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Abstract

Since the success of Residual Network(ResNet), many of architectures of Convolutional
Neural Networks(CNNs) have adopted skip connection. While the generalization perfor-
mance of CNN with skip connection has been explained within the framework of Ensemble
Learning, the dependency on the number of parameters has not been revealed. In this
paper, we show that Bayesian free energy of Convolutional Neural Network both with and
without skip connection in Bayesian learning. Bayesian Free Energy is the negative log
marginal likelihood which is equivalent to Stochastic Complexity or Minimum Description
Length (MDL) used for evaluating model complexity. The upper bound of free energy of
Bayesian CNN with skip connection does not depend on the oveparametrization and, the
generalization error of Bayesian CNN has similar property.

Keywords: Learning theory; Convolutional Neural Network; Bayesian Learning; Free
Energy

1. Introduction

Convolutional Neural Networks (CNNs) are a type of Neural Networks mainly used for com-
puter vision. CNNs have been shown the high performance with deep layers Szegedy et al.
(2015); Krizhevsky et al. (2017). Residual Network(ResNet) He et al. (2016) adopted the
skip connection for addressing the problem that the loss function of CNN with deep layers
does not decrease well through optimization. After success of ResNet, the CNNs with more
than 100 layers are realized. The high performance of ResNet has been explained by similar-
ity to the ensemble learning Huang et al. (2018); Nitanda and Suzuki (2020); Ganaie et al.
(2022). On the other hand, there is a common issue in neural networks that the reason why
the overparametrized deep neural network generalized has been unknown yet.

In conventional learning theory, if the Fisher information matrix of a learning machine
is positive definite, and the data size is sufficient large, the generalization error of the
learning machine is determined from the number of its parameter in maximum likelihood
estimator Akaike (1974). The similar property is shown in free energy and generaliza-
tion error in Bayesian learning Schwarz (1978); Rissanen (1978); Akaike (1998). From
these characteristics of generalization error and free energy some information criteria such
as AIC, BIC, and MDL are proposed. However, most of the hierarchical models such as
neural networks have degenerated Fisher information matrix. In such models, the Bayesian
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generalization error and free energy are determined by a rational number called Real Log
Canonical Threshold(RLCT) and that is smaller than the number of parameters Watanabe
(2001b, 2007). In particular, RLCTs are revealed in some concrete models such as three
layered neural networks Watanabe (2001a); Aoyagi and Nagata (2012), normal mixtures
Hartigan (1985); Yamazaki and Watanabe (2003), Poisson mixtures Sato and Watanabe
(2019), Boltzmann machine Yamazaki and Watanabe (2005); Aoyagi (2010), reduced rank
regression Aoyagi and Watanabe (2005), Latent Dirichlet allocation Hayashi (2021), ma-
trix factorization, and Bayesian Network Yamazaki and Watanbe (2012). While RLCTs
of many hierarchical models are revealed, that of neural networks with multiple layer of
nonlinear transformation has not been clarified. Yet the possibility of that is shown in
Wei et al. (2022), the RLCT of Deep Neural Network is revealed Nagayasu and Watanabe
(2023). On the other hand the RLCT of neural networks other than DNN was not explored.

In Bayesian learning for neural networks, how to realize the posterior is important.
There exist approaches for generating posterior, Variational Approximation or Markov chain
Monte Carlo(MCMC) methods. Variational Approximation for neural netowrks, Variational
Autoencoder Kingma and Welling (2013) or Monte Carlo dropout Gal and Ghahramani
(2016) are practically used. Also for CNNs, variational approach for Bayesian inference
was proposed Gal and Ghahramani (2015). MCMC for neural networks, Hamiltonian
Monte Carlo or Langevin Dynamics are useful for sampling from posterior. Stochastic
Gradient Langevin Dynamics(SGLD) Welling and Teh (2011) is a MCMC method applying
Stochastic Gradient Descent instead of Gradient Descent to Langevin Dynamics is popular
MCMC for Bayesian Neural Networks. Zhang et al. (2019) used SGLD for generating
posterior of CNNs.

In this paper we clarify the free energy and generalization error of Bayesian CNNs with
and without skip connection. In both case the free energy and generalization error don’t
depend on the number of parameters in redundant filters. Then, in case with skip connec-
tion, the redundant layers don’t affect the free energy and generalization error whereas they
affect in case without skip connection. This paper consists of seven main sections and one
appendix. In section2, we describe the setting of Convolutional Neural Network analyzed in
this paper. In section3, we explain the basic terms of the Bayesian learning. In section4, we
note the main theorem of this paper. In section5, we conduct the experiment of synthetic
data. In section6 and section7, we discuss about the theorem in this paper and conclusion.
In appendixA, we prove the main theorem of this paper.

2. Convolutional Neural Network

In this section we describe the function of Convolutional Neural Network. First, we explain
CNN without skip connection. The kernel size is 3 × 3 with zero padding and 1-stride.
The activation function is ReLU. The numbers of the layers of the CNN are K1(≥ 3) for
Convolutional Layers and K2(≥ 3) for Fully Connected Layers.

Let x ∈ RL1×L2×H1 be an input vector generated from q(x) with bounded support
and y ∈ {0, 1}HK1+K2 be an output vector with q(y|x). We define w(k) ∈ R3×3×Hk−1×Hk ,
b(k) ∈ RHk as weight and bias parameters in each Convolutional Layer (2 ≤ k ≤ K1).
f (k) ∈ RL1×L2×Hk is output of each layer for 1 ≤ k ≤ K1. Conv(f, w) is the convolution
operation with zero padding and 1-stride:
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Conv(fk−1, wk)l1,l2,hk
=
∑
hk−1

p=3,q=3∑
p=1,q=1

fl1+p−1,l2+p−1,hk−1
wp,q,hk−1,hk

. (1)

We define g(bk) : RHk → RL1×L2×Hk as

g(b(k))l1,l2 = b(k) (2)

for 1 ≤ l1 ≤ L1, 1 ≤ l2 ≤ L2. By using w(k) , g(b(k)), and f (k−1), f (k) is described by

f (k)(w, b, x) = σ(Conv(f (k−1)(w, b, x), w(k)) + g(b(k))) (3)

where w, b are the set of all weight and bias parameters. σ() is a function that applies the
ReLU to all the elements of the input tensor.

The output of k = K1 + 1 layer is result of Global Average Pooling on k = K1 layer:

f (K1+1)(w, b, x) =
1

L1L2

l1=L1∑
l1=1

l2=L2∑
l2=1

f (K1)(w, b, x)l1,l2 . (4)

Let w(k) ∈ RHk × RHk−1 , b(k) ∈ RHk be weight and bias parameters in each Fully
Connected Layer (K1 + 2 ≤ k ≤ K1 +K2). For K1 + 2 ≤ k ≤ K1 +K2 − 1, f (k) is defined
by

f (k)(w, b, x) = σ(w(k)f (k−1)(w, b, x) + b(k)), (5)

and for k = K1 +K2,

f (K1+K2)(w, b, x) = softmax(w(k)f (k−1)(w, b, x) + b(k)), (6)

where softmax() is a softmax function

softmax(z)i =
ezi∑J
j=1 e

zj
. (7)

The output of the model is represented stochastically

y ∼ Categorical(f (K1+K2)(w, b, x)) (8)

where Categorical() is a categorical distribution.
Then we describe CNN with skip connection. The number of layers within the skip

connection is Ks and the number of skip connection is M . The output of the layer with
skipped connection is described by

f (mKs+2)(w, b, x) = σ(Conv(f (mKs+1)(w, b, x), w(mKs+2))

+ g(b(mKs+2)) + f ((m−1)Ks+2)(w, b, x)). (9)
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No Skip Connection Skip Connection

Figure 1: The structure of Convolutional Neural Network with and without Skip Connec-
tion

In this case, CNN satisfies the following conditions

K1 = MKs + 2

HmKs+2 = const (1 ≤ m ≤ M). (10)

The other conditions are the same as the case without skip connection.
Figure1 shows the configuration of Convolutional Neural Network analyzed in this paper.

3. Free energy in Bayesian Learning

3.1. Bayesian Learning

Let Xn = (X1, · · ·Xn) and Y n = (Y1, · · ·Yn) be training data and labels. n is the number of
the data. These data and labels are generated from a true distribution q(x, y) = q(y|x)q(x).
The prior distribution φ(w), the learning model p(y|x,w) is given on the bounded parameter
set W . Then the posterior distribution is defined by

p(w|Xn, Y n) =
1

Z(Y n|Xn)
φ(w)

n∏
i=1

p(Yi|Xi, w) (11)

where Zn = Z(Y n|Xn) is normalizing constant denoted as marginal likelihood:

Zn =

∫
φ(w)

n∏
i=1

p(Yi|Xi, w)dw. (12)

The free energy is negative log value of marginal likelihood

Fn = − logZn. (13)

Free energy is equivalent to evidence and stochastic complexity.
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The posterior predictive distribution is defined as the average of the model by posterior:

p∗(y|x) = p(y|x,Xn, Y n) =

∫
p(y|x,w)p(w|Xn, Y n)dw. (14)

Generalization error Gn is given by Kullback-Leibler divergence between the true distribu-
tion and posterior distribution as follows

Gn =

∫
q(y|x)q(x) log q(y|x)

p∗(y|x)
dxdy. (15)

Average of Generalization error is difference between the average of Free energy of n and
n+ 1:

E[Gn]− S = E[Fn+1]− E[Fn], (16)

where E[f(Xn, Y n)] is the average of the generation of n data EXn,Y n [f(Xn, Y n)] and S is
the entropy of q(y|x).

3.2. Asymptotic property of Free energy and Generalization error

It is well known that if the average Kullback-Leibler divergence

K(w) =

∫
q(y|x)q(x) log q(y|x)

p(y|x,w)
dxdy. (17)

can be approximated by quadratic form, in other words, the Laplace approximation can be
applied to the posterior distribution, average of Free energy has the following asymptotic
expansion with the number of parameters of learning model d Schwarz (1978); Rissanen
(1978)

E[Fn] = n(S +Bias) +
d

2
log n+O(1) (18)

where S is entropy of true distribution and Bias is the minimum value of K(w) for w ∈ W .
The generalization error is calculated from Free energy by using equation(16) Akaike (1998):

E[Gn] = Bias +
d

2n
+ o

(
1

n

)
. (19)

Laplace approximation cannot be applied to the average Kullback-Leibler divergence of
hierarchical model such as Gaussian Mixture or neural networks because of the degeneration
of Fisher information matrix. In such models, the average of Free energy and Generalization
error have the following asymptotic expansions Watanabe (2001b)

E[Fn] = n(S +Bias) + λ log n+ o(log n), (20)

E[Gn] = Bias +
λ

n
+ o

(
1

n

)
, (21)

where λ is a rational number called Real Log Canonical Threshold(RLCT). In particular,
Nagayasu and Watanabe (2023) showed that in case Bias = 0 and x is bounded, when the
Deep Neural Network is trained from the data generated from smaller network,

λ ≤ d∗

2
(22)

where d∗ ≤ d is the number of parameter of data generating Network.
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4. Main Theorem

In this subsection the main result of this paper is introduced. First, to state the theorem,
we define the data generating network. Both in skip connection the data generating network
satisfies the following conditions about the number of layers and filters,

K∗
1 ≤ K1,K

∗
2 ≤ K2, (H

∗)(1) = H(1)(H∗)(K1) = H(K1+K2) (23)

and

H(k) ≥ (H∗)(K
∗
1 )(K∗

1 + 1 ≤ k ≤ K1)

H(k) ≥ (H∗)(K1+K∗
2 )(K1 +K∗

2 + 1 ≤ k ≤ K1 +K2 − 1)

H(k) ≥ (H∗)(k)(others). (24)

Then, we show the main theorem.

Theorem 1 (No Skip connection) Assume that the learning machine and the data gener-
ating distribution are given by p(y|x,w, b) and q(y|x) = p(y|x,w∗, b∗) in case without skip
connection which satisfy the conditions (23) and (24), and that a training data {(Xi, Yi) i =
1, 2, ..., n} is independently taken from q(x)q(y|x). Then the average free energy satisfies the
inequality,

E[Fn] ≤ nS + λCNN log n+ C (25)

where

λCNN =
1

2

|w∗|0 + |b∗|0 +
K1∑

k=K∗
1+1

(9Hk + 1)Hk

 (26)

where |w∗|0, |b∗|0 are the numbers of parameters of weights and biases in data generating
network.

Theorem 2 (Skip connection) Assume that the learning machine and the data generating
distribution are given by p(y|x,w, b) and q(y|x) = p(y|x,w∗, b∗) in case with skip connection
which satisfy the conditions (10), (23) and (24), and that a training data {(Xi, Yi) i =
1, 2, ..., n} is independently taken from q(x)q(y|x). Then

λCNN =
1

2
(|w∗|0 + |b∗|0). (27)

Proof of main theorems are shown in AppendixA.
If there exists asymptotic expansion of the generalization error E[Gn] in theorem1 and

theorem2, that satisfies the following inequality

E[Gn] ≤
λCNN

n
+ o

(
1

n

)
, (28)

where

Gn =

∫
q(x)

HK1+K2∑
i=1

f
(K∗

1+K∗
2 )

i (w∗, b∗, x) log
f
(K∗

1+K∗
2 )

i (w∗, b∗, x)

Ew,b[f
(K1+K2)
i (w, b, x)]

dx (29)

which corresponds to categorical cross entropy.
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5. Experiment

In this section, we show the result of experiment of synthetic data.

5.1. Methods

We prepared the 2-class labeled simple data shown in fig2. The the data is x ∈ R4×4 and the
values of each elements are in (−1, 1). The average of each element is 0.5 or −0.5 and added
the truncated normal distribution noise within the interval(−0.5, 0.5). The probability of
each label of data is 0.5. We trained CNN whose number of convolutional layer K1 = 2
and fully connected layersK2 = 2 with SGD. The number of filter is H2 = 2 and the
parameters are L2 regularized. We use the trained CNN named ”true model” as a data
generating distribution. Note that the label of original data fig2 is deterministic but the
label of true model is probabilistic. We prepare three learning CNN models. Each number
of convolutional layers is K1 = 2, 3, 4. Each model has skip connection every one layers or
does not have skip connection. The number of filters in each layers is H(k) = 4. They have
K2 = 2 fully connected layers. The prior distribution is the Gaussian distribution which
covariance matrix is 104I for weight parameter and 102I for bias parameter. We train the
learning CNN models by using the Langevin dynamics. The learning rate is 10−2 and the
interval of sampling is 100. We use the average of 1000 samples of learning CNN models as
the average of posterior. We estimate the generalization error by the test error of 10000 test
data from true model. We trained each learning model 10 times and estimated the E[Gn]
from the average of test error.

Figure 2: The average of input x of each label

5.2. Result of experiments

Table1 shows the result of the experiment. Test Error shows n times of the average of 10
test error in each model and the standard error of them. dmodel is a number of parameters
of each model. All the CNN models include the true model, hence the bias is 0. Then from
equation(21), theoretical upper bound of the generalization error is λCNN/n. In table1, the
experimental values of all models are smaller than dmodel/2. Moreover in case with skip
connection, the experimental value did not so increase with the increase of the number of
layer. Then, in case K1 = 4 without skip connection, the experimental value increased from
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Table 1: Experimental value and theoretical upper bound of the generalization error
model n× Test Error λCNN dmodel/2

K1 = 2 16.0(1.9) 13 25
K1 = 3 no skip 10.0(0.9) 32 99
K1 = 4 no skip 58.4(2.3) 51 173
K1 = 3 with skip 11.4(2.3) 13 99
K1 = 4 with skip 15.6(1.2) 13 173

the caseK1 = 2. In case K1 = 3 without skip connection, the experimental value is smaller
than that of K1 = 2. Behavior of MCMC is considered to be the cause of this result. Since
MCMC in high dimensional model needs the long series for convergence in general, the
result is deviated from theoretical predict.

6. Discussion

6.1. Difference with or without Skip Connection

In this paper for analyzing the overparametrized CNN, the data generating network is
smaller than learning network both case of Skip Connection. Nevertheless two cases of the
data generating network is different, if the learning model network has double filter H(k) to
the data generating network in each Convolutional Layer, the model network can represent
the generating network in different case. The output of each layer is nonnegative hence
the model can represent the skip connection or the negative of that. If the model network
doesn’t have larger layer to the data generating network, the free energy of CNN with skip
connection can be both larger or smaller than that without skip connection by the data
generating network. Then, the layer of model network gets larger, the free energy of CNN
with skip connection does not change but that without skip connection gets larger and the
free energy of CNN with skip connection comes to have smaller free energy for all data
generating network.

6.2. Comparison to Deep Neural Network

Firstly we compare the result of this paper to that of DNN in Nagayasu and Watanabe
(2023). In case of DNN, the free energy depends on the layers of the model and only on
that of the data generating network. This stands to the reason that mapping of the linear
transformation in lower layer can be represented in higher layer. On the other hand, con-
volution operation doesn’t have such property hence, the free energy of CNN without skip
connection depends on the layer of learning model network. However, with skip connection,
there exists the essential parameter which doesn’t depend on overparametrized layers and
the free energy does not also depend on the layer of learning model network.

7. Conclusion

In this paper, we studied Free energy of Bayesian Convolutinal Neural Network with Skip
Connection and compared to the case without Skip Connection. Free energy of Bayesian
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CNN with Skip Connection doesn’t depend on the layer of the model unlike the case with-
out Skip Connection. In Bayesian learning, the increase of Free energy is equivalent to
generalization error, hence the generalization error has same property about the Skip Con-
nection. In particular, Free energy of CNN without skip connection does not depends on
the number of parameters in learning network but depends only on that in data generating
network. This feature shows the generalization ability of CNN with skip connection does
not decrease with respect to any overparameterization in Bayesian learning.
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Appendix A. Proof of main theorem

In this Appendix, we show the proof of main theorem.

A.1. Inequalities

Note that we describe the Frobenius norm of any order of tensor as ∥ · · · ∥. We denote the
Kullback-Leibler divergence of a data-generating distribution q(y|x) = p(y|x,w∗, b∗) and a
model p(y|x) that

K(w, b) =

∫
q(x)q(y|x) log q(y|x)

p(y|x,w, b)
dxdy. (30)

Lemma 3 Nagayasu and Watanabe (2023) Assume that a set W is contained in the set
determined by the prior distribution {(w, b);φ(w, b) > 0}. Then for an arbitrary postive
integer n,

E[Fn] ≤ nS − log

∫
W

exp(−nK(w, b))φ(w, b)dwdb. (31)

Lemma 4 Nagayasu and Watanabe (2023) For arbitrary vectors s, t,

∥σ(s)− σ(t)∥ ≤ ∥s− t∥. (32)

Lemma 5 Nagayasu and Watanabe (2023) For arbitrary w,w′, b, b′, and K1 + 1 ≤ k ≤
K1 +K2, the following inequality holds,

∥f (k)(w, b, x)− f (k)(w′, b′, x)∥
≤ ∥w(k) − w′(k)∥∥f (k−1)(w, b, x)∥+ ∥b(k) − b′(k)∥
+ ∥w(k)∥∥f (k−1)(w, b, x)− f (k−1)(w′, b′, x)∥. (33)

Corollary 6 For arbitrary w,w′, b, b′, and 1 ≤ k ≤ K1, the following inequality holds,

∥f (k)(w, b, x)− f (k)(w′, b′, x)∥
≤ 9∥w(k) − w′(k)∥∥f (k−1)(w, b, x)∥+ L1L2∥b(k) − b′(k)∥
+ 9∥w(k)∥∥f (k−1)(w, b, x)− f (k−1)(w′, b′, x)∥
+ δ(k)∥w(k)∥∥f (k−K2−1)(w, b, x)− f (k−K2−1)(w′, b′, x)∥. (34)
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where δ(k) equals to 1 if the network has Skip connection and k = mK2 + 2, otherwise it
equals to 0

Proof

f (k)(w, b, x)− f (k)(w′, b′, x)

= σ(Conv(f (k−1)(w, b, x), w(k)) + g(b(k)))− σ(Conv(f (k−1)(w, b, x), w′(k))) + g(b′(k)))

+ σ(Conv(f (k−1)(w, b, x), w′(k)) + g(b′(k)))− σ(Conv(f (k−1)(w′, b′, x), w′(k)) + g(b′(k))).
(35)

From definition of Conv(), the following equation holds.

∥Conv(f (k−1)(w, b, x), w(k))j∥ ≤
Hk−1∑
i=1

∥f (k−1)(w, b, x)i∥|(
3∑

p=1

3∑
q=1

w
(k)
pqij)|1

≤ 9∥f (k−1)(w, b, x)∥∥w:,:,:,j∥ (36)

By using lemma4, (35) and (36), corollary6 is proved.

Lemma 7 For arbitrary w, b, x,

∥f (k)(w, b, x)∥ ≤ Dk∥w(k)∥∥w(k−1)∥ · · · ∥w(2)∥∥x∥ (37)

+D0∥b(k)∥+
k−2∑
j=1

Dj∥w(k)∥∥w(k−1)∥ · · · ∥w(k−j)∥∥b(k−j)∥.

where Dj , 0 ≤ j ≤ k is constant.

Proof By considering the case all the parameters of w′ and b′ are 0, in Lemma 5, it follows
that

∥f (k)(w, b, x)∥ ≤ 9∥w(k)∥∥f (k−1)(w, b, x)∥+ L1L2∥b(k)∥ (38)

+ δ(k)∥w(k)∥∥f (k−K2−1)(w, b, x)− f (k−K2−1)(w′, b′, x)∥.

Then mathematical induction gives the Lemma.

A.2. Notations of parameters

In order to prove the main theorem, we need several notations. We divide the filters of
learning model in each convolutional layer 1 ≤ h(k) ≤ H(k) into the 1 ≤ h(k) ≤ (H∗)(k) and
(H∗)(k) + 1 ≤ h(k) ≤ H(k). The former is denoted as A and the later is denoted as B. The
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convergent tensor E(k) ∈ R3×3×H(k−1)×H(k)
and vector E(k)

0 RH(k)
where the absolute value

of all elements are smaller than 1/
√
n are denoted by

E(k)
pq =

(
E(k)
pqAA E(k)

pqAB

E(k)
pqBA E(k)

pqBB

)
, (1 ≤ p ≤ 3, 1 ≤ q ≤ 3), (39)

E(k)
0 =

(
E(k)
A0

E(k)
B0

)
. (40)

The positive constant tensor M(k) and vector M(k)
0 are defined by the condition that

all elements are in the inverval [A,B],

M(k)
pq =

(
M(k)

pqAA M(k)
pqAB

M(k)
pqBA M(k)

pqBB

)
, (1 ≤ p ≤ 3, 1 ≤ q ≤ 3), (41)

M(k)
0 =

(
M(k)

A0

M(k)
B0

)
. (42)

To prove Theorem 1 2, we show an upper bound of E[Fn] is given by choosing a set WE

which consists of essential weight and bias parameters in Convlutional Layers and Fully
connected layers.

A.3. No Skip Connection Case

Definition. (Essential parameter set WE without Skip Connection). A parameter (w, b)
is said to be in an essential parameter set WE if it satisfies the following conditions (1),(2)
for 2 ≤ k ≤ K1,

(1) For 2 ≤ k ≤ K∗
1

w(k)
pq =

(
(w∗)(k) + E(k)

pqAA M(k)
pqAB

−M(k)
pqBA −M(k)

pqBB

)
, (43)

b(k) =

(
(b∗)(k) + E(k)

A0

−M(k)
B0

)
, (44)

for 1 ≤ p ≤ 3, 1 ≤ q ≤ 3
(2) For K∗

1 + 1 ≤ k ≤ K1

w(k)
pq =

(
Z(k)
pqAA M(k)

pqAB

−M(k)
pqBA −M(k)

pqBB

)
, (45)

b(k) =

(
(b∗)(k) + E(k)

A0

−M(k)
B0

)
, (46)

where

Z(k)
pqAA =

{
I22AA + E(k)

22AA (p = q = 2)

E(k)
pqAA (others)

. (47)
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where I22AA ∈ R(H∗)(k) × R(H∗)(k) is an identity matrix.

Lemma 8 Assume that the weight and bias parameters of Convolutional layers are in the
essential set WE in case without Skip Connection. Then there exist constants c1, c2 > 0
such that

∥f (K1)
:,:,A (w, b, x)− f (K∗

1 )(w∗, b∗, x)∥ ≤ c1√
n
(∥x∥+ 1), (48)

∥f (K1)
:,:,A (w, b, x)∥ ≤ c2(∥x∥+ 1). (49)

Proof Eq.(49) is derived from Lemma 7. By the definitions (43), (44), for 2 ≤ k ≤ K∗

f
(2)
A (w, b, x) = σ(Conv(f

(1)
:,:,A(w, b, x), (w

∗)(2) + E(2)
:,:,AA) + g((b∗)(2) + E(2)

A0 )), (50)

f
(k)
A (w, b, x) = σ(Conv(f

(k−1)
:,:,A (w, b, x), (w∗)(k) + E(k)

:,:,AA)

+ Conv(f
(k−1)
:,:,B (w, b, x),M(k)

:,:,AB) + g((b∗)(k) + E(k)
A0 )). (51)

In k = 2, |x| is bounded andM(k)
:,:,AB is constant tensor, M(k)

B0 is large sufficiently, f
(2)
:,:,B(w, b, x) =

0 because all the elements of the output of ReLU function f (2)(w, b, x) is nonnegative. For

3 ≤ k ≤ K1, f
(k)
:,:,B(w, b, x) = 0, since all elements of w

(k)
:,:,BA, w

(k)
:,:,BB, and w

(k)
B0 are negative.

Hence by Lemma 5, for 2 ≤ k ≤ K∗
1 ,

∥f (k)
:,:,A(w, b, x)− f (k)(w∗, b∗, x)∥

≤ 9∥E(k)
:,:,AA∥∥f

(k−1)(w, b, x)∥+ L1L2∥E(k)
A0 ∥

+ 9∥(w∗)(k)∥∥f (k−1)
:,:,A (w, b, x)− f (k−1)(w∗, b∗, x)∥. (52)

and for K∗
1 + 1 ≤ k ≤ K1, by using f (K∗

1 )(w∗, b∗, x) as f (k)(w∗, b∗, x),

∥f (k)
:,:,A(w, b, x)− f (K∗

1 )(w∗, b∗, x)∥

≤ 9∥E(k)
:,:,AA∥∥f

(k−1)(w, b, x)∥+ L1L2∥E(k)
A0 ∥

+ 9∥(w∗)(k)∥∥f (k−1)
:,:,A (w, b, x)− f (K∗

1 )(w∗, b∗, x)∥. (53)

The elements of tensors and vectors in E(k−1)
:,:,AA and E(k)

:,:,A0 are bounded by 1/
√
n order

term, hence ∥E(k−1)
AA ∥ and ∥E(k)

A0 ∥ are bounded by 1/
√
n order term. Moreover ∥(w∗)(k)∥ is

a constant term. For k = 2, f
(k−1)
:,:,A (w, b, x)− f (k−1)(w∗, b∗, x) = x− x = 0. Then, by using

mathematical induction for (52) and (53) , the all terms can be bounded by 1/
√
n terms,

hence we obtained the Lemma.

From Nagayasu and Watanabe (2023), because of the output in k = K1 +1 is nonnega-
tive there exists the essential parameters for fully connected layers such that the number of
the convergent parametersE equals to that of data generating network. From these lemmas,
the main theorem can be proved.
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(Proof of Theorem 1). By Lemma 3, it is sufficient to prove that there exists a constant
C > 0 such that ∫

WE

exp(−nK(w, b))φ(w, b)dwdb ≥ C

nλ
(54)

From the property of KL-divergence, there exists the positive constant c4

K(w, b) ≤ c4
2

∫
∥f (K1+K2)(w, b, x)− f (K∗

1+K∗
2 )(w∗, b∗, x)∥2q(x)dx. (55)

By using Lemma 8, if (w, b) ∈ WE ,

K(w, b) ≤ c4c
2
3

2n

∫
(∥x∥+ 1)2q(x)dx =

c5
n

< ∞. (56)

It follows that ∫
WE

exp(−nK(w, b))φ(w, b)dwdb

≥ exp(−c5)

(
min

(w,b)∈WE

φ(w, b)

)
Vol(WE). (57)

where c5 > 0, min(w,b)∈WE
φ(w, b) > 0, and Vol(WE) is the volume of the set WE by the

Lebesgue measure. The convergent scale of Vol(WE) is determined from the number of
convergent parameter E in WE . Then,

Vol(WE) ≥
C1

nλ
, (58)

where

λ =
1

2

k=K1∑
k=2

(9H∗
k−1 + 1)H∗

k +

k=K1+K2∑
k=K1+1

(H∗
k−1 + 1)H∗

k

 (59)

=
1

2

|w∗|0 + |b∗|0 +
K1∑

k=K∗
1+1

(9HK∗
1
+ 1)HK∗

1

 .

We obtained theorem1.

A.4. Skip Connection Case

Definition. (Essential parameter set WE with Skip Connection). An essential parameter
set WE with Skip Connection satisfies the following conditions (1),(2) for 2 ≤ k ≤ K1,
(1) For 2 ≤ k ≤ K∗

1 , the same conditions as (43) and (44).
(2) For K∗

1 + 1 ≤ k ≤ K1

w(k)
pq =

(
−M(k)

pqAA −M(k)
pqAB

−M(k)
pqBA −M(k)

pqBB

)
, (60)

b(k) =

(
−M(k)

A0

−M(k)
B0

)
, (61)
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Lemma 9 Assume that the weight and bias parameters of Convolutional layers are in the
essential set WE in case with Skip Connection. Then there exist constants c1, c2 > 0 such
that

∥f (K1)
:,:,A (w, b, x)− f (K∗

1 )(w∗, b∗, x)∥ ≤ c1√
n
(∥x∥+ 1), (62)

∥f (K1)
:,:,A (w, b, x)∥ ≤ c2(∥x∥+ 1). (63)

Proof Because of similar reason to lemma8, holds. By Lemma 5, for k = mKs + 1,

∥f (k)
:,:,A(w, b, x)− f (k)(w∗, b∗, x)∥

≤ 9∥E(k)
:,:,AA∥∥f

(k−1)(w, b, x)∥+ L1L2∥E(k)
A0 ∥

+ 9∥(w∗)(k)∥∥f (k−1)
:,:,A (w, b, x)− f (k−1)(w∗, b∗, x)∥

+ ∥w(k)∥∥f (k−K2−1)(w, b, x)− f (k−K2−1)(w′, b′, x)∥. (64)

If k ̸= mKs + 1 and 2 ≤ k ≤ K∗
1 , inequality (52) holds. Same as the lemma8, from

mathematical induction, ∥f (K∗
1 )

:,:,A (w, b, x)− f (K∗
1 )(w∗, b∗, x)∥ is bounded by 1/

√
n terms. For

2 ≤ k ≤ K1, f
(k)
:,:,B(w, b, x) = 0 same reason as lemma8. For K∗

1 + 1 ≤ k ≤ K1, since all

elements of w(k) and b(k) are negative, the following equations are given.

f
(k)
:,:,A(w, b, x) =

{
f (K∗

1 )(w, b, x) (k = nKs + 1)
0 (others)

. (65)

Hence, we obtained the Lemma.

Same as without Skip connection case, by using the result of Nagayasu and Watanabe
(2023) for fully connected layer and inequality(57),(58), we obtained theorem2.


