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Abstract

Tiny object detection has gained considerable attention in the research community ow-
ing to the frequent occurrence of tiny objects in numerous critical real-world scenarios.
However, convolutional neural networks (CNNs) used as the backbone for object detection
architectures typically neglect Nyquist’s sampling theorem during down-sampling opera-
tions, resulting in aliasing and degraded performance. This is likely to be a particular issue
for tiny objects that occupy very few pixels and therefore have high spatial frequency fea-
tures. This paper applied an existing approach WaveCNet for anti-aliasing to tiny object
detection. WaveCNet addresses aliasing by replacing standard down-sampling processes
in CNNs with Wavelet Pooling (WaveletPool) layers, effectively suppressing aliasing. We
modify the original WaveCNet to apply WaveletPool in a consistent way in both pathways
of the residual blocks in ResNets. Additionally, we also propose a bottom-heavy version of
the backbone, which further improves the performance of tiny object detection while also
reducing the required number of parameters by almost half. Experimental results on the
TinyPerson, WiderFace, and DOTA datasets demonstrate the importance of anti-aliasing
in tiny object detection and the effectiveness of the proposed method which achieves new
state-of-the-art results on all three datasets. Codes and experiment results are released at
https://github.com/freshn/Anti-aliasing-Tiny-0bject-Detection.git.
Keywords: Tiny Object Detection; Anti-aliasing; Wavelets; Convolutional Neural Net-
works

1. Introduction

Tiny object detection is a specialized area within the object detection field that focuses on
identifying and localising small objects in images. While these objects are prevalent in real-
world scenarios such as maritime rescue, driving assistance and security monitoring, they are
difficult for standard object detection methods (Ren et al., 2015; Cai and Vasconcelos, 2018;
Liu et al., 2015; Lin et al., 2017b; Tian et al., 2019; Zhu et al., 2020a) because of the limited
spatial extent and low resolution of the target objects. The key distinction between data
used in tiny object detection, such as the TinyPerson (Yu et al., 2020), WiderFace (Yang
et al., 2016) and DOTA (Xia et al., 2018) datasets, and general object detection datasets
lies in the proportion of small and tiny objects: ones that occupy only a few pixels in an
image (typically less than 20x20 pixels in TinyPerson).

Due to their small size, the distinguishing features of tiny objects tend to have high
spatial frequency. However, such high spatial frequencies will tend to be filtered out by
the down-sampling performed within the Convolutional Neural Networks (CNNs) that are
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typically used as the feature-extracting backbones of object detectors. Furthermore, the
methods used for downsampling in these CNNs ignore the issue of aliasing.

Aliasing refers to the phenomenon where high-frequency information in an image is
incorrectly represented or distorted during down-sampling (Gonzalez and Woods, 2021).
According to Nyquist’s sampling theorem, the sampling rate should be at least twice the
highest frequency present in the signal (Nyquist, 1928). If this is not the case, unless
effective anti-aliasing techniques are employed, a down-sampled signal can exhibit significant
distortions and may appear completely different from the original input signal. The aliasing
problem exists for most detectors because there are many down-sampling processes involved
in CNNs. Down-sampling is a commonly used operation to reduce the number of parameters
and discard irrelevant details. Max-pooling, average-pooling, and strided convolution are
the most widely applied down-sampling methods in standard CNNs (He et al., 2016; Howard
et al., 2017; Springenberg et al., 2015). These down-sampling operations usually ignore
Nyquist’s sampling theorem, which results in aliasing. The broken object structures and
accumulated random noise do harm to the CNN’s performance (Grabinski et al., 2022; Li
et al., 2020).

Previous work has introduced anti-aliased down-sampling operations into CNNs (Zhang,
2019; Zou et al., 2020; Williams and Li, 2018) and has shown the effectiveness of anti-aliasing
in tasks such as object classification. However, despite the fact that aliasing is likely to be
a particular issue when objects are small, these anti-aliasing techniques have not previously
been considered in the field of tiny object detection. This inspires us to design anti-aliased
backbones for tiny object detection. Our proposed anti-aliased backbone is heavily based on
WaveCNet (Li et al., 2020). WaveCNet employs WaveletPool to replace the down-sampling
processes in a standard ResNet (He et al., 2016), and has been shown to achieve excellent
performance in image classification and standard object detection tasks. Here we show that
this method can also be used to great effect in tiny object detection. Our contributions are
as follows:

o We apply WaveletPool to reduce distortions in the representations of tiny objects and
preserve more discriminate information about such objects.

e We modify WaveCNet so that the order in which Wavelet Pooling is performed is
consistent among all connections in the backbone to improve the performance of tiny
object detection.

e We combine anti-aliasing with a bottom-heavy architecture (Ning et al., 2022) to
improve tiny object detection performance further.

e We achieve state-of-the-art performance on three tiny object detection benchmarks.

2. Related Work
2.1. Tiny Object Detection

Previous approaches to improving the performance of tiny object detectors can be roughly
categorized into seven types (Tong and Wu, 2022). In the subsequent paragraphs, repre-
sentative examples from each category will be reviewed.
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Super-resolution techniques play a crucial role in enhancing the fine details and charac-
teristics of tiny targets, enabling standard object detection techniques designed for larger
objects to be applied effectively to images that contain tiny targets. For instance, a gen-
erative neural network approach can be employed to enhance the resolution of the entire
image (Bai et al., 2018). Alternatively, the super-resolution technique can be selectively
applied to small regions of interest within the image (Yang et al., 2019b).

Contextual information, obtained from regions of the image surrounding an object, can
greatly assist in the detection of that object. Many techniques incorporate contextual cues
into their networks. Hu and Ramanan (2017) defined templates that utilized very large
receptive fields to capture extensive contextual information to aid in the detection of small
faces. Another example is the scale selection pyramid network (SSPNet; Hong et al., 2022).
SSPNet encompasses a context attention module (CAM) to generate hierarchical attention
heatmaps, allowing the network to prioritize areas that are more likely to contain small
objects of interest.

Data augmentation can be used to enhance performance by expanding the training
dataset through image transformations. PyramidBox (Tang et al., 2018) exploited the
data-anchor-sampling (DAS) technique that reshaped a randomly selected object within the
image to match a smaller anchor size. Yu et al. (2020) proposed an efficient augmentation
technique named ”scale match” to align the object size distribution differences between
general datasets and tiny object detection datasets. The scale match technique involves
sampling a size-bin from the histogram of object sizes in the external dataset. To ensure
that the range of sampled size-bins does not deviate significantly, the authors also introduced
a monotone scale match (MSM) strategy for the sampling in a monotonically increasing or
decreasing order. Jiang et al. (2021) introduced an enhanced version of the scale match
technique called SM+, which extended it from the image level to the instance level.

Multi-scale representation learning is a crucial and effective strategy employed in the
detection of small or tiny objects. This approach is commonly applied in general object
detection to handle objects of varying sizes, such as through the feature pyramid network
(FPN) proposed by Lin et al. (2017a). Gong et al. (2021) argued that while FPN brought
positive impacts, it also introduced negative effects caused by the top-down connections to
tiny object detection. To address this, they introduced a statistic-based fusion factor that
dynamically adjusted the weight of different layers during feature fusion. Tang et al. (2018)
introduced a low-level feature pyramid network (LFPN) that initiated from a middle layer
instead of starting the top-down structure from a high-level layer because of the observation
that not all high-level semantic features are equally beneficial for smaller targets. Liu
et al. (2021b) proposed a feature rescaling and fusion (SFRF) network that incorporated a
nonparametric adaptive dense perceiving algorithm (NADPA), which had the capability to
automatically select and generate a resized feature map that focused on the high-density
distribution of tiny objects.

The anchor mechanism predetermines locations which can efficiently scan the image
and match potential object regions where objects are anticipated to be detected. Zhang
et al. (2017) maintained consistent anchor density across different scales and proposed a
scale compensation anchor matching strategy to ensure that all scales had an adequate
number of matched anchors. Deng et al. (2020) ensured proper matching for objects of all
sizes by incorporating anchors of varying sizes across multiple layers. Zhang et al. (2018)
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developed a specialized single-level face detection framework that utilized different dilation
rates for anchors with different sizes. Xu et al. (2022) introduced a novel label assignment
method to address the challenges related to insufficient positive samples and the disparity
between uniformly distributed prior anchors and the Gaussian-distributed receptive field.
To handle the severe misalignment between anchor boxes and axis-aligned convolutional
features, S2ANet (Han et al., 2021) included a feature alignment module. In addition
to anchor-based methods, some point-based anchor-free methods are also designed for tiny
object detection. For example, Oriented RepPoints (Wentong et al., 2022) represent objects
in a set of sample points that effectively bound the spatial extent of the objects and identify
semantically significant local areas.

Training detectors for large objects is relatively straightforward, a significant challenge
lies in effectively training detectors for small objects. Luo et al. (2019) enhanced the ro-
bustness and overall performance by using multi-scale training images. Similarly, Hu and
Ramanan (2017) proposed an efficient approach where separate face detectors are trained
with features extracted from multiple layers of a single feature hierarchy.

Optimizing the loss function is a valuable strategy that helps enhance the overall perfor-
mance of detecting tiny objects. Liu et al. (2021a) introduced a novel feedback-driven loss
function leveraging the information from the loss distribution as a feedback signal, enabling
the model to be trained in a more balanced manner. SSPNet (Hong et al., 2022) included
an attention-based loss function to supervise the different layers for extracting information
from different ranges of objects.

Our proposed approach considers a new aspect of tiny object detection: anti-aliasing.
It is, therefore, independent of the previous work mentioned. Hence, there is a potential
that all these different existing techniques could be enhanced by integrating them with our
proposed method.

2.2. Anti-Aliasing Filters

The low-pass filter is a textbook-style solution to aliasing. Following this idea, several
CNN anti-aliasing methods have been proposed (Zhang, 2019; Zou et al., 2020; Li et al.,
2020). Zhang (2019) proposed BlurPool which incorporated a Gaussian blur layer before
each down-sampling module. Vasconcelos et al. (2021) indicated the order of low-pass fil-
ters and convolutions had an impact on the effectiveness of anti-aliasing and updated the
residual networks architecture accordingly (Vasconcelos et al., 2020). Zou et al. (2020)
introduced an adaptive content-aware low-pass filtering layer (AdaBlurPool) to generate
distinct filter weights for each spatial location and channel group. Although these methods
have achieved impressive results on other tasks such as image classification, domain gener-
alization, instance segmentation, and semantic segmentation, they do not seem promising
for tiny object detection, and the experimental results in Tab. 1 confirm this. Gaussian
blur (Zhang, 2019; Vasconcelos et al., 2021) is likely to result in a loss of information about
tiny features and make tiny objects less recognizable. Whereas AdaBlurPool (Zou et al.,
2020) is not theoretically justified, and the adaptive low-pass filter is generated by learnable
group convolutional layers that are not guaranteed to learn an appropriate low-pass filter
(even after many iterations and even if initialized to Gaussian filters).



THE IMPORTANCE OF ANTI-ALIASING IN TINY OBJECT DETECTION

In contrast to the above methods, Li et al. (2020) ensures that low-frequency features are
not corrupted by high-frequency artifacts by replacing standard down-sampling layers with
a discrete wavelet transform (DWT) and an inverse discrete wavelet transform (IDWT).
They implemented these transforms using various orthogonal and biorthogonal discrete
wavelets including Haar, Daubechies, and Cohen. Such WaveletPool operations were used
to replace standard down-sampling operations in ResNets. The resulting WaveCNet (Li
et al., 2020) demonstrated the robustness of WaveletPool layers for general object detection
in adversarially-attacked scenes. Here we apply WaveCNet, with slight modification, to tiny
object detection.

3. Methods

The impact of aliasing is worse in tiny object detection compared to general object detection
because tiny objects have more high-frequency features than general objects. The values
of pixels of a tiny object could change rapidly in a small range. Tiny objects are therefore
more sensitive to being affected by aliasing. However, current backbones used in tiny object
detection use CNNs that employ down-sampling operations that ignore Nyquist’s sampling
theorem, resulting in severe aliasing. To investigate the harm this does to the performance
of tiny object detectors we applied WaveletPool (as described in Sec. 3.1) in a widely used
standard backbone ResNet50 (as detailed in Sec. 3.2) and a bottom-heavy architecture
previously shown to be effective for tiny object detection (as described in Sec. 3.3).

3.1. Wavelet Pooling

Wavelet Pooling (Li et al., 2020) depends on the wavelet transform theorem (Mallat, 1989),
and is implemented using the DWT and the IDWT.

1-dimensional (1D) DWT/IDWT. In 1D, DWT decomposes a given vector x =

{Zn}, ez into its low-frequency component v = {:Elkow and high-frequency compo-

}kEZ
. hiech . )
nent xhish = {xklg } , and IDWT reconstructs the vector = using x'°? and x"9", as
keZ

follows:
o = Lo, et =Yz (1)
* = ETmlow + rHTwhigh (2)
where x* denotes the reconstructed vector, £ = {l,,_o..., ln,Qk}T and H = {hp—2, ..., hn,gk}T.
lj = {li}i:j—Qk,...,j+n—2k and hj = {hi}i:j—Qk,...,j-s—n—% are the low-pass and high-pass filters

of an orthogonal wavelet, n denotes length of the input vector, k& denotes the length of the
frequency component.

2-dimensional (2D) DWT/IDWT. The 2D DWT is achieved by performing 1D DWT
on both rows and columns, ie.,

Xn=£LXLT, Xn=HXLY, Xp=rLXH!, Xum=HXHT (3)
The corresponding 2D IDWT is:
X* =L XL+ H' XL + LT X H + H X H (4)
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Figure 1: Wavelet pooling. The discrete wavelet transformation is applied to the input X.
The inverse discrete wavelet transformation is applied only to the low-frequency
components in order to construct the down-sampled output X*. The notations
used are the same as those used in the ‘2-dimensional (2D) DWT/IDWT’ part of
Section 3.1.

Integrating such operations into modern deep learning frameworks is possible as the
gradients can be easily calculated (Li et al., 2020).

Down-sampling based on 2D DWT/IDWT Wavelet Pooling, as illustrated in Fig 1,
consists of applying one 2D DWT and one 2D IDWT in sequence. The application of
DWT decomposes the image (or feature maps of a CNN layer) into the high-frequency
detail subbands X,, X1, X1, and the low-frequency approximation subband X, in the
wavelet domain. The IDWT is applied only to low-frequency subband Xy without using
the detail subbands X, X1, Xnn, which cuts the resolution in half. The reconstructed
image or feature map will still capture the low-frequency information from the input, X,
while filtering out the high-frequency information without aliasing.

Pooling with different wavelets A number of different wavelets can be used. One
example of an orthogonal wavelet is the Daubechies wavelet. It uses I!°% and A" filters to
calculate DWT and IDWT. If the length of the filter is 2k, the Daubechies wavelet has an
approximation order parameter k, noted as Daubechies(k). Daubechies(1) is also known as
Haar wavelet.

The Cohen wavelet is an example of a biorthogonal wavelet, which means that it uses
1'% and hMeh to implement the DWT but uses their dual vectors [low and hhigh for the
IDWT. A typical Cohen wavelet is written as Cohen(k, k) where k and k indicate the
length of original and dual filters. Cohen(1,1) is identical to the Daubechies(1), which is
also the Haar wavelet. In our experiments, we used the Haar wavelet, denoted ’haar’, and
the Cohen(k, k) wavelet, denoted ’chk, k’.

3.2. WaveCNet with Consistent Order of Wavelet Pooling

WaveCNet (Li et al., 2020) replaces all down-samplings in a ResNet with WaveletPool,
as described in the preceding section. Max-pooling is directly replaced by WaveletPool.
Strided convolution is replaced by a convolution with the stride of 1 followed by a wavelet-

ling, ie.
pooling, ze., MaxPools—y — Wavelet Pool x,

()

Convg—y — Convs—1 o WaveletPoolx,

where ”Pool” and ”Conv” denote pooling and convolution respectively and o denotes ”fol-
lowed by”.
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Figure 2: Different implementations of a residual block. (a) original residual block, (b)
previous anti-aliasing, (c) our anti-aliasing block.

As discussed in (Vasconcelos et al., 2021), whether to apply a low-pass filter before
or after a convolutional layer matters for anti-aliasing. Their experiments show better
performance is achieved if the low-pass filter comes after the convolution. Despite this,
previous anti-aliasing networks (Vasconcelos et al., 2021; Zou et al., 2020; Li et al., 2020),
have not consistently done so, and the order in which convolution and low-pass filtering is
performed differs across different branches in ResNet blocks, as shown in Fig. 2. As Fig. 2(a)
shows, a standard down-sampling residual block could be simplified as a main path and a
skip connection. Fig. 2(b) shows the regular order used in most other anti-aliasing CNNs.
The low-pass filter follows convolution in the main path but, these operations occur in the
reverse order in the skip connection. Experimental results (shown in Tab. 1) confirm that
using a consistent order in both pathways is beneficial for tiny object detection, and hence,
we use the configuration shown in Fig. 2(c).

3.3. Bottom-Heavy Backbone

Our previous work showed that using a bottom-heavy version of ResNet50 produced better
performance on tiny object detection (Ning et al., 2022). This bottom-heavy backbone,
BHResNet50, basically shifts calculations from the top layers to the early layers without
introducing additional computational costs. This is done by delaying the down-sampling
layers, resulting in a decrease in the number of convolutional layers applied to low-resolution
features in deeper layers, and an increase in the number of convolutional layers used in ear-
lier, higher-resolution, layers. Here, we implement a bottom-heavy anti-aliased architecture
by replacing all down-sampling processes with WaveletPool in a BHResNet50.

4. Experiments

4.1. Pre-Training Datasets

The backbone of an object detector is typically pre-trained on an image classification task
as this leads to more rapid and stable training on the detection task (Girshick et al., 2014;
Kornblith et al., 2019). Here, two pre-training datasets were employed.
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ImageNet. ImageNet, also known as the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) dataset (Deng et al., 2009), is a widely used benchmark dataset for image
classification tasks in computer vision. It consists of over 1.2 million images from a thou-
sand different categories. The dataset includes a diverse set of categories such as animals,
vehicles, household items, plants, and various everyday objects. It is widely recognized as
a standard dataset for pre-training the backbone of object detection models. The results
shown in Tables 3, 4 and 5 were produced using backbones pre-trained for 100 epochs on
ImageNet. The learning rate started from 0.1 and reduced by 1/10 at 30, 60 and 90 epochs.

CIFAR100. CIFAR100 (Krizhevsky and Hinton, 2009) is a popular image dataset used
for classification tasks in computer vision. It contains 60,000 32x32 colour images. These
images are divided into 100 fine-grained classes, with each class having 600 images. The 100
classes in CIFAR100 cover a wide range of object categories, including animals, vehicles,
household items, and various natural and man-made objects. CIFAR100 is a good choice
for prototyping network architectures because of the reasonable training time. The results
shown in Tab. 1, 2 were obtained using backbones pre-trained for 200 epochs on CIFAR100.
The learning rate started from 0.1 and dropped to 1/10 at 100 and 150 epochs.

4.2. Tiny Object Detection Datasets
Performance on tiny object detection tasks was evaluated using three standard datasets.

TinyPerson. This dataset (Yu et al., 2020) is collected from real-world videos, consisting
of 1610 large-scale seaside images with more than 70000 bounding boxes. The 794 images
are divided into subsets for training and validation (with 1/10 or the images in the latter).
On average, the target objects within the images have an absolute size of approximately
18 pixels. The size range (pixels) of the objects is divided into three sub-intervals for
Tinyperson: tiny [2, 20], small [20, 32], and all [2, inf]. The tiny set is partitioned into
three (overlapping) sub-intervals: tinyl [2, 8], tiny2 [8, 12], and tiny3 [12, 20]. Results are
reported using mean Average Precision (mAP) metrics for all intervals.

WiderFace. This dataset (Yang et al., 2016) is a widely-used benchmark for face detec-
tion. It consists of 32,203 images that contain various human faces with a wide range of
scales, poses, and occlusions. The average size of the objects in the WiderFace dataset is
approximately 32 pixels. Based on the level of difficulty in detecting the objects, the dataset
is divided into three evaluation sets: easy, medium, and hard. Results are reported as mAP
for these three subsets.

DOTA. This dataset (Xia et al., 2018) is for object detection in aerial images. It contains
2,806 aerial images obtained from various sensors and platforms, with sizes ranging from
approximately 800x800 pixels to 4,000x4,000 pixels. The fully annotated DOTA bench-
mark contains 188,282 instances in 15 common object categories. Half of the original images
are randomly assigned to the training set, while 1/6 is allocated to the validation set, and
the remaining 1/3 is used as the testing set. We report categorical AP and mAP for the
oriented bounding boxes task.
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Anti-Aliasing Method Order mAP,, mAFPy; mAPn,1 MAPiny2 MmAPuny3 MAPsyan

(b) 41.17  43.39 24.06 44.98 54.02 58.55
¢ 44.65  46.74 27.71 49.45 56.14 60.30

()

(b) 4234 4513 2521  47.04  54.09  58.30
(c) 4628 4712 3094  52.23 5607  59.63
(b)
()

BlurPool

AdaBlurPool

b 46.08  47.62 29.24 51.22 57.05 63.19

WaveletPool ch3.3 ¢) 46.34 47.70 30.98 5121  57.24  60.14

Table 1: Performance of Faster R-CNN on TinyPerson when using a ResNet50 backbone
employing different methods of anti-aliasing and different orders of application.
(b), (c¢) indicate the order illustrated in Fig 2. Backbones are pre-trained on
CIFAR100.

4.3. Selection of Anti-Aliasing Method and Order of Application

As described in Sec. 2.2, a number of different anti-aliasing methods have been proposed.
Tab. 1 compares the performance of these different methods on tiny object detection. The
results demonstrate that Wavelet Pooling has superior performance, compared to the alter-
natives, in this application.

As described in Sec. 3.2, we reverse the order in which convolution and anti-aliased
down-sampling are performed in the skip connections in the proposed backbones. The
experimental results, shown in Tab. 1, show that this change produces a small increase in
performance on tiny object detection for Wavelet Pooling and other, alternative, anti-aliased
down-sampling methods. We therefore use the order shown in Fig 2(c) in all subsequent
experiments.

4.4. Selection of Wavelet

To select an appropriate wavelet to use in the anti-aliasing module, the performance pro-
duced with different wavelets was tested on TinyPerson. These results were compared to
those produced using a standard CNN backbone. These backbones were pre-trained on
CIFAR100 to reduce pre-training time. As shown in Tab. 2, Cohen(3,3) wavelet produced
the best results for most metrics, both for the ResNet50 and BHResNet50 backbones. Co-
hen(3,3) was, therefore, selected as the wavelet used in subsequent experiments.

4.5. Results on TinyPerson

By replacing the standard ResNet50 backbone in the current state-of-the-art method SSP-
Net with our proposed anti-aliasing backbones, we get better mAP among all intervals
of TinyPerson. As shown in Tab. 3, using WaveletPool increases the mAP;,, by 1.31%
compared to plain SSPNet while integrating WaveletPool with the bottom-heavy back-
bone increases performance by an additional 0.1%. Hence, overall the proposed method
improves on the previous state-of-the-art result by 1.41% in terms of mAP;,,. All net-
works were trained for 12 epochs with stochastic gradient descent (SGD) as the optimizer.
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Back- Anti-aliasing MAPyny MAP, MmAPyny1t MAPynys MAPyny3s MAPsyq Params FLOPs
bone

- None 44.07  45.79 28.38 49.39 55.28 60.66 41.07  75.58
- WaveletPool haar  45.37  46.62 29.78 49.26 56.51 59.70 41.30  90.78
g WaveletPool ch3.3 46.34 47.70 30.98 51.21 57.24 60.14 41.30 90.78

WaveletPool ch5.5 43.63 4543  28.96 47.24 54.84 59.87 41.30  90.78

None 44.51  45.99 30.59 50.01 54.36 60.28 28.75  75.79
WaveletPool haar 45.33  46.95 30.15 49.48 56.72 61.54 28.75  91.90
WaveletPool ch3.3 46.04 47.70 29.28 51.21 57.33 61.01 28.75  91.90
WaveletPool ch5.5 44.61  46.18 29.34 48.97 55.18 60.15 28.75  91.90

BHResNet

Table 2: Performance of Faster R-CNN on TinyPerson when using different anti-aliasing
filters. Backbones are pre-trained on CIFAR100. ‘Params’ indicates the number of
parameters (in millions) required by the detector. ‘FLOPs’ indicates the number
of floating-point operations (in billions) performed on the standard TinyPerson
input size of 640x512 pixels. Wavelets compared in this table are described in the
‘Pooling with different wavelets’ part of Section 3.1.

Methods MAPyiny MAP, 1 MAPyny1t MAPyny2 MAPyny3 MAPsman
Faster R-CNN (Ren et al., 2015) 47.81  49.99 31.78 53.54 58.34 64.56
Adap FCOS (Tian et al., 2019) 48.45  51.03 29.75 52.71 60.36 65.28

S-a + Faster R-CNN (Gong et al., 2021)  48.39 * 31.68 52.20 60.01 65.15
RFLA + Faster R-CNN (Xu et al., 2022)  48.86 51.92  30.35 54.15 61.28 66.69
SM + Faster R-CNN (Yu et al., 2020) 49.09 51.57 3293 55.42 59.70 64.24
SM+ + Faster R-CNN (Jiang et al., 2021) 51.46 * 33.74 55.32 62.95 67.37
SFRF + Faster R-CNN (Liu et al., 2021b) 57.24 59.03  51.49 64.51 67.78 65.33
SSPNet w ResNet50 (Hong et al., 2022) 57.93 62.23  45.33 60.26 67.09 71.56
SSPNet w BHResNet50 (Ning et al., 2022) 58.97  62.02  47.22 61.61 67.45 72.37

SSPNet w ResNet50 + WaveletPool 59.24 63.16 47.76 60.23 68.04 73.42
SSPNet w BHResNet50 + WaveletPool 59.34 64.02 46.55 61.73 68.95 73.87

Table 3: Comparison of the performance of the proposed methods with previous results on
TinyPerson. All backbones were pre-trained on ImageNet. * indicates results that
are unavailable because of unreleased code.

The learning rate was initialized to 0.002/0.003 for ResNet50+WaveletPool and BHRes-
Netb0+WaveletPool respectively and decreased by a factor of 0.1 after 8 and 11 epochs.

4.6. Results on WiderFace

Table 4 shows that integrating WaveletPool into the ResNet50 backbone, and its bottom-
heavy variant, used by TinaFace (Zhu et al., 2020b), the current state-of-the-art method for
WiderFace, achieves new state-of-the-art results on all three sub-tasks. Both backbones are
trained using SGD optimizer with batch size 16. Training was performed for a total of 630
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Method MAPeasy MAPyedium MAPhard
HR (Hu and Ramanan, 2017) 92.5 91.0 80.6
S3FD (Zhang et al., 2017) 93.7 92.4 85.2
FaceGAN (Bai et al., 2018) 94.4 93.3 87.3
SFA (Luo et al., 2019) 94.9 93.6 86.6
LSFHI (Zhang et al., 2018) 95.7 94.9 89.7
Pyramid-Box (Tang et al., 2018) 96.1 95.0 88.9
RetinaFace (Deng et al., 2020) 96.5 95.6 90.4
TinaFace w ResNet50 (Zhu et al., 2020b)  96.3 95.7 93.1
TinaFace w ResNetb0 + WaveletPool 96.4 95.8 93.1
TinaFace w BHResNet50 + WaveletPool  96.6 96.0 93.4

Table 4: Performance of previous methods and our methods on WiderFace.

Method PL BD BR GTF SV LV SH TC BC ST SF RO HA SP HE mAP

SSD (Liu et al., 2015) 398 9.1 06 132 03 04 1.1 16.227.6 9.2 272 9.1 3.0 1.0 1.0 10.6
FDLoss (Liu et al., 2021a) 79.0 38.2 28.7 36.9 44.2 40.9 57.8 65.4 54.6 36.3 34.1 39.6 42.9 45.1 16.3 43.2
SZANet (Han et al., 2021) 89.278.047.7 68.1 77.4 73.1 79.1 90.9 79.5 85.0 56.7 58.6 59.9 65.6 51.2 70.1
RepPoints (Yang et al., 2019a) 87.8 77.7 49.5 66.5 78.5 73.1 86.6 90.7 83.8 84.3 53.1 65.6 63.7 68.7 45.9 71.7

RepPoints+WaveletPool 88.6 73.8 52.4 70.9 79.1 73.3 86.2 90.9 81.2 85.7 58.8 61.4 64.5 66.2 45.4 71.9
RepPoints w BH+WaveletPool 88.3 74.6 49.8 72.479.474.086.6 90.8 78.6 84.7 59.9 60.1 62.6 67.0 44.7 71.6

Table 5: Categorical and mean average precision of previous and our methods on DOTA.
BH indicates BHResNet50. The abbreviations indicate the following categories:
PL-Plane, BD-Baseball diamond, BR-Bridge, GTF-Ground field track, SV-Small
vehicle, LV-Large vehicle, SH-Ship, TC-Tennis court, BC-Basketball court, ST-
Storage tank, SBF-Soccer-ball field, RA-Roundabout, HA-Harbor, SP-Swimming
pool, and HC-Helicopter.

epochs and the learning rate varied between 3.75e-3 and 3.75e-5 every 30 epochs following
the cosine schedule (Loshchilov and Hutter, 2016).

4.7. Results on DOTA

For the DOTA detection task, we evaluated the proposed backbones incorporating Wavelet-
Pool by integrating them with the current state-of-the-art method: Oriented RepPoints
(Wentong et al., 2022). The proposed method achieved the best mAP, and better AP for
the majority of object categories. Both backbones were trained for 12 epochs with SGD as
the optimizer. The learning rate was initialized to 0.008 and decreased by a factor of 0.1
after 8 and 11 epochs. The results were produced using the DOTA evaluation server.

4.8. Knowledge-Distillation for Efficient Learning

Knowledge distillation is a method used in machine learning to transfer knowledge from
an accurate model, known as the teacher model, to a simpler model, called the student
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Methods SS KD mAPy,, mAP;; Top-1 Acc Training Time
ResNetb0 51.72 53.62 7747 3807 mins
+ WaveletPool \/ 49.52 51.12 65.31 284 mins

v V' 5142 5366 73.05 283 mins
BHResNet50 51.78 53.60 76.31 3807 mins
+ WaveletPool \/ 49.37 51.51 64.51 284 mins

v V' 5061  53.39 70.86 283 mins

Table 6: Performance of the proposed backbones when trained using different methods and
schedules on TinyPerson. All results are evaluated with Faster R-CNN. SS indi-
cates the short schedule. KD indicates the knowledge distillation training method.

model (Hinton et al., 2015). The goal is to distill the knowledge learned by the teacher model
into the student model, enabling the student model to achieve comparable performance
to the teacher model but with reduced computational requirements. Inspired by (Suzuki
et al., 2022), we use the original ResNet5