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Introduction

This document provides supplementary material complementing the main paper. For the
convenience of reading, the numbers for Sections, Figures and Equations are prefixed by
the letter S to avoid confusion with the main paper.

Sections S1 and S2 complement Section 2.5 of the main paper by providing the deriva-
tions for the proposed prior means for specific choices of the transformation h(z) and for
the Taylor series approximation of the generative process, respectively. The sections S3,
S4, and S5 provide additional information about the case studies (Sections 4 and 5 of the
main paper), including also comprehensive visualizations of the discrepancies for all of the
subjects of the CPC18 data set provided in Figure S1. Finally, Section S6 analyses the
discrepancy uncertainty for the special case of identity transformation in Case Study II,
providing an explanation for the large credible intervals.

S1. Selecting Prior Mean to Achieve E[f(x)] = M(x)

For convenience, we repeat the main defined by Equations (1) and (2),

f(x) = h(h−1(M(x)) + r(x)), (S1)

such that: E[f(x)] = M(x), (S2)

where r(x) ∼ GP (µ(x),K). As explained in Section 2.5, we can satisfy (S2) by selecting the
prior mean µ(x) suitably but the choice depends on the transformation h(z). We provide
the derivations for the three examples considered in this paper below, but similar results
could easily be derived also for other transformations.
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Identity: For the identity function h(z) = z it is sufficient to use µ(x) = 0 since

E[f(x)] = E[M(x) + r(x)]

= M(x) + E[r(x)]︸ ︷︷ ︸
=0

.

Exponential: For the multiplicative correction, we use h(z) = exp(z) and have

E[f(x)] = E[M(x) exp(r(x))]

= M(x)E[exp(r(x))]
̸= M(x)(, necessarily).

As r(x) ∼ N(µ(x), σ2) for each x, we know that exp(r(x)) ∼ Log-Normal(µ(x), σ2), which

has the expectation E[exp(r(x))] = exp
(
µ(x) + σ2

2

)
. To obey Condition (S2), we hence

need

E[exp(r(x))] = 1

⇐⇒ exp(µ(x) +
σ2

2
) = 1

⇐⇒ µ(x) = −σ2

2
.

Sigmoid: For the sigmoid function h(z) = s(z), the equation

E[f(x)] = E[s(s−1(M(x)) + r(x))] = M(x) (S3)

has no analytic solution. However, we can recognize that the sigmoid function can be
approximated by the inverse probit function, and arrive at an approximation following
Demidenko (2004), pp 336–337:

E[s(

Y∼N(µY ,σ2)︷ ︸︸ ︷
s−1(M(x)) + r(x))] =

∫
s(y)p(y|µY , σ

2)dy

≈
∫

Φ(λy)p(y|µY , σ
2)dy

=

∫
P (Z < λy)p(y|µY , σ

2)dy

=

∫
P (Z/λ < Y |Y = y)p(y|µY , σ

2)dy

= P (Z/λ < Y )

= P (

∼N(−µY ,σ2+λ−2)︷ ︸︸ ︷
Z/λ− Y < 0 )

= Φ

(
µY√

λ−2 + σ2

)
= Φ

(
s−1(M(x)) + µ(x)√

0.588−2 + σ2

)
,
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where σ2 is the prior variance of the Gaussian process and λ ≈ 0.588 can be achieved by
any optimization method. To respect Condition (S2), we solve for µ(x)

Φ

(
s−1(M(x)) + µ(x)√

0.588−2 + σ2

)
= M(x)

⇐⇒ µ(x) =Φ−1(M(x))
√
0.588−2 + σ2 − s−1(M(x)).

Finally, we remark that, instead of s(z), we could also use the inverse probit function
as transformation. We would then have an exact analytical expression for the mean.

S2. Adjusting the process to respect E[f(x)] = M(x)

Instead of the case-specific derivations for the required mean, we can alternatively satisfy
Condition (S2) by slightly changing the assumed generative model, as explained in Sec-
tion 2.5. This has the advantage of providing a general solution for sufficiently smooth
h(z), namely for all h(z) that are twice differentiable.

We approximate the process using second-order Taylor series as

E[f(x)] = E[h(

:=ω∼N(µω ,σ2)︷ ︸︸ ︷
h−1(M(x)) + r(x))]

≈ E[h(µω) + (ω − µω)
Th′(µω) +

1

2
(ω − µω)

2h′′(µω)]

= h(µω) +
1

2
h′′(µω)σ

2, (S4)

where µω = h−1(M(x))+µ(x). If we now redefine Equation (S1) using f̃(x) := h(h−1(M(x))+

r(x))− σ2

2 h′′(µω), it is easy to see that

E
[
f̃(x)

]
= E[h(h−1(M(x)) + r(x))− σ2

2
h′′(µω)]

= E[h(h−1(M(x)) + r(x))]− σ2

2
h′′(µω)

≈ h(µω) +
σ2

2
h′′(µω)−

σ2

2
h′′(µω)

= h(h−1(M(x)) + µ(x)),

for all x. If we now assume the prior mean E[r(x)] = µ(x) = 0, we obtain h(h−1(M(x)) =
M(x) and hence satisfy Condition (S2).

S3. Case Study I: Data simulation

Even though growth models could be trained on real observations of individuals, we decided
to use simulated data to avoid difficulties in interpretation caused by potential deviations
from the assumed likelihood. Consequently, we estimated the model from artificial data.
We simulated heights for hypothetical individuals from a normal distribution with mean
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Table S1: Statistics used to generate the data for Case Study I.
Age µ σ
0 50.0 2.0
5 112.0 4.0
10 141.0 7.0
12 152.0 7.0
15 172.0 8.0
20 180.0 6.00

and standard deviation matching the observed statistics of Finnish children provided by
the Finnish Health Institution1. We selected 6 different age groups and simulated 100
individuals for each, corresponding to a simulated data of 600 individuals in total. The
ages and the corresponding statistics are provided in Table S1. From the perspective of this
experiment, the data is equally valid as a real sample would be.

S4. Case Study II: CPC18 dataset

The human data for Case Study II is a subset of the CPC18 dataset (https://zenodo.org/
record/845873#.WeDg9GhSw2x). The CPC18 dataset consists of 510, 750 entries, where
each entry is a choice made by one of the 686 subjects between two risky and/or ambiguous
options. The task follows the same paradigm as the CPC15 dataset and is explained in
detail by Erev et al. (2017) (Section Space of Choice Problems).

For the purpose of this current work, we selected entries such that the following criteria
are met:

• The choice options are without ambiguity (i.e., probabilities and rewards are known
to the subject). In the original CPC18 data file, it corresponds to selecting the entries
where the flag Amb is set to 0.

• The lotteries of both choice options are simple lotteries such that each lottery has the
form “gives x with probability p and x′ with probability 1− p” (i.e., we excluded the
compounded lotteries). In the CPC18 original data file, it corresponds to selecting
entries where the flags LotNumA and LotNumB are set to 1.

• Lotteries’ rewards are positive (0 included). In the CPC18 original data file, it corre-
sponds to selecting entries where Ha, Hb, La, Lb ≥ 0.

• Once every criterion above is satisfied, we only keep the entries such that the subject
to whom this entry corresponds also has the maximum possible number of entries
in total, that is 325. In other words, we discard subjects for which we have fewer
observations.

In total, 40, 625 entries met these criteria and were used in Case Study II. This corre-
sponds to studying 125 subjects for which we have always observed the decisions for n = 325
choices for simple lotteries. We train a separate model for each subject.

1. Data available at http://kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-0-2v1.pdf and http:

//kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-1-20v1.pdf

https://zenodo.org/record/845873#.WeDg9GhSw2x
https://zenodo.org/record/845873#.WeDg9GhSw2x
http://kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-0-2v1.pdf
http://kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-1-20v1.pdf
http://kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-1-20v1.pdf
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Figure S1: Individual results for the Case Study II.

Figure 4 in the main paper presented the results for four example subjects. For compre-
hensiveness, Figure S1 presents the results for all 125 subjects. This kind of illustration of
the discrepancies could be used to quickly screen subjects that may not follow the assumed
model.
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S5. Case Study II: Artificial data

The artificial data used for studying the technical validity of the approach was simulated
to mimic the real CPC18 data. That is, the task was structurally identical to the subset
of the CPC18 dataset used here: each choice was among a set of two lotteries; each lottery
gives x with probability p and x′ with probability 1 − p. For each trial, the p-values and
x-values for both lotteries were drawn from a uniform distribution between 0 and 1. The
trials where both the amount and the probability of the greatest amount of one lottery was
greater than the amount and the probability of the greatest amount of the other lottery
were discarded, and the procedure was repeated (i.e., we excluded the trials with first-order
stochastic dominance).

We generated n = 325 choices using parameters θ = 0.5 and β = 100, corresponding to
an example subject that is risk-averse.

S6. Large uncertainty in the risk model’s discrepancy when using
h : linear

As shown in Figure 3 and discussed in Section 5, the uncertainty of the discrepancy for
Case II is reasonable when using the sigmoid transformation but not credible in the other
cases. In particular, the uncertainty remains large for the identity transformation, even
when expecting it to be small as the true generating process is given as prior mean. Here,
we explain how this is a property of the underlying model, not our approach. The reason
is that the likelihood model is non-identifiable with respect to additive constants. The
log-likelihood is given by

logP (Y = y|L1, L2) = 1{y = 1} log p+ 1{y = 0} log(1− p),

where p := s(EU(L1)−EU(L2)) =
1

1+exp(−EU(L1)+EU(L2))
. The following shows how addi-

tion of a constant c to the utility (which is what we model the discrepancy for) does not
change the likelihood

s

∑
x∈L1

px(U(x, θ) + c)−
∑
x′∈L2

px′(U(x′, θ) + c)



= s


∑
x∈L1

pxU(x, θ) + c
∑
x∈L1

px︸ ︷︷ ︸
=1

−
∑
x′∈L2

px′U(x′, θ)− c
∑
x′∈L2

px′︸ ︷︷ ︸
=1


= s

∑
x∈L1

pxU(x, θ)−
∑
x′∈L2

px′U(x′, θ)


= s(EU(L1)− EU(L2)),

where px is the probability of an outcome in a lottery (Lottery L is a discrete random
variable, where P (L = x) = px). A possible remedy is to fix a point e.g. f(0, θ) = 0. This
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can be done by not placing a uniform GP as a prior, but a conditioned one: f(x)|{f(0) =
0} ∼ GP (M(x), Kxx −KT

x0K
−1
00 Kx0), where Kxx is the covariance matrix for x and Kx0 is

the covariance between x and [0] and K00 = K([0], [0]).
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