspects: Variance between
images is very low, class imbalance is extreme (pictures of defects are very scarce or
must be produced by hand, while data for faultless products exists by the thousands)
and there is a huge risk potential defect classes are not covered by the training data.

� While modern systems yield unprecedented accuracy, when they miss-classify, they
often do so with high confidence Carlini and Wagner (2017). This problem has become
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more apparent with generative language models that produce false ’facts’ or so-called
hallucinations Ji et al. (2023). There exists no widely accepted measurement of ML
system per-sample reliability, especially not in the visual domain Tran et al. (2022).

This often prevents making the step towards productive deployment. In peculiar high
quality manufacturing like the automotive industry where every undetected defect is a huge
risk both financially due to possible large-scale recalls and to customer trust. On top,
integration in established quality processes like LEAN manufacturing or Statistical Process
Control (SPC) is required as well as establishing trust into these unconventional systems
by operators, leadership and customers.

In this paper, I will present a system that accommodates all these requirements and
peculiarities. It was developed over two years for a ML based quality system currently used
in live-production on a high throughput manufacturing line. Furthermore, I will demon-
strate its stability trough evaluation on data that contains both Out of Distribution (OOD)
samples as well as artificially induced data drift.

2. Related Works

The approach presented in this work aspires to solve the presented challenges by imple-
menting a monitoring metric enabling SPC by detecting both drift and OOD samples

2.1. SPC and Machine Learning

SPC measures process stability and defines control limits when intervention into a process
is needed. It requires reliable and measurable metrics that can be evaluated statistically to
determine whether a machine, sensor or process is working as expected. Research on this
specific intersection is scarce, although the newer paradigms of MLOps work towards this
direction Granlund et al. (2021), although with a focus on tooling, deployment and process.

There exists a huge research gap for representing the high dimensionality of images for
SPC, especially with respect to ML, as is noted in Tran et al. (2022). A historical gold
standard for SPC on image data does not exist Megahed et al. (2011). Newer research
suggests methods for monitoring image data based on regions of interest Okhrin et al.
(2021) or generating control charts for 3D point clouds Stankus and Castillo-Villar (2019).

2.2. Drift and OOD Detection

Quantifying the dissimilarity between initial training data and samples measured during
deployment may fall into the domain of data drift detection Barros and Santos (2018),
where measured data diverges from the initial training data. Or it may tackle the problem
of OOD or anomaly samples Chalapathy and Chawla (2019). Both have a similar goal:
Identifying when the model is extrapolating (or guessing) rather then interpolating from its
known data.

For streaming data many approaches exist, e.g.based on the Kolmogorov-Smirnov test
dos Reis et al. (2016), p-Values Jordaney et al. (2017) or MD3 Sethi and Kantardzic (2017).
Their simplicity may be sufficient for a low dimensional time series but are not applicable
to the high abstraction and amount of variables contained in images.
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Figure 2: Picture of the welding point (a) as well as examples for a good (b) and defect (c)
sample.

Specific, but not exclusive, to the the visual domain encoder decoder based approaches
like Auto-Encoders (AEs)Zhou and Paffenroth (2017) or Principal Component Analysis
(PCA)Li et al. (2014) promise good results for measuring dissimilarities. These approaches
train an unsupervised model dec(enc(x)) on the training data with a loss function based
on LAE(x) := E(dec(enc(x)), x). Thereby, the dimensionality of enc(x) (often called the
latent space) is significantly smaller than of the input x, achieving efficient encoding of
the input data. The resulting metric is either based on the reconstruction error Lübbering
et al. (2021) the distribution of the latent space Abati et al. (2019); Aytekin et al. (2018)
or comparing with known images that have a similar latent distribution Gong et al. (2019).

There also exist approaches that supervise abstract representations produced by the
classification model itself Lee et al. (2018); Papernot and McDaniel (2018); Jiang et al.
(2018) or regularize the model to produce an output that better reflects uncertainty Du
et al. (2022). A comparison of selected methods exists in Mascha (2023), proving the
advantages of AE based approaches on industrial data.

3. Motivation and System Description

This research was primarily conducted on a camera system used in a high throughput
manufacturing environment. Its purpose is to verify the quality of laser welding conducted
between an electrode and its contact fin by detecting weld beads as well as disconnected
or malformed components. This visual system is a retro-fit for an existing manufacturing
more than 10 years of age. Due to these circumstance, image quality varies greatly and
lighting is not always optimal.

Initial implementation used classical computer vision tools like edge detection and fea-
ture matching. But due to the high variance induced by light reflexes on the shiny surface
and complex defect patterns performance was lacking, resulting in a high false-positive rate
as well as undetected defects.
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Detection was greatly improved by replacing the old, classical system with a 50 layer
deep ResNet He et al. (2016). It was trained with approximately 14700 images labeled by
a process engineer, with only around 4% of the samples containing defect). After going
live in production, problems arose due to images that were not classified correctly. These
were either defects that were not represented in the training set, like two weld beads being
present at once. Or systematic drift was introduced into the system, for example a shift of
the image center caused by mechanical variations.

This created the need for a system that could:

� Detect anomalies that are not represented in the training data, so called OOD samples.

� Measure the general drift between the data gathered during production and the one
used for training.

� Indicate how reliable the current classification of the model is to prevent undetected
defects to be shipped to the customer.

� Identify samples beneficial for further classifier training from the huge amount of
available data.

The last point is especially inherent to manufacturing data where most images have low
variance between each other. Additionally a scalar quantification of each image would be
desirable to integrate the system into standard SPC tools required in modern Lean-based
manufacturing Womack et al. (1990). These encompass a so called control chart, where an
operator can easily see whether the process is still operating as expected or a control limit
is breached, requiring manual intervention.

4. Solution

To accommodate all these requirements, I present VMLC, illustrated in figure 1. On top
of the usual classification through the classification model M(x; θM ) a control system is
placed. It consists of a distance model Md(x; θd) that maps the image x to a scalar value d.
A low value of d represents high confidence of M that the sample is similar to those used
for its training, thus implying correct classification through generalization.

When the value of d is too high to be confidently labeled, the output of M is invalidated
to prevent a potential mislabeling. Furthermore, x is added to a sample buffer B to be
labeled and used for future retraining in an Active Learning Ren et al. (2021) manner. Ad-
ditionally, the overall distribution of d over the last samples is compared with the expected
value to detect whether the process is still in control. When diverging too much, a control
action is triggered to remove the cause of the deviation.

4.1. Distance Metric

To generate a scalar control metric on a process involving visual data controllable its high
dimensionality has to be reduced. To do so, there exist a multitude of approaches which
usually fall into two classes: Either model centric approaches that work on the output of
the classification model M(x; θM ) or data centric that compare the distribution of input
data between the training samples ST and the images taken during production SP .
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Figure 3: Reconstruction of an (a) similar, (b) transformed, (c) OOD sample as well as (d)
random noise.

In this work the distance metric is specified as the reconstruction error of an AE. Due
to the massive reduction in information, AEs normally only reconstruct data that is similar
to their set (see figure 3). Even samples that look similar but stem from another setup
(the OOD sample) are not reconstructed properly. This can be exploited by using the
reconstruction error E as metric Md(s) for the dissimilarity between a sample s and the
training set ST .

To incentive the encoder to learn the same representation as the classifier, the layers
of the classification model before pooling are used as the encoder part of the AE. This is
similar to approaches like Zhu and Zhang (2019), although here the Auto-Encoder is based
on the classifier and not the other way around. After training M on the labeled dataset,
its parameters θM are frozen and θd is learned on the same data. In evaluation this
provided no improvements over using a standalone AE but decreased training time and
memory consumption.

Another boost to performance is achieved by applying the Structural Similarity Index
(SSIM) instead of Mean Squared Error (MSE) to calculate the reconstruction error, as is
suggested by Bergmann et al. (2018). SSIM is a lot more sensitive towards smaller features
inside the image since it sums over regions of interest instead of the per-pixel error. This is
especially beneficial for industrial data, where small details are often more important than
large features.

4.2. General Algorithm

Algorithm 1 describes the complete process for calculating the distance metric and enforcing
the control actions Retrain and Repair. Each iteration is one measurement Observe
made by the camera, which is parameterized by θc.
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Algorithm 1: Main algorithmic loop of VMLC.

B← ∅
δi ← 0
D← {x ∈ ST : Md(x; θd)}
µ, σ ← N (D)Ns

UCL← µ+ 3σ
SL← ηtood(D)
for si ∈ SP do

x← Observe(si, θc)
d←Md(x; θd)
/* Check if OOD sample is discovered. */

if d > SL then
y ← Oracle(x)
B← B ∪ {(x, y)}

else
y ←M(x; θM )

end

d← 1
Ns

∑Ns
n=0Md(si−n; θd)

/* Invoke active learning if required. */

if d > UCL ∧ δi < |s|min ∨ |B| = |B|max then
ST ← ST ∪ B
θM ← Retrain(θM , ST,M)
θd ← Retrain(θd,ST,M)
B← ∅
D← {x ∈ ST : Md(x; θd)}
µ, σ ← N (D)Ns

UCL← µ+ 3σ
SL← ηtood(D)

end
/* Check if repair is needed. */

if d > UCL ∧ i ≥ |s|min then
θc ← Repair()
δi ← 0

end
δi ← δi + 1
return (x, y)

end
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4.2.1. Process Control

The common approach towards SPC imposes control limits on the control metric d. These
are created by calculating mean µ and variance σ2 of a normal distributionN measured over
known in-control samples (ST in this case) by applying the Central Limit Theorem (CLT)
on batches of Ns data points. These so-called lower control limit (LCL) and upper control
limit (UCL) are calculated as multiples of σ from the mean. A distance of 3σ is common.
Since this implementation is based on a distance metric only an UCL is specified.

As soon as a limit is breached investigation into the process is requested. This either
implies a correction of the process itself, for example by repairing the preceding machine,
or necessitates re-calibration of the sensor. Since these actions often require to stop the
involved machine and therefore halt production, it is desirable to keep such interventions
to a minimum.

4.2.2. Specification Limit and Active Learning

Another type of control action may occur when singular measurements are so far from the
expected values that they suggest some kind of error, be it a faulty measurement, unknown
defects or an unknown product. Products with such measurements should be considered in
breach of specification and not to be processed further. In ML terms, we speak of an OOD
sample or anomaly.

In VMLC this is represented by the Specification Limit (SL). It is specified by the tood-
th percentile η over all measured samples D. Any rejected sample is added to the sample
buffer B to be used for investigation or improvement of the system or process. In case of
a ML system, these improvements often require a retraining of the model: Either training
data is not yet able to sufficiently cover the amount of variance present in the application.
Or new variance is introduced into the system, for example by a product re-design, change
in pre-material or overall process.

The first case usually arises in the early stages of deployment where the amount of
images taken during production vastly outnumbers the limited training data. Thus, when
the OOD-Buffer B reaches a certain size |B|max a iterative retraining is triggered. It is
expected for the buffer to be filled slower the longer the application runs and the more the
training set grows as outliers become more and more uncommon.

The second case may arise at any point in time during deployment. It should imply
a steep incline in measured d-value, thus triggering a re-calibration. This might either be
recognized by the person responsible for the manual re-calibration, launching the retraining
in response. Alternatively, the need for retraining can be detected automatically when
many re-calibrations are triggered in a short amount of time. To capture this, a minimum
required sample amount |s|min since the last re-calibration δi is specified.

The learning itself is conducted by expanding the known set ST with the OOD-Buffer B.
New samples are labeled by an instance called the oracle, which is usually a domain expert.
The combined data is automatically split into a training and evaluation set during training
to guarantee good generalization. Those sets are further used as training and calibration
set for the distance model Md(x; θd), which must also be retrained to accommodate the new
data supporting M(x; θM ).
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Figure 4: Images with artificial drift through transformations.

Any retraining might be conducted asynchronously if the model performance is not
degraded too much, especially for the iterative case. Since retraining implies a great effort
and possible downtime, it should be invoked as little as possible.

It should be noted that other sample selection methods like learn loss Yoo and Kweon
(2019) or TypiClust Hacohen et al. (2022) for Active Learning exist. While these may
theoretical be better performance wise, they do not provide any comprehensible dependency
from the measured metric, which is problematic in terms of system acceptance.

5. Evaluation and Discussion

This evaluation was conducted on the welding data set described in section 3. Each sample
consists of an image with a binary label (either ’Defect’ or ’Ok’) assigned by a domain expert.
Images where scaled to a size of 60x94 to accelerate training without measurable impact
to performance. The approximately 14700 samples were split into a dedicated training
ST and test set SP for evaluation by a 1:1 ratio. All experiments where conducted and
median averaged over a 5-fold cross validation of the training set with a further 4:1 split to
provide evaluation SE ⊂ ST and training samples (ST \ SE) for training only. Experiments
where additionally conducted on MNIST. All samples containing the digits 0, 1 and 2 were
removed to use them as OOD samples.

5.1. Implementation Details

For the classification model, a 50-layer ResNet based on He et al. (2016) was used. The
decoder consisted of a combination of residual blocks containing convolutional and batch
normalization layers Ioffe and Szegedy (2015) alternating with up-sampling layers used in
image up-scaling networks Li et al. (2018) to mirror the encoder network. The latent space
consisted of 100 dimensions, as this size appeared to be the cut-off point for good results.

Each classifier was trained for 30 and the AE for 40 epochs total. Retraining was done
by invoking 10 additional epochs on the classifier, separating training and evaluation data
from the sample buffer in the same 4:1 ratio.

5.2. Handling Data Drift

Handling of sensor drift was tested by introducing artificial drift into the dataset. Both shift
and rotation where applied to each image according to a distortion vector pd (see figure 4).
Its values where modified at random points in time by adding a random offset. The amount
of distortion present was quantified by calculating ∥pd∥. When a repair was requested by
the respective metric, its values were reset to 0.
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Method nr
Accuracy

pd
Averaged OK Defect

Weld No intervention 0 0.635 0.764 0.537 0.145
Fixed Interval 14 0.930 0.992 0.869 0.024
Classifier output 14 0.962 0.997 0.926 0.005
Fixed Interval 4 0.849 0.945 0.753 0.069
VMLC 4 0.962 0.997 0.925 0.006

Always repair 147 0.965 0.999 0.931 0.003
Baseline (no drift) - 0.971 0.999 0.944 0.000

MNIST No intervention 0 0.762 - - 0.139
Fixed Interval 18 0.971 - - 0.028
Classifier output 18 0.993 - - 0.005
Fixed Interval 4 0.929 - - 0.055
VMLC 4 0.982 - - 0.027

Always repair 138 0.993 - - 0.003
Baseline (no drift) - 0.994 - - 0.000

Figure 5: Performance when handling artificial drift on SP .

Method
Welding MNIST

OOD det. Without Rejected Retrained OOD det. Retrained

No sampling - 0.796 0.796 - 0.696
Random sampling 0.506 - 0.896 0.315 0.953
Classifier output 0.808 0.890 0.918 0.429 0.942
VMLC 0.973 0.938 0.926 0.674 0.953

Figure 6: Out of Distribution sample detection and class balanced classification accuracy
when confronted with OOD data.
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Figure 7: Images taken from two different camera setups.

Table 5 illustrates the change in classifier performance without interventions, with sched-
uled repairs after a fixed amount of samples and when applying the Md model used in
VMLC. To have a fair comparison, the scheduled interval was set to result in the same
amount of repairs nr required by Md. Additionally, a uncertainty based drift detector using
only the classification model output 1.−max(M) was used and an UCL value calculated.

Since the industrial data is highly imbalanced accuracy was class balanced by averaging
over both classes. This was done for all subsequent experiments. To speed up training and
reflect real life restrictions, samples where grouped into batches of size Ns = 50.

The improvement through VMLC is apparent: The system is able to operate close to
the theoretical maximum (when repairing after each batch) while keeping repairs to a min-
imum. While the classification output based approach delivers the same or slightly better
performance, it requests three to four times more (potentially unnecessary) interventions on
average. For a manufacturing environment these would soon result into a loss of trust from
the operators, which are called to action for no apparent reason. Thus, the reconstruction
error based method proofs far superior on both data sets.

5.3. Active Learning on OOD Samples

To evaluate the self-correcting capabilities through active learning, the methods behavior
was tested when confronted with a significant change in data manifestation. To do so, a set
SP ∪SO was used where SO contained around 7500 images captured from a second camera
setup with different lighting and positioning. These pictures are similar in character but
contrast strongly in quality and orientation (see figure 7). For MNIST SO was composed
of images with the yet unknown class labels 0, 1 and 2.

Samples where rejected when d > ηtood(D) with tood = 0.97. The first 500 samples
rejected where added to ST for retraining and performance was measured on the remaining
samples SP ∪SO\ST afterwards. Welding data was also evaluated when omitting all rejected
samples from the set.

The results displayed in table 6 show clear improvements for the welding data. The
AE based approach finds OOD samples more accurately and improves the accuracy of the
resulting model. Also, performance is impacted the least when continuing operations under
the presence of OOD data. Although selection on MNIST was also better, the small amount
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Runs with artificial drift where no control action is taken:
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Runs where drift is mitigated after reaching the UCL:
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Runs where OOD samples are encountered after a fixed amount of time (black line):
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Figure 8: Plots over full runs. The green area indicates that the process is considered out of
specification with |s|min = 1 and needs fixing through retraining or other means.
Samples where batched with Ns = 200.
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of novelty samples collected at random where already sufficient to train an adequate model
for all classes.

5.4. Overall Performance

Figure 8 visualizes the method in a simulated productive environment. The upper plot shows
the information an operator would see, while the lower shows the underlying performance
and drift metrics. When active, drift is mitigated before performance is decreased while
drastic measures like retraining are only requested when necessary.

In general, VMLC is capable to handle all challenges introduced in section 1 without
over-reacting to natural variance in the image data. The overall higher performance on
welding data compared to MNIST shows that it is better suited towards an industrial
environment, but still may be beneficial to other domain.

Its real-world implementation already operates in live production for over a year. Through
multiple training iterations it reduced the amount of miss-classifications by multiple orders
of magnitude and improved overall trust in the ’alien’ and ’unconventional’ application of
ML.

6. Conclusion

Making a visual classification system viable for production requires more then just a good
classifier. Various attributes of visual manufacturing data render a naive approach towards
deployment insufficient. In this work, I presented VMLC as an overarching system to tackle
these peculiarities. By combining the worlds of ML driven computer vision and industrial
SPC through an supervising anomaly detection model, the underlying classification is able
to run stable under apparent data drift and OOD data.

Through various tests on real-world industrial data the system proves to be more than
capable to handle the requirements imposed by this broad but unique domain. Its similarity
with processes well known by the plant staff increases acceptance and makes it simpler to
integrate into tools already present. Thus, the described system has the potential to deliver
a general and easy-to-implement guideline for productive deployment of visual ML quality
controls.

Future research should focus on evaluating VMLC with additional data sets and further
classification tasks like semantic segmentation. Additionally, influences on the supervis-
ing models capabilities by artificial data augmentation methods should be considered. A
comparison with different, independent sample selection methods for active learning or
alternative metrics for drift quantification may also further improve overall performance.
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