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Abstract

Mathematical models of observational phenomena are at the core of experimental sciences.
By learning the parameters of such models from typically noisy observations, we can in-
terpret and predict the phenomena under investigation. This process, however, assumes
that the model itself is correct and that we are only uncertain of its parameters. In prac-
tice, this is rarely true, but rather the model is a simplification of the actual generative
process. One proposed remedy is a post hoc investigation of how the model differs from
reality, by explicitly modeling the discrepancy between the two. In this paper, we use
transformed Gaussian processes as flexible models for this. Our formulation relaxes the
assumption on the correctness of the model by assuming it is only correct in expectation,
and it directly supports both additive and multiplicative corrections, treated separately
in the literature, using suitable transformations. We demonstrate the approach in two
example cases: modeling human growth (relation age-height) and modeling the risk at-
titude (relation reward-utility). The former provides a simple example, while the second
case highlights the importance of the transformations in obtaining meaningful information
about the discrepancy.

Keywords: Model discrepancy; Gaussian process; Applied machine learning; cognitive
modeling.

1. Introduction

An important part of scientific activity consists of building mathematical models of observa-
tional phenomena. For example, physicists build models of motion, ecologists of population
evolution, and cognitive scientists of decision-making. On a more abstract level, we consider
a general class of mathematical models for describing an input-output relationship such that
y ≈ M(x), where x corresponds to a vector of covariates and y is a vector of outcomes. For
instance, a simple growth model describes how the (scalar) height y depends on age x.

The model M(x, θ) usually takes the form of a parameterized function designed, e.g.,
from first principles or as the result of decades of research in the field, but where the param-
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Figure 1: General workflow for a model’s discrepancy modeling. We assume that we have
some data and a model for that data (left panel). We propose to use a transformed
Gaussian process (middle panel) to estimate the expected discrepancy between
the model and the actual generative process given the data (right panel), by
constraining the discrepancy model so that the underlying model is assumed to
be correct in expectation.

eters θ are unknown. The parameters are determined by fitting the model to a particular
data set D = (X,Y ), collected for the study at hand. In the context of a growth model, the
data could be measurements made for a specific sample of humans. This simplified process
implicitly assumes that the model accurately describes the underlying process and that the
uncertainty lies only in the values of the parameters and in the measurement process.

In most cases, however, we are also unsure about the model itself, for instance, because it
is an oversimplification of a complex process (e.g., models of human cognition). The classical
solution is to consider multiple alternative models, using model selection techniques to pick
the most suitable one amongst a set of alternatives, or model averaging techniques to weight
multiple models according to their relative quality (Wasserman, 2000; Claeskens and Hjort,
2008). The former has the fundamental problem of committing to a single model and its
faults when none of the alternatives is correct. The latter solution often provides good
predictions but is problematic from the perspective of scientific analysis as we no longer
have a single model to interpret.

An alternative strategy, first proposed by Kennedy and O’Hagan (2001) and extended
in this work, is to use the assumed model but separately investigate its fit by modeling the
discrepancy between the model and the data generative process using a flexible data-driven
model. This allows the researcher to investigate how the model deviates from the actual
generative process. This information can be used, e.g., for deciding which parameters can
be safely interpreted, how to improve the model, or for instance, in the context of cognitive
modeling, to identify which subjects match the assumed model. This approach has been
used in a broad range of applications from experimental physics (Arendt et al., 2012; Bhat
et al., 2017) to health economics (Strong et al., 2012).

Since the goal is to model any type of discrepancy between the model and the underly-
ing generative process, the model for the discrepancy needs to be very flexible. The most
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common choice in the literature has been to use Gaussian processes (GP) (Brynjarsdóttir
and O’Hagan, 2014; Gardner et al., 2021) that provide a highly flexible family while also
characterizing the uncertainty over the estimates. There are now two sources of uncertainty
that we aim to deal with: the parameters of the theory-based model and the parameters
of the discrepancy model. This can cause identifiability issues by the discrepancy model
correcting for bad parameter values of M(x, θ) (Brynjarsdóttir and O’Hagan, 2014; Gardner
et al., 2021). Therefore, one core challenge is to keep certain flexibility to model poten-
tially large deviations while constraining the optimization problem enough to guarantee
interpretable results.

Building on the literature of GP-based discrepancy models, we propose to model the
discrepancy as suitably transformed Gaussian process. We argue they provide the right bal-
ance between flexibility and constraints needed for interpretation. The main contributions
relative to the existing literature on discrepancy models are:

• We explicitly formulate the assumption of models being correct in expectation as a
more relaxed alternative consisting of assuming correct models. This offers a more
solid basis compared to arbitrary discrepancy models.

• We show how this assumption can be ensured for different transformations, therefore
providing the means of having unbiased corrections, a property that is only implicitly
assumed by additive discrepancy models.

• We show that this approach based on transformations allows characterizing both ad-
ditive and multiplicative discrepancies, while also supporting more constrained types
of discrepancies, in contrast to previous methods like Gardner et al. (2021) that only
support additive discrepancy.

• Finally, we consider exploring the discrepancy as part of an iterative inference work-
flow (Gelman et al., 2020).

We demonstrate our framework in two empirical case studies. The first one deals with
human growth modeling and is designed to be maximally simple to support the under-
standing of the approach. The second one deals with (human) decision-making modeling,
a prototypical case where the models describing the utilities and the distorted perception
of probabilities are simplifications that do not necessarily match reality (see, e.g., Stott
(2006)). The second example highlights the importance of the choice of transformations for
meaningful information about the model discrepancy.

2. Modeling a Model’s Discrepancy

2.1. Problem Formulation

We assume that the users are working with some model y ≈ M(x, θ), often theory-based
and interpretable, and that they have already estimated the parameters θ̂ of the model
conditional on some available data D. Our task is then to study how well the model
matches the actual generative process f(x) that is unknown. We accomplish this task by
modeling it as a combination of M(x, θ̂) — written thereafter as M(x) for compactness —
and a correction term r(x). The purpose of the correction term is to model the discrepancy
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between the base model and the true data generative process and explain how the base model
M(x) could be changed to improve the match. The approach is illustrated conceptually in
Figure 1, which gives an overview of the workflow.

To describe arbitrary discrepancies, we need a flexible family of functions for the cor-
rection term r(x). Furthermore, to provide reliable information about the discrepancy,
we want to estimate the posterior distribution p(r(·)|M(·), X, Y ) of the correction as the
justified basis for verifying possible discrepancies. Gaussian processes (GP) (Rasmussen
and Williams, 2006) are a natural tool for achieving this, allowing computationally efficient
modeling of the posterior over a family of flexible smooth functions, and indeed GPs have
been broadly used for modeling discrepancy (Kennedy and O’Hagan, 2001; Brynjarsdóttir
and O’Hagan, 2014; Gardner et al., 2020, 2021). Our work deviates from the previous
approaches by considering a more general but still interpretable family of discrepancies,
obtained by combining the model M(x) and the correction term r(x) in a novel manner.

Understanding the computational details is not critical for grasping the nature of the
approach: it is sufficient to think of r(x) as an arbitrary smooth function. Hence we will
postpone the formal treatment of GPs to Section 2.4, and start by introducing the model
from a higher-level perspective.

2.2. Model

We assume the data-generative process follows

f(x) = h(h−1(M(x)) + r(x)), (1)

such that: Er(x)[f(x)] = M(x). (2)

In practice, this means that the inference starts from the base model (which we argue is
the best guess for the prior given data) and proceeds to infer the posterior of r(x).

Note that at the core of this expression is an additive correction – we assume that the
generative process for any x can be obtained by modulating the base model by adding a
suitable correction term r(x). However, this correction is done in a transformed space in
order to better match the scope of possible deviations. This transformation is controlled
by the link function h(·) chosen so that the additive correction is reasonable in the space of
h−1(M(x)); the inverse transformation maps the outputs to a real space where additive noise
assumption is often reasonable. For example, to model discrepancy for models that output
probabilities we need the sigmoid transformation so that the corrections are meaningful also
for the extreme values.

The other key element is the constraint (2), which states that we assume the model to
be correct in expectation. This is a milder assumption than directly assuming the model to
be the correct description of the phenomenon but still offers a more solid theoretical basis
for modeling the discrepancy. The assumption is justified in most applications since models
that violate it significantly would likely be rejected in the early stage. As will be clarified in
Section 2.5, it is in general not sufficient to assume the correction term r(x) itself to have a
mean of zero, and hence the constraint needs to be respected either by adjusting the prior
mean or the process (1) itself.

Finally, the observed data D relates to the model defined by Eq. (1) and (2) via a
suitable likelihood. The discrepancy model is often estimated using the same data D that
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was used to fit the base model M(x), but if additional observations are available, we can
also fit the discrepancy using another data set D′. We assume that the observations are
noisy evaluations of the data generative process f(x), so that E[y|f(x)] = f(x). This implies
E [E[y|f(x)]] = M(x), which holds in our case studies. In general, it can be satisfied by a
suitable reparameterization of the likelihood, even when E[y|f(x)] ̸= f(x) for some param-
eterization (e.g. switching from rate to scale parameterization in the case of exponential
distribution).

2.3. Transformations

The intuition on how h controls the nature of the deviation can be obtained by inspecting
specific choices. For the identity function h(z) = z (where z is a generic dummy variable),
Eq. (1) becomes simply f(x) = M(x)+r(x) and models purely additive discrepancies, which
has been extensively studied in the field since the work of Kennedy and O’Hagan (2001).
Multiplicative discrepancies, studied previously by He and Xiu (2016), can be modelled
using h(z) = exp(z) as the model then becomes f(x) = M(x) exp(r(x)) with exp(r(x)) > 0.

Our formulation covers both of these special cases but also allows for inspecting a broader
family of discrepancies not addressed by previous work. For instance, for models and true
processes restricted to be probabilities (f(x) ∈ [0, 1]) or otherwise constrained to a finite
interval, the possible discrepancies will also have a finite range and they will be skewed away
from the limits. In contrast to previous methods, our approach supports such constraints
directly. For instance, for the specific case of f(x) ∈ [0, 1], a natural choice would be the
sigmoid transformation h(z) = (1 + exp (−z))−1. Then h−1(z) maps the outputs to a real
space for modeling the discrepancy and h(z) ensures that all corrected outputs still satisfy
the constraint.

Upon first inspection, the need to choose the transformation h(·) may seem like a lim-
itation that makes the process more complicated. However, since the primary goal of the
approach is the exploration and inspection of possible discrepancies, it should be seen as an
advantage. The set of possible transformations is typically relatively small, corresponding
to the standard link functions used e.g. for generalized linear models, and the researcher can
inspect the solutions for all choices for a better understanding of the kinds of discrepancies
their model may suffer. Suitable functions for different types of constraints can also be au-
tomatically determined if desired, by selecting transformations that map the image of M(x)
to the whole real line; see, e.g., the transformations the Stan probabilistic programming
language (Carpenter et al., 2017) uses.

2.4. Implementation using Gaussian Processes

Having completed the high-level description and motivation, we now turn our attention
to implementing the discrepancy model. In principle, we could use any flexible family
of functions as r(x), such as deep neural networks, but the choice of Gaussian processes
offers advantages in terms of easy uncertainty quantification, direct control of the functions’
smoothness, and reliable learning from small data. Next, we provide sufficient background
on Gaussian processes and the computational details needed in our case.

Formally, a Gaussian process is a stochastic process over a collection of some (often
continuous) index set X such that, for every finite collection X = {x1, . . . , xn} ∈ X , the
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function values associated to the set X follow a multivariate Gaussian distribution. Hence,
r(·) can be expressed as:

(3)r(X)|τ ∼ N (µ(X),K(X,X))

where µ(·) and K(·) are respectively the mean and covariance functions, and where τ
are the hyperparameters of (here only) the kernel. The covariance function determines
the smoothness of the functions. Our formulation is agnostic to the choice of the kernel,
allowing the user either to specify a kernel based on domain expertise or to default to
standard choices (e.g., squared exponential kernel). This choice is entirely analogous to all
applications of GP in machine learning, and we refer the reader to the excellent source by
Rasmussen and Williams (2006) for further information on how to choose the right kernel.

The choice of the mean function is often treated lightly in GP literature, typically setting
µ(·) = 0. However, it plays an essential role in our approach since the mean µ(·) influences
the condition (2), corresponding to the assumption of the base models being on average
correct. We provide more details about the choice of the mean function in Section 2.5.

Given a model M(·), the prior r(·) ∼ GP (µ(·),K(·)), and the observed data D = (X,Y ),
we form the posterior distribution

p(r(·)|M(·), X, Y ) ∝ p(Y |M(·), X, r(·))p(r(·)|M(·), X),

where p(Y |M(·), X, r(·)) is the application-specific likelihood. For the identity transfor-
mation h(z) = z and Gaussian likelihood p(Y |M(·), X, r(·)), this can be done analytically
in closed form since the prior is conjugate to the likelihood, following the standard GP
regression procedure. The covariance hyperparameters τ can be selected to maximize the
marginal likelihood p(Y |M(·), X, τ), which also has an analytic expression.

For other choices of h(·) and for non-Gaussian likelihoods, we need approximate infer-
ence. We use variational inference (VI) for computational efficiency, but because our ap-
proach is indifferent to the inference method, other standard choices of MCMC and Laplace
approximation would be applicable as well. We approximate the posterior p(r(·)|M(·), X, Y, τ)
with approximate distribution q(r(·)|λ) that depends on variational parameters λ. A varia-
tional inference procedure is conducted through the optimization of a KL-divergence mea-
sure s.t. λ̂, τ̂ = argminλ,τ KL(q(r(·)|λ)||p(r(·)|M(·), X, Y, τ)); see Blei et al. (2017) for an
excellent overview and detailed description of variational inference. Our implementation
builds on GPyTorch (Gardner et al., 2019), uses inducing points for scalability, and op-
timizes both λ and τ simultaneously, but the technical details of the inference are not
particularly essential for this work. For more information about VI for GPs and sparse
GPs, we invite the reader to refer to Hensman et al. (2015) or Damianou (2015).

2.5. Ensuring Unbiased Corrections

The assumption according to which the model is correct in expectation is encoded by the
constraint in Eq. (2). For the simplest choice of h(z) = z, the condition (2) is trivially
achieved by setting µ(x) = 0, but for other choices, we need to either use non-zero mean
functions or change the model itself slightly.

To see this, let us consider the case of h(z) = exp(z). The expectation of (log-normally
distributed) exp(r(x)) is then exp(µ(x) + σ2(x)/2) and to remove the bias we need to set
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µ(x) = −σ2(x)
2 where σ2(x) = K(x, x) is the prior variance of the Gaussian process. For some

transformations, we cannot compute the required prior mean analytically, but standard
approximations are easy to derive for transformations of interest. For example, for the
sigmoid transformation, the prior mean needs to be µ(x) = Φ−1(M(x))

√
0.588−2 + σ2(x)−

h−1(M(x)), where Φ−1 is the probit function (see Appendix for derivation).
An alternative, general-purpose approach is to assume an approximate process of (1)

by using a second-order Taylor series approximation. We then have

f̃(x) = h
(
h−1(M(x)) + r(x)

)
− σ2

2
h′′
(
h−1(M(x))

)
,

so that E[f̃(x)] ≈ M(x) when E[r(x)] = 0. This provides a general-purpose solution that
only requires the computation of the second derivatives h′′(z) that are easy for all transfor-
mations.

2.6. Measuring and Visualizing the Discrepancy

The outcome of the discrepancy model is the posterior distribution of the corrections r(x),
which can be interpreted in numerous ways. In practice, we recommend separately charac-
terizing the overall discrepancy with a numeric summary and visualizing the local discrep-
ancy as a function of x.

For summaries, one can consider any standard distance measure over x that measures
the bias (how much the corrected process differs from the theoretical model M) and the
variance (the uncertainty about the correction). As a concrete example, in the case studies,
we use as overall discrepancy measure δ the expected ℓ1-distance over the x-domain

δ =

∫
x∈[xmin,xmax]

|E[f(x)|M(·), X, Y ]−M(x)|dx
xmax − xmin

.

As overall measure of the uncertainty uδ, we use the expected amplitude of the credible
interval at 95% over the x-domain

uδ =

∫
x∈[xmin,xmax]

P97.5%(f(x))− P2.50%(f(x))dx

xmax − xmin
,

with Pi%(z), the i-percentile of z. In practice, both measures are estimated by sampling
f(x) at a dense grid of x.

For visualizing the discrepancy, one possibility is to plot the posterior distribution for
each dimension of x separately, as done in all figures of this paper. The mean tells about
where the initial model has potential flaws, and the uncertainty tells about the confidence
one can have about each of these supposed “flaws” given the current set of observations.

2.7. Workflow

To better explain how the previous section relates to the overall modeling workflow, we
briefly summarize the typical steps of the process. Our solution is easy to incorporate
into existing workflows since it is fully decoupled from the process of fitting the model M ,
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similarly to Gardner et al. (2020) but unlike the majority of previous work that estimates
the correction simultaneously with the model parameters.

We assume that the scientist has already collected dataD about their problem of interest
and has selected a particular model M to investigate. To study the model discrepancy, they
would then:

1. Fit the model M , estimating θ̂ with any optimization routine; our approach does not
depend on how the parameters were estimated.

2. Choose a covariance function K for controlling the smoothness of the discrepancy. In
the absence of domain knowledge, a standard choice such as squared exponential can
be used.

3. Select the function h based on prior constraints for the model outputs and the expected
form of discrepancy. Alternatively, run the model with several choices.

4. Find the posterior distribution of the discrepancy as explained in Section 2.4.

5. Investigate the discrepancy, using measures of overall discrepancy (Section 2.6) and
by visual inspection of the discrepancy plots (e.g. as in Fig. 2, 3 or 4).

6. Interpret and possibly modify or reject the model M according to the observed dis-
crepancy.

As support for following this workflow for new applications, we provide an imple-
mentation building on top of GPyTorch (Gardner et al., 2019), at https://github.com/
AurelienNioche/TransformedGP.

3. Related Work

In the early literature, authors studied the discrepancy by learning the model and the cor-
rection simultaneously (Kennedy and O’Hagan, 2001). Brynjarsdóttir and O’Hagan (2014)
thoroughly investigated the identifiability problems of the additive correction model pro-
posed by Kennedy and O’Hagan (2001) and proposed using stronger priors for the correction
term to mitigate the issues. This strategy, however, has the fundamental problem of requir-
ing prior information directly on the discrepancy, which is very rarely available. Recently,
Gardner et al. (2020, 2021) proposed decoupling the inference process by first inferring the
theoretical model’s parameters θ and only estimating the discrepancy afterwards. However,
they only considered additive corrections. We build on this stream of research, providing a
more flexible family for discrepancies and considering the overall workflow.

Our work also relates to the broader literature on hybrid models combining theory-based
and data-driven models in alternative ways, presented here from the perspective of our case
example of cognitive decision-making models. Plonsky et al. (2017) combine data-driven
models such as random forests and decision-making models to improve predictive accuracy,
whereas Afrabandpey et al. (2020) considered learning Bayesian non-parametric models that
retain interpretability of theory-based reference models also in other application domains.
Bourgin et al. (2019) proposed to train neural networks with data simulated from classical
decision-making models to facilitate training these flexible models with fewer observations,

https://github.com/AurelienNioche/TransformedGP
https://github.com/AurelienNioche/TransformedGP
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Figure 2: Human growth modeling. Each subfigure (column) presents a different base
model: (A) linear, (B) logistic, (C) theory-based model. The top row presents
the predictions of the model alone and with the correction. The bottom row
represents the expected discrepancy.

and Rajan and Miyapuram (2020) proposed to make use of hybrid models to individualize
the inference of the latent processes. Recently, Peterson et al. (2021) proposed to keep
the structure of interpretable models but to replace the deterministic definitions of each
component with a flexible representation learned using a neural network. Finally, recent
studies on residual analysis on behavioral models (Agrawal et al., 2020) (equivalent to
additive correction) have been proposing to use of flexible function approximators to make
data-driven corrections for the theoretical model. Hybrid models often lose some of the
interpretability of the theoretical model by either using theory-based features as features of
a black-box model or by using data-driven elements inside theoretical models, whereas our
focus is specifically on analyzing the behavior of the base model itself.

4. Case Study I: Human growth

The general goal of this case study is to illustrate (i) the basic idea as clearly as possible,
with an elementary setting, while showing (ii) how the approach can be used to support
model comparison and (iii) how an excellent model is identified as one having no or almost
no discrepancy.

Context We consider a series of height measures Y = {yi}i∈[1,n], made for humans at
corresponding ages X = {xi}i∈[1,n]. The task is to model the growth by learning the inter-
pretable model M(x) that provides the height for each age, used already as a motivational
example in Figure 1.

Data We use simulated data of 100 observations for six age groups (n = 600), gen-
erating the data according to statistical information about Finnish children provided by
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the Finnish Health Institution(data available at http://kasvukayrat.fi/wp-content/

uploads/2018/08/Pojat-0-2v1.pdf and http://kasvukayrat.fi/wp-content/uploads/
2018/08/Pojat-1-20v1.pdf). The simulation process is described in the Appendix.

Base models We consider three different models to demonstrate different types of dis-
crepancies and their interpretations. Two are generic statistical models (linear and logistic
regression), and one is a classical theory-based growth model by Jolicoeur et al. (1988).

The linear regression model is given by MLINF(x) = β0 + β1x, where β0 ∈ R is the
intercept, and β1 ∈ R is the slope (θLINF = {β0, β1}). The logistic model (LOGF) is given
by MLOGF(x) =

a
1+exp(−k(x−x0))

, where x0 ∈ R+ is the newborn age, a ∈ R+ is the height

at the maturity, and k ∈ R+ is the logistic growth rate (θLOGF = {x0, a, k}). Finally, the
Jolicoeur et al. (1988)’s model (JPPS) is given by

MJPPS(x) = a

(
1− 1

1 +
∑3

i=1(x
′/bi)ci

)
,

where x′ = x + 0.75 (since the model JPPS covers the height growth from conception,
we use an adjustment term assuming a constant gestation of nine months); a ∈ R+ is
the height at the maturity; b1, b2, b3, c1, c2, c3 ∈ R+ are scale parameters (θJPPS =
{a, b1, b2, b3, c1, c2, c3}).

For each model M , we obtained point estimates for its parameters θM using the L-
BFGS-B algorithm.

Learning the correction We demonstrate a simple use case of an additive correction and
hence use the identity function h(z) = z. We use the square exponential kernel K(xi, xj) =

α2 exp
(
− (xi−xj)

2

2ρ2

)
, with α, ρ ∈ R+ controlling the output scale and smoothness.

We assume a Gaussian likelihood. Hence, the posterior has an analytic solution. The
hyperparameters of the kernel τ = {α, ρ} are optimized for maximising the marginal likeli-
hood (which also has analytic form) using Adam optimizer with a learning rate of 0.1 for
1000 epochs.

Results The results are depicted in Fig. 2. The main result is that the overall dis-
crepancy is extremely small for the theory-based model (JPPS; δ < 0.001), compared
to the alternatives of linear regression (LINF; δ = 7.844) and logistic regression (LOGF;
δ = 3.635). All three models show similar discrepancy uncertainty (LINF: uδ = 25.028;
LOGF: uδ = 24.983; JPPS: uδ = 23.119), which stems from the generative process; the
expected uncertainty for the observation error used for simulating the data for each of the
5 age groups is 2 × 1.96 × SD = 7.84, 15.68, 27.44, 27.44, 31.36, 23.52. The visualizations
reveal that LINF overestimates the height for young ages and young adults, while it under-
estimates it for intermediary ages (Fig. 2A). LOGF under- and overestimates the height
over the whole domain (Fig. 2B), whereas JPSS shows an expected deviation of zero for all
inputs.

Conclusion The case shows how the approach can be used for comparing alternative
models. A researcher using the simpler models would learn information about their limita-
tions, whereas one considering all three alternatives would learn that the model of Jolicoeur
et al. (1988) is to be preferred and matches the true process extremely well.

http://kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-0-2v1.pdf
http://kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-0-2v1.pdf
http://kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-1-20v1.pdf
http://kasvukayrat.fi/wp-content/uploads/2018/08/Pojat-1-20v1.pdf
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Figure 3: Risk modeling – Artificial data. (A, C, E) Using the correct model as the base
model, (B, D, F) using an identity utility (i.e., “wrong” model) instead, and using
respectively a sigmoidal, exponential, and identity transformation.

5. Case Study II: Risk Attitude

This case study demonstrates the approach in a prototypical use case in cognitive science and
is an example that needs the full flexibility of our framework in terms of the transformations
for a meaningful inference of the discrepancy.

Context We consider a series of choices Y = {yi}i∈[1,n] made by a (human) subject. Each
choice yi is between two lotteries Li1 and Li2. Each lottery Lij gives the reward xijk with
probability pijk, with

∑
k pijk = 1. For detailed explanations of the concepts, see e.g. Erev

et al. (2017). The underlying decision-making process is latent (i.e. not observable), so we
want to model it. As we expect large inter-individual differences, we learn a separate model
for each user, and one of the goals is to detect for which users the model can be relied on
as a basis for interpreting their risk behavior.

Data We consider two datasets: artificial data simulated from the model for technical
validation and the CPC18 data set (https://zenodo.org/record/845873#.WeDg9GhSw2x)
of real observations of human decision-makers, explained in detail in Erev et al. (2017). We
used the data from 125 subjects for which we had n = 325 observations. All rewards are
normalized between 0 and 1. For artificial data, n = 325 observations and features were
generated using similar stimuli.

https://zenodo.org/record/845873#.WeDg9GhSw2x
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Figure 4: Risk modeling – Human data (CPC dataset). (A) Distribution of the overall
discrepancy (δ). (B) Distribution of the overall discrepancy uncertainty (uδ). (C)
Overall discrepancy uncertainty over the overall discrepancy. (D) Subject with
a “low” discrepancy (δ < 0.001). (E) A subject with a “moderate” discrepancy
(δ = 0.130). (G) Subject with a “strong” discrepancy (δ = 0.295). (G) Subject
where no reliable discrepancy has been found (uδ = 0.895).

Base models We use probabilistic version of Expected Utility (Von Neumann and Mor-
genstern, 1944) model. The probability of a choice yi is

p(yi = Li1) = s

(
β

[∑
k

pi1ku(xi1k)−
∑
k

pi2ku(xi2k)

])
,

where s(·) is the sigmoid function, β ∈ R+ the inverse temperature parameter, and u(·)
the utility function. A classic formulation of the utility function (Holt and Laury, 2002) is
u(x) = xα, with α ∈ R+ as the risk aversion parameter. α < 1 indicates risk aversion, while
α > 1 indicates risk-seeking.

Note that for modeling the discrepancy, we consider the utility function itself as a target
model for our discrepancy investigation. Therefore, contrary to the human growth modeling
experiment, the goal is to measure the discrepancy of a component of the full model.

We again obtained a point estimate for each user’s parameters θ = {α, β} using the
L-BFGS-B algorithm.

Learning the correction Similar to Case Study I, we used the squared exponential
kernel as a covariance function. We assume here that the user does not know in advance
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which transformation should be used. Hence, we considered three alternatives: identity
(id.), exponential (exp.), and sigmoid (sig.). The exponential transformation constrains the
solution to lie in the positive domain, while the sigmoid transformation constrains it to be
in the interval [0, 1]. We also use here a second-order Taylor series approximation for f .

Here the likelihood is non-Gaussian (a Bernoulli distribution), and hence we use VI with
full-rank multivariate Gaussian distribution to approximate the posterior. We optimized the
GP hyperparameters (τ : kernel’s output scale and length scale) at the same optimization
loop as the variational parameters (λ: mean and covariance matrix of the q distribution)
using GPyTorch (Gardner et al., 2019) with the Adam optimizer, using a learning rate of
0.05 for 1000 epochs, 100 samples for the Monte Carlo estimation of the log probabilities,
and 50 inducing points linearly spaced over the interval [0, 1].

Results First, we ran experiments with artificial agents where the ground truth is known
to illustrate the approach in a controlled case. When using the correct model (i.e. the
one used for generating the data; see Fig 3A 3C 3E), the overall discrepancy (δ) is low
for all the transformations, although higher for the identity transformation (sig.: 0.003,
exp.: 0.077, id. 0.158). However, the uncertainty estimation (uδ) is meaningful only when
using the sigmoid transformation, as it is overly large otherwise (sig.: 0.017, exp.: 0.374,
id.:0.778). For this simulated data, we can also compare the corrected model to the true
data generative process by computing an analogous metric as δ but using the true process
in place of M(x). For all transformations, the corrected model is close to the true process
(sig.: 0.021, exp.: 0.033, id.: 0.013).

For evaluation purposes, we also consider a case where a “wrong” model is used as
the base model, i.e., an identity function u(x) = x, instead of the one used for generating
the data u(x) = xα. In this case, the observed discrepancy depends significantly on the
transformation (see Fig 3B 3D 3F), and using the sigmoid transformation is critical for
correct analysis. In the other cases, either the mean of the corrected model is relatively far
from the ground truth (0.059, 0.272, 0.020 for sig., exp., and id.), or the uncertainty is very
large (uδ of 0.119, 0.436, 0.847 for sig., exp., and id.).

Figure 4 presents the results for the CPC18 dataset, using only the sigmoid that was
robust to discrepancy in the case of both correct and incorrect models. From a general
perspective, we note that the overall discrepancy is relatively low — as one can expect
since we are using a very classic utility function (Holt and Laury, 2002) — and that the
uncertainty of the discrepancy is also low (see Fig. 4A–C).

We learn a separate model for each individual and hence can study how well each one
follows the assumed model. Fig 4D–G shows the results of four subjects that are prototypical
cases: a subject with an overall discrepancy close to 0 (Fig 4D; δ < 0.001), a subject with
a ”moderate” discrepancy (Fig 4E; δ = 0.130), a subject with a high discrepancy (Fig 4F;
δ = 0.295), and a subject with an “uncertain” discrepancy (Fig 4G; uδ = 0.895). We
labeled the latter as “uncertain” as the mean-variance is so high that it does not clearly
indicate how the initial model could be wrong (e.g., overestimates utility for lower values),
but rather that no model could bring reliable predictions for this subject.

Conclusion The artificial data results show that the choice of the transformation (h) is
crucial for a good estimate of the overall discrepancy and its uncertainty. The results in
the CPC18 dataset show how a model’s discrepancy can be used to distinguish, for each
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individual separately, whether the utility model’s parameters can be safely interpreted to
describe the subject’s attitude towards risk.

6. Discussion and Conclusion

We proposed to use transformed Gaussian processes for estimating the discrepancy between
a base model and the data generative process given some observations, using transformed
Gaussian processes to model this discrepancy. Our work extends previous work on modeling
discrepancy with Gaussian processes (Brynjarsdóttir and O’Hagan, 2014; Gardner et al.,
2021) by offering a family of possible discrepancy models that allows a better balance
between flexibility and optimization constraints. We showed how additive and multiplicative
discrepancies are specific choices of transformation, how we can encode the assumption of the
model being correct in expectation irrespective of the transformation, and how an adequate
transformation that constraints the optimization problem can be the key to a meaningful
estimation of the discrepancy. We also covered an important application case in human
decision-making modeling where combining theory-based and data-driven approaches has
recently been shown to bring significant progress (Plonsky et al., 2017; Agrawal et al., 2020;
Peterson et al., 2021) but discrepancy models have not been considered before.

Our approach easily integrates into existing modeling workflows, covering all processes
where point estimates of θ are used. We provided the fundamental elements required for
an interactive tool, but further work remains in developing an easy-to-use interface, par-
ticularly from the perspective of efficiently supporting the exploration of discrepancies for
models with more than a few parameters. Extending the approach for a scenario where
the researcher is conducting Bayesian inference over θ would also be an interesting future
direction.

A limitation is that the visualization techniques proposed here will not scale well with
a high number of covariates (i.e., high dimensionality). Another limitation is that we have
no guarantees of obtaining a reliable model’s discrepancy in every context. Our experimen-
tal results show that we can, in practice, identify potential failures, using the uncertainty
(variance) of the discrepancy as an indicator, but further work would be needed to iden-
tify potential theoretical conditions for reliable and meaningful results. Still, our approach
allows the inspection of discrepancy from multiple perspectives by using different trans-
formations and can accelerate the development of theory-based models by enhancing their
diagnostic.
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